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Abstract In this letter, a new multi-crossover and adaptive island-based
population algorithm (MAIPA) is proposed. This new technique divides the
entire population into subpopulations, or demes, each of them with a different
crossover function, which can be switched depending on their efficiency. In
addition, the presented MAIPA reverses the conventional genetic algorithms
philosophy. It gives priority to the autonomous improvement of the individuals
(mutation phase), and introduces dynamism in the crossover probability.
In the proposed MAIPA, each subpopulation begins with a very low value
of crossover probability, and varies depending on two factors: the current
generation number, and the search performance on recent generations. This
mechanism helps to prevent premature convergence. In this first phase of the
research, the quality of this technique is tested, applying it to three different
well-known routing problems, and the results are compared with the ones
obtained by a traditional island based genetic algorithm. The new proposal
proves to be better for all problems used.

Keywords Island Model · Adaptive Algorithm · Combinatorial
Optimization · Vehicle Routing problems · Intelligent Transportation
Systems.

1 Introduction

Genetic algorithm (GA) is one of the most used and successful meta-heuristic
to solve combinatorial optimization problems. Although its basic principles
were proposed in 1975 by Holland (Holland (1992)), it was later when its
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practical use to solve complex problems was shown (Goldberg (1989); De Jong
(1975)). Since then, GAs have been the focus of a large number of research,
being applied to a wide range of fields (Moon et al. (2012); Mart́ınez-Torres
(2012)). Despite this fact, GAs have some drawbacks, such as fast convergence
and the imbalance between exploration and exploitation. In order to overcome
these drawbacks parallel genetic algorithms (PGA) were proposed (Whitley
et al. (1999)). Analyzing the literature, PGAs can be divided into three
categories: fine grain, panmitic model and island model. This last category
is the most used, and it consists in multiple populations that evolve separately
(most of the time) and exchange individuals occasionally. In the literature
there are a lot of studies describing the main issues about this type of GAs.
In Cantú-Paz (1998) can be found a comprehensive survey about PGAs.

In this letter, a multi-crossover and adaptive island-based population
algorithm (MAIPA) for solving routing problems is presented. This new meta-
heuristic is a variant of the classic island based GA (IGA). The proposed
MAIPA divides the whole population into different subpopulations, or demes,
each of them with its own crossover function and crossover probability.
The migration system topology is dynamic, and each subpopulation can
communicate with the others depending on the search process. In addition, the
introduced technique gives priority to the local improvement of the individuals
(mutation), by applying crossover operators only when they are beneficial. In
the presented MAIPA, the crossover probability of each subpopulation can
vary, depending on the current generation number, and the search performance
on recent generations in the deme. This dynamism, accompanied by the
dynamic topology (communications between subpopulations are evenly) and
the multi-crossover, increases the exploration and exploitation capacity of the
meta-heuristic, and helps to prevent premature convergence.

The aim of this work is to introduce this new technique, and show that it is
a good alternative to solve routing problems. For this, the results obtained by
the technique applied to three different routing problems have been compared
with those obtained by an IGA. The objective is to demonstrate that the
proposed meta-heuristic outperforms the classic IGA in terms of results quality
and runtime.

The rest of the letter is structured as follows. In Section 2 a brief literature
is introduced. In that section, the original contributions of the proposed
MAIPA are also mentioned. In Section 3 the proposed technique is described.
The experimentation is introduced in Section 4. The letter finishes with the
conclusions and future work.

2 Brief literature and contribution of the presented work

As it is said in the introduction, the proposed technique is a multi-population
algorithm. Some approaches have been proposed throughout the history
following this same philosophy, as the parallel artificial bee colony (Tsai et al.
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(2009)), parallel particle swarm optimization (Niu et al. (2007)), and the
parallel genetic algorithms.

Besides this, as already explained, the meta-heuristic algorithm adapts the
crossover probability depending on the performance of the algorithm. The idea
of adapting the mutation and crossover probabilities (pm and pc) of a GA has
been studied since long time ago (Schaffer & Morishima (1987)), with the aim
of improving the performance of conventional genetic algorithms. Anyway,
this field is subject of many studies nowadays, as in Wang & Tang (2011).
About the multi-crossover feature, it has also been studied long time ago and
nowadays (Spears (1995); Mukherjee et al. (2012)).

