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Abstract In this paper, a new multiple population based meta-heuristic to
solve combinatorial optimization problems is introduced. This meta-heuristic
is called Golden Ball (GB), and it is based on soccer concepts. To prove the
quality of our technique, we compare its results with the results obtained
by two different Genetic Algorithms (GA), and two Distributed Genetic
Algorithms (DGA) applied to two well-known routing problems, the Traveling
Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP). These outcomes demonstrate that our new meta-heuristic performs
better than the other techniques in comparison. We explain the reasons of this
improvement.

Keywords Meta-heuristics · Golden Ball · Distributed Genetic Algorithm ·
Routing Problems · Combinatorial Optimization · Intelligent Transportation
Systems

1 Introduction

Nowadays, combinatorial optimization is a widely studied field in artificial
intelligence, which is subject of a large number of works every year [1,2]. There
exist lots of problems of this type, being the Traveling Salesman Problem
(TSP) [3] and the job-shop scheduling problem [4] two of the most studied.
The interest for the resolution of these problems lies on their complexity and
applicability to real life. Being NP-Hard [5], a large number of studies focused
on solving them are published annually, using a wide variety of techniques.

Normally, techniques used to solve these kinds of problems can be divided
into two groups: heuristics and meta-heuristics. Both alternatives are designed
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to optimize a problem iteratively, trying to improve one or more solutions.
Those techniques explore the solution space with the aim of finding the best
solution. Anyway, taking into account the complexity of the problems on which
heuristics and meta-heuristics are applied, in many cases it is not possible to
find the optimal solution. This way, the solution provided by these techniques
has to get as close as possible to the optimal.

A heuristic is an optimization technique that solves a problem using specific
information and knowledge of that problem. This way, heuristics explore the
space of feasible solutions intensifying the search in the most promising areas,
in order to achieve good optimization results quickly. On the other hand, a
meta-heuristic is an optimization technique that solves a specific problem using
only general information and knowledge common to all optimization problems.
Meta-heuristics explore a larger area of the solution space in order to achieve
good optimization results with independence of the problem.

Throughout history, there have been a lot of heuristics and meta-heuristics,
each one with a different philosophy and characteristics, and applicable to
many types of problems. They can be applied in a wide range of fields,
like transport [6–10], software engineering [11–13] or industry [14–18]. As
an example of these techniques the Simulated Annealing [19,20] and Tabu
Search [21,22] algorithms can be found as local search algorithms. These meta-
heuristics are based on a single solution, which is subjected to an optimization
process that attempts to bring it closer to the global optimum as much as
possible. Other widely used methods are the population based algorithms,
which have a population of solutions that interact in a cooperative and
competitive way. Examples of these methods are Genetic Algorithms (GA)[23–
25] and Ant Colony Systems [26,27].

The main objective of this paper is to describe a new meta-heuristic
to solve combinatorial optimization problems. This new meta-heuristic is a
multiple population based algorithm, and we call it Golden Ball (GB). Like
other population based techniques, GB starts the execution with the creation
of a population of solutions. Then, it divides the different solutions of the
problem in different teams, which work independently, and face each other in
a competition. This competition is crucial to decide the transfer of solutions
between teams and to decide the training model of each team.

In this paper, we demonstrate that our new meta-heuristic is a good
alternative to solve various combinatorial optimization problem. To prove
its quality, we have used our technique to solve two well-known routing
problems and we have compared the obtained results with the ones obtained
by two versions of the classical Genetic Algorithm and two Distributed
Genetic Algorithms (DGA). The reasons for choosing GA and DGA to do
the comparison, as well as the characteristics of the tests, are explained later.

The structure of this paper is as follows. A brief literature about multi-
population techniques in Section 2. Then, in Section 3, we explain in detail
our new meta-heuristic, and we mention the originality that our algorithm
provides respect to existing ones. This is followed by the description of the
different experiments (Section 4), and two test phases over the TSP and the
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CVRP, that will be shown, respectively in Sections 5 and 6. We finish this
paper with the conclusions of the study and further work (Section 7).

2 State of the art and related literature

As we have said in the introduction, GB is a multiple population technique,
which means that the algorithm divides the entire initial population into
different subpopulations. Throughout history some approaches have been
developed following this philosophy. Below we describe some of most popular
techniques of this type. We also discuss the literature of these techniques
regarding routing problems, since in this work we use two problems of this
type to perform the tests.