Being a variation of the IGA, the differences between the proposed
technique and other multi-population techniques are the same as the IGA, and
they can be found in Cantú-Paz (1998). Respect to IGAs and other adaptive
techniques, the innovative aspects of the proposed MAIPA are as follows: (1)
unlike the vast majority of PGA, in the presented approach each subpopulation
has a different crossover function and pc. This fact helps individuals to
explore the solution space differently when they migrate to another deme.
This characteristic increases the exploration capability of the technique. (2)
The proposed MAIPA changes the philosophy of the conventional IGAs and
GAs. It begins the execution with a very low or null value for pc, and a high
value of pm. As shown in Osaba et al. (2013), this fact increases the exploitation
capacity of the search. (3) The introduced MAIPA adapts the pc of each deme
depending on the search performance in recent iterations (i.e., if the best
found solution is improved) and the current generation number, rather than
using only the population fitness, as most previous studies. (4) The introduced
technique combines the adaptation of the crossover probability, with a multi-
population and multi-crossover system. After reviewing the literature, it can
be said that this is a new approach that has not been done before. (5) The
proposed MAIPA has been tested with routing problems. Usually, adaptive
and multi-population techniques have not been applied to this family of well-
known problems.

3 A Multi-Crossover and Adaptive Island Based Population
Algorithm for Solving Routing Problems

As stated in Section 2, the proposed MAIPA is a variant of a conventional
island based GA. In Algorithm 1 can be seen how the meta-heuristic works.
The proposed technique gives priority to the local improvement of the
individuals, provided by the mutation phase, and gives less importance to
the crossovers phase. This fundament is based on the recently published work
Osaba et al. (2013), which analyzes the inefficiency of the crossover phase in the
optimization capacity of a basic GA, when it is used to solve routing problems.
This is the reason why the proposed MAIPA gives a greater importance to
the mutation phase. Spite of this, it can be considered that crossovers can
be beneficial to the exploration capacity, maintaining the diversity of the
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population. Therefore, in the proposed MAIPA crossovers are executed only
when they can be beneficial, adapting the pc of each subpopulation to the
search needs. Besides this, in the proposed MAIPA each subpopulation has its
own crossover function, which can change depending on its performance. This
feature increases the exploration capacity of the meta-heuristic.

Algorithm 1: Pseudocode of the proposed MAIPA

1 Creation of the whole population;
2 Subpopulations creation and crossover function assignment;
3 while Termination criterion not reached do
4 for each subpopulation do
5 Mutation process;
6 Crossover process;
7 Selection of survivors;
8 pc update;

9 end
10 Individual migration process;

11 end
12 Return of the best individual of the whole system;

Regarding the pm and pc parameters of the proposed technique, in the
presented MAIPA all the subpopulations have a pm equals to 100%, which
means that all individuals of the whole system go through the mutation
process at every generation. Furthermore, each deme has its own pc, which
start with a value close to 0%. The latter parameter is modified differently
in each subpopulation, increasing or restarting its value. That modification is
based on the following criteria, being bestspi the best solution in subpopulation
sp in the generation i:

– If bestspi is better than bestspi−1: This means that the search process evolves
correctly. In this case, the value of pc is restarted, since it could be
considered that it is not necessary to diversify the population.

– If bestspi = bestspi−1: In this case, it might be considered that the search
process is trapped in a local optima, or that the population is concentrating
in the same region of the space of solutions. For this reason, pc is
increased, trying to increase the subpopulations diversification using
crossover operators.

– It must be taken into account that bestspi never will be worse than bestspi−1,
since the best solution of each population is always maintained throughout
the generations.

This way, whenever bestspi of a subpopulation has not been improved in
the last generation, pc of this deme increases following the Equation (1), where
N represents the number of generations without improvements, NG the total
amount of generations so far, and NMF depicts the size of the mutation
operator neighborhood:
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pc = pc +
N2

NMF 2
+

NG

NMF 2
(1)

As seen in the above formula, pc increases proportionally to the total
number of generations (NG) and the number of generations without any
improvement in the best solution (N).

In relation to the multi-crossover feature, at the beginning one crossover
function is randomly assigned to each subpopulation. Then, throughout the
execution, these functions could be randomly replaced by another, allowing
repetitions. For this, a maximum value for pc is defined (Max(pc)). This value
is the same in all the demes. If over the generations the Max(pc) of any
subpopulation is exceeded, the crossover function of this deme is randomly
replaced, restarting pc to its original value. This feature helps to increase the
population diversification in a better way than other similar techniques.