2.1 Parallel Artificial Bee Colony (PABC)

Single Artificial Bee Colony (ABC) algorithm was proposed by Karaboga in
2005 for multi-modal and multi-dimensional numeric problems [28]. ABC is
a swarm based meta-heuristic that emulates foraging behavior of honey bees.
The population of this technique consists in a colony in which three types
of bees inhabit: employed, onlooker and scout ones; each of them with a
different behavior. In ABC, a possible solution to an optimization problem is
represented by a food source, and the fitness of the solution is depicted as the
nectar amount of this source. Each employed bee has assigned a food source.
Every iteration, this kind of bees finds a new food source, and depending on
the nectar of the new source, the old one is replaced by the new one. Then,
each onlooker bee selects a food source and it makes the same movement as the
employed bees. A food source is abandoned if its quality has not been improved
for a predetermined number of successive iterations. Then, the employed bee
assigned to that source becomes a scout, and searches for a new food source
randomly. This way, in ABC, exploitation is carried out by employed and
onlooker bees, and the exploration by scouts.

A detailed survey on ABC can be found in [29]. That study notes that
the works focused on an ABC applied to a routing problem are scarce (less
than 10), since ABC initially was proposed for solving numerical problems and
problems with continuous search spaces.

First versions of the Parallel ABC (PABC) appeared in 2009 [30], to
perform a more thorough search than simple ABC. Anyway, to this day, there
are only a few studies focused on that kind of version of the ABC. Regarding
the way of working of PABCs, the main philosophy is the run of multiple
instances of ABC, trying to increase the exploration capacity of the single
ABC. Another crucial factor in PABC, which also helps the exploration and
exploitation, is the bee migration or information exchange between different
instances or subpopulations.

Some of the most interesting examples of PABC are the following. In [31] is
presented an approach in which the problem variables are divided by different
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instances of the same algorithm. All instances work independently, and the
complete solution is obtained as the collection of the best solutions provided
by all them. In [32], bees are divided into different subgroups, which explore
the same solution space in the same way. Every iteration, two swarms are
randomly selected to share their best solution. The best local solution from
one swarm replaces the worst local solution on the other group. In [33], an
improved version of the PABC is presented, where a local search enhances the
search. In this work, three different parallel models are presented: master-slave,
multi-hive with migrations, and hybrid hierarchical.

2.2 Parallel Particle Swarm Optimization (PPSO)

Particle Swarm Optimization (PSO) algorithm was first presented by Eberhart
and Kennedy in 1995 [34]. PSO is one of the most used techniques in the swarm
intelligence field, and although it was not initially designed to be applied
to discrete problems, several modifications have made it possible. PSO was
developed under the inspiration of behavior of bird flocks, fish schools and
human communities. It works with a population (called swarm) of candidate
solutions (called particles). The movements of every particle are guided by a
parameter called velocity. This parameter is based on the actual position of
the particle, and its best known position in the search space, as well as the
best known position of the entire swarm.

To overcome the drawbacks of the conventional version of PSO (fast
convergence to a local optimum [35,36], difficult balancing between exploration
and exploitation [37], or the called ”curse of dimensionality” [38]) first parallel
and cooperative PSOs were introduced. As in PABC, in literature various
methods have been proposed to implement the Parallel PSO.

In [38] a PSO based on cooperative swarms was introduced, which divides
the search space into lower dimensional subspaces. The k-means and the
regular split schemes are applied to split the solution space into swarms. Then,
swarms optimize the different components of the solution space cooperatively.
In [39] two different approaches (the competitive and the collaborative version)
of the master-slave model are presented. In the competitive version, the master
swarm enhances its particles taking the most fitted particle in all the slave
swarm. In contrast, in the collaborative version, the master swarm updates its
particles, depending on its ability to collaborate with slave swarms. In [40], the
whole population is divided into different subgroups, which communicate with
each other using three communication strategies. In the first communication
strategy, multiple copies of the best particle of each swarm are mutated, and
those mutated particles migrate and replace the worst particles in the other
swarms. In the second communication strategy, best particle in each swarm is
migrated to its neighbor swarms to replace some of the more poorly performing
particles. The last communication strategy is a hybrid between the above two.
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2.3 Parallel Genetic Algorithm (PGA)

Since its proposal in the 70’s, GAs have become one of the most successful
meta-heuristics for solving a wide range of problems. As in the other alterna-
tives, with the aim of overcoming the drawbacks of GAs, such as premature
convergence to a local optimum, and the imbalance between exploration and
exploitation, Parallel GAs were proposed. PGAs are particularly easy to imple-
ment and promise substantial gains in performance. Reviewing the literature
it can be seen that there are different ways to parallelize GA. The generally
used classification divides parallel GAs in three categories: Fine Grain [41],
Panmitic model or global single-population master-slave GAs [42] and Island
model [43].

This last category is the most used, and it consists in a multiple populations
that evolve separately most of the time and exchange individuals occasionally.
These algorithms are known with different names, as multi-deme, distributed
or Coarse-Grained. Many studies agree that this approach to develop parallel
GAs is the most suitable, although the way and frequency of migration and
the communication between the different populations are complex issues when
implementing a GA of this type. There are a lot of papers in the literature
describing innumerable aspects and details of the implementation of this kind
of GAs [43–46]. In [47], a comprehensive survey about parallel GAs can be
found. In this study, we can find several approaches for the migration and
communication between different populations.