Regarding the migration system of the proposed MAIPA, as already said
in Section 1, the topology of the technique is dynamic. This means that
each subpopulation will communicate with all other demes depending on the
performance of the search. The communication is made as follows: whenever a
deme improves its best(spi), it shares its new best solution with all the other
subpopulations. These communications help to make a greater exploration of
the solution space.

4 Experimentation

In this section, results obtained by the proposed MAIPA applied to three
different routing problems are presented. As has been mentioned, the outcomes
got by the proposed MAIPA will be compared with the ones obtained by an
IGA. For both meta-heuristics similar parameters and functions have been
used. Thus, the difference between them is only their working way. This is the
most reliable method to determine which meta-heuristic obtains better results.
The problems used in this study are the Traveling Salesman Problem (TSP)
(Lawler et al. (1985)), the Capacitated Vehicle Routing Problem (CVRP)
(Laporte (1992)), and the Vehicle Routing Problem with Backhauls (VRPB)
(Golden et al. (1985)). TSP is used since it is a well-known benchmarking
problem, which it is simple to implement and understand. Today, there are
many studies using the TSP (Bae & Rathinam (2012); Sarin et al. (2011)).
In addition, CVRP and VRPB are used because they are two of the most
used routing problem in the literature. Annually, a large number of studies
use these two problems for their experimentations (Anbuudayasankar et al.
(2012); Mattos Ribeiro & Laporte (2012); Ngueveu et al. (2010)), due to
their complexity and, above all, to their applicability to real scenarios. These
three problems are easily replicable, so that any reader can perform this
same experiment, either to check the results, or to compare them with results
obtained by other techniques.
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Regarding the parameters of the algorithms, for both alternatives, and
all the problems, the initial population is composed by 48 randomly created
individuals, which are randomly divided in four different subpopulations of
12 individuals each. All the individuals are encoded using the Path Encoding
(Larranaga et al. (1999)). Regarding the selection and survivor phases, the
same function is used for both in all instances, which is the 50% elitist -
50% random. About the ending criteria, the execution of all the algorithms
finishes in 20.000 generations. For the IGA, pm and pc are, respectively, 5%
and 95%. In the case of the proposed MAIPA, pc starts at 0%. When the best
solution found is not improved, the pc increases following Equation (1), shown
in Section 3, otherwise, it returns to 0%. Max(pc) value is 35%.

Regarding the TSP, crossover functions implemented for this study are
order crossover (Davis (1985)), half crossover (Osaba et al. (2013)), modified
order crossover (Ray et al. (2004)), and order based crossover (Syswerda
(1991)). For IGA, intending to make a fairer comparison, the same functions
are used, assigning one of them to each subpopulation. Yet, unlike the proposed
MAIPA, subpopulations not change their function during the execution. The
mutation function for all both techniques is the well-known 2-opt (Lin (1965)).
Migration system for the IGA is also the same as the used in MAIPA.

For the CVRP and VRPB, crossover functions implemented are the Half
Route Crossover and the Half Random Route Crossover. The operation way
of the first of them is the following: first of all, half of the routes (the shortest
ones) of one of the parents are inserted in the child. After that, the nodes
already selected are removed from the other parent, and the remaining nodes
are inserted in the child in the same order, creating new routes. Half Random
Route Crossover works similar as Half Route Crossover. In this case, the
routes selected in the first step of the process are selected randomly, instead
of choosing the best ones. Regarding the mutation function, the named vertex
insertion function is used for both problems. This operator selects one random
node from one randomly chosen route of the solution. This node is extracted,
and inserted in another randomly selected route. With this function, the
creation of new routes is possible.

4.1 Results

The experimentation has been performed on an Intel Core i5 2410 laptop, with
2.30 GHz and 4 GB of RAM. The results for the TSP, CVRP, and VRPB are
shown in Table 1, Table 2, and Table 3, respectively. All instances of the TSP
have been obtained from the TSPLIB Benchmark (Reinelt (1991)). For the
CVRP, instances have been picked from the Christofiden and Eilon CVRP
benchmark (http://neo.lcc.uma.es/vrp 1). For the VRPB, 11 instances have
been used. The first six have been obtained from the Benchmark of Solomon
(http://neo.lcc.uma.es/vrp), and the remaining five from the Christofides and

1 Last update: January 2013
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Eilon CVRP benchmark. These instances are not typical of the VRPB, for this
reason, in order to adapt them to the characteristics of the VRPB, demand
types have been changed to have pick-ups and deliveries. This change is the
reason why the optimums are not shown in Table 3.

For each run, the total average, best result, standard deviation, and average
runtime (in seconds) are displayed. Each experiment is repeated 20 times. In
addition, the well-known Students t-test is performed for every instance, with
the aim of determining if the outcomes of the proposed MAIPA are significantly
different than those obtained by IGA. The t statistic has the following form:

t =
X1 −X2√

(n1−1)SD2
1+(n2−1)SD2

2

n1n2−2
n1+n2

n1n2

Where Xi, SDi and ni, are the average, standard deviation and number
of executions of each technique, being our MAIPA i = 1 and IGA i = 2. This
way, The t values shown can be positive (+) , neutral (*), or negative (-).
Positive value of t indicates that the proposed MAIPA is significantly better
than IGA. If t is negative, IGA gets better solutions. Finally, if t is neutral,
the difference between the two algorithms is not significant. The confidence
interval has been stated at the 95% confidence level (t0.05 = 2.021).

Instance Proposed MAIPA IGA t test
Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t
Oliver30 420 424.6 6.4 420 0.10 431.0 11.4 420 0.24 +
Eilon50 425 445.7 8.5 434 0.32 451.9 12.8 427 0.97 +
Eil51 426 446.0 9.3 431 0.35 460.2 11.9 438 0.99 +
Berlin52 7542 8004.4 286.1 7542 0.30 8113.4 170.1 7926 1.03 +
St70 675 714.7 16.1 687 0.80 726.7 16.4 695 4.51 +
Eilon75 535 570.8 10.6 556 0.94 580.6 15.0 556 5.54 +
Eil76 538 574.1 12.5 553 1.01 585.8 18.3 563 6.55 +
KroA100 21282 22349.1 600.1 21319 2.08 22955.8 671.3 21972 15.95 +
KroB100 22140 23350.9 421.1 22413 2.22 23764.3 720.3 22248 16.82 +
KroC100 20749 22133.0 531.5 21405 1.65 22533.7 727.9 21454 17.56 +
KroD100 21294 22281.4 414.3 21464 1.98 22436.9 402.3 21836 18.53 +
KroE100 22068 23397.3 560.6 22535 1.96 23945.1 628.5 23146 17.24 +
Eil101 629 680.8 8.5 665 2.29 713.1 15.4 697 25.57 +
Pr107 44303 46270.5 975.2 44764 2.73 47664.9 1316.3 45705 32.45 +
Pr124 59030 60995.3 630.8 60077 3.66 63654.0 2605.1 59697 48.54 +
Pr136 96772 102498.3 2161.5 97759 5.78 106363.2 1562.9 104565 56.41 +
Pr144 58537 60969.2 1663.6 58599 5.93 63562.6 1557.6 61398 62.54 +
Pr152 73682 76631.3 1013.9 74745 7.30 79209.5 2622.4 76252 67.54 +

Table 1 Results of the proposed MAIPA and IGA for the TSP

4.2 Analysis of the results

Analyzing the results, some conclusions can be highlighted, being the most
important that the proposed technique outperforms the classic IGA in terms
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Instance Proposed MAIPA IGA t test
Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t
En22k4 375 391.1 8.54 375 1.59 401.0 15.30 375 3.80 +
En23k3 569 599.9 31.75 571 2.05 656.2 23.44 601 3.14 +
En30k3 534 557.7 16.00 544 2.16 561.6 19.41 542 4.23 +
En33k4 835 899.5 23.30 864 2.85 911.0 27.18 888 6.52 +
En51k5 521 619.3 45.15 561 4.15 628.4 31.65 572 25.10 +
En76k7 682 799.9 37.34 752 8.83 814.1 31.43 764 64.12 +
En76k8 735 860.5 21.72 829 9.27 881.3 32.40 834 66.54 +
En76k10 830 963.0 19.88 935 7.89 971.0 24.54 945 55.10 +
En76k14 1021 1179.1 33.14 1139 9.54 1183.1 52.70 1142 41.16 *
En101k8 815 997.2 46.92 919 14.14 1004.5 67.43 924 52.43 *
En101k14 1071 1221.7 34.49 1173 12.15 1246.7 56.19 1182 114.55 +

Table 2 Results of the proposed MAIPA and IGA for the CVRP

Instance Proposed MAIPA IGA t test
Name Avg. S. dev. Best Time Avg. S. dev. Best Time t
C101 712.4 69.53 635 6.15 739.9 56.48 656 30.91 +
C201 740.1 47.02 685 5.45 785.4 69.54 682 22.41 +
R101 933.9 22.22 901 4.87 1003.8 33.47 953 27.76 +
R201 1103.2 59.35 1046 6.53 1217.0 60.11 1105 54.83 +
RC101 614.8 36.60 544 3.16 656.0 51.26 573 7.52 +
RC201 1215.4 85.13 1133 10.79 1315.5 67.08 1253 52.15 +
En30k4 597.3 67.90 522 3.95 602.8 37.68 544 6.34 *
En33k4 821.3 35.62 784 3.47 835.4 44.76 746 5.80 +
En51k5 657.4 35.54 619 4.63 689.6 37.61 642 12.15 +
En76k8 908.1 56.36 831 7.13 942.1 39.21 883 24.31 +
En101k8 1131.3 57.00 1070 8.64 1187.5 63.21 1090 53.12 +

Table 3 Results of the proposed MAIPA and IGA for the VRPB

of solution quality and runtime. Overall, both techniques have been applied to
40 different instances, and the introduced MAIPA offers better solutions and
runtimes in 100% of the cases. Besides this, thanks to the Student’s t test, it
can be added that these improvements in the solutions quality are significant in
92.5% (37 out of 40) of the instances. Being more specific, for the TSP, CVRP
and VRPB, this significant improvement is given in the 100% (18 out of 18),
81.81% (nine out of 11) and 90.91% (10 out of 11) of the cases, respectively.

The reason because the introduced MAIPA requires lower execution time
is the following: comparing the working way of the crossover and mutation
operators, the first are complex operations (specially for routing problems,
where all constraints have to be met) in which two individuals combine their
characteristics. On the other hand, a mutation is a small modification of a
chromosome, and requires considerably less time than the previous ones. The
fact that the MAIPA makes fewer crossovers than the IGA is reflected in the
runtime, providing an advantage to the proposed meta-heuristic.

The reason for the results improvement of the proposed technique can also
be explained, and it is based in the recent published work Osaba et al. (2013).
The use of crossover operators helps a broad exploration of the solution space,
since they are very useful resources to make jumps inside it. However, these
operators do not contribute to make a deep search of promising regions. To
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carry out a more exhaustive search, it is necessary to use a function that takes
care of local improvement of the individuals. Mutation function can handle
this objective.

This way, the introduced MAIPA can perform an intense search in the
promising regions of the solution space using the mutation process. In addition,
it uses crossovers when the diversity of the population is decreasing, in order
to avoid local optimums. Using crossovers, subpopulation can be expanded
through the entire solution space easily, and it could be more probable to
find promising regions. Besides this, the multi-crossover feature enhanced this
diversification, allowing a broader exploration.

In conclusion, using the IGA basic structure, the search conducted
comprises a large area of the space of solutions, but it has a small intensification
capacity. This means that, finally, the IGA can not get results as good as the
proposed MAIPA.

5 Conclusions and further work

In this letter, a new multi-crossover and adaptive island-based population
algorithm (MAIPA) is presented. It is a variation of the conventional Island
based genetic algorithm (IGA). To check the quality of the proposed technique,
it has been applied to three different well-known routing problems, and its
outcomes have been compared with the ones obtained by a basic IGA. As
a conclusion, it can be confirmed that the introduced MAIPA improves the
IGA, in terms of solution quality and runtimes, being a good alternative to
solve routing problems. Finally, the reasons why the proposed MAIPA obtains
better results than the IGA have been explained.

Some small improvements are planned for later versions of the technique.
For this reason, in the near future, these improvements will be developed and
tested. Besides this, the presented technique will be applied to real life routing
problems. At this time, its application to a dynamic distribution system of car
windscreen repairs is planned.
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