2.4 Imperialist Competitive Algorithm (ICA)

This meta-heuristic, proposed by Atashpaz-Gargari and Lucas [48], is based on
the concept of imperialism, and divides the population into various empires,
which evolve independently. Individuals are called countries, and they are
divided into two types: imperialist states (best country of the empire) and
colonies. In this technique, the colonies make their movement through the
solution space basing on the imperialist state. Each movement is made in
the direction in which the imperialist state is placed, trying to get close
to it. Meanwhile, empires compete between them, trying to conquer the
weakest colonies of each other. This way, powerless empires could collapse
and disappear, dividing their colonies among other empires. Finally, all the
empires collapse, except the most powerful one, and all the colonies will be
under the control of this empire. In that moment, the convergence is met, and
the execution finishes. To this day, this algorithm has only been applied to
routing problems on a couple of occasions [49,50].

2.5 Seeker Optimization Algorithm (SOA)

Seeker optimization algorithm was proposed by Day et al. in 2006 [51]. This
algorithm models the human searching behaviors, based on their memory,
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experience, uncertainty reasoning and communication with each other. In this
algorithm individuals are called seeker (or agent), and they are divided into
K different subpopulations, in order to search over several different domains
of the search space. All the seekers in the same subpopulation constitute a
neighborhood. The seekers move along the solution space following a search
direction, based on the current or historical positions of themselves or their
neighbors (it depends on the behavior of each seeker). To avoid the rapid
convergence of the subpopulations, the position of the worst K − 1 seekers of
each subpopulation are combined with the best one in each of other K − 1
subpopulations, using a crossover operator. In the literature there are multiple
studies focused on this technique [52–54], but until today, this algorithm has
not yet been applied to any routing problem.

3 Golden Ball meta-heuristic

In this section, the new meta-heuristic Golden Ball is introduced. Firstly, in
Section 3.1, a general description is made. Later, each phase of the algorithm
is explained in detail. These phases are called initialization (Section 3.2), and
competition (Section 3.3). Then, the termination criterion of the algorithm
is defined (Section 3.4). Finally, this section ends explaining the original
contribution of the GB technique (Section 3.5).

3.1 General description

Fig. 1 Flowchart of the GB meta-heuristic
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As we said in the introduction of this work, our new meta-heuristic is a
multiple population-based algorithm which takes different concepts related to
soccer for the search process. First, GB starts creating the initial population
and dividing the solutions (called players) among the subpopulations (called
teams) of the system. Once this initial phase has been completed, the first
season begins. A season is divided into weeks, in which the teams train and
face each other creating a league competition. When a season ends, transfer
phase begins, in which the players and coaches can switch teams. This process
is repeated until the termination criterion is met. Figure 1 shows the flowchart
of our proposed algorithm, while in Algorithm 1 the execution is briefly
schematized. Now, the different steps that form the proposed technique are
explained in detail.

Algorithm 1: Pseudocode of the GB

1 Initialization of the players initial population (Section 3.2.1);
2 Division of the players into teams (Section 3.2.1);
3 repeat
4 A season is executed (this step it detailed in Section 3.3);
5 until termination criterion not reached (Section 3.4);
6 The execution finishes returning the final solution (Section 3.4);

3.2 Initialization phase

In this first phase of the algorithm, the players and teams are created as can
be seen in Section 3.2.1. Apart from this, in the initialization phase teams first
evaluation is performed in the way shown in Section 3.2.2.

3.2.1 Players and teams creation

The first step is the creation of a set of solutions, called P, which will make up
the initial population. All solutions are created randomly and they are called
player (pi).

P : {p1, p2, p3, p4, p5, . . . , pTN∗PT }

Where : TN = Total number of teams of the system

PT = Number of players per team

After generating P, players are randomly divided among the different teams
ti that form the league. This division is done iteratively, obtaining a player pij
from P and inserting into ti until reach TN. Once this division is done, players
are represented by the variable pij , which means ”player j of the team i”. The
set of teams is called T and it consists of TN teams, being TN≥2. With all
this, as an example, teams would be formed as follows:
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Team t1 : {p11, p12, p13, . . . , p1PT }

Team t2 : {p21, p22, p23, . . . , p2PT }

. . .

T eam tTN : {pTN1, pTN2, . . . , pTNPT }

Thus, each player of the solution space is part of a different team, as we
can see in Figure 2. The set of teams T is created as the one shown below:

T : {t1, t2, t3, t4, . . . , tTN}

Fig. 2 Space of solutions, team division

3.2.2 Calculation of the teams power

It is logical to think that in the real world, the power or strength of each team
depends directly on the quality of the players who make it up, the better the
players are, the stronger a team is. This way, if one team is strong, it can win
more games and be better positioned in the classification of the league.

The quality of each player pij is represented by a real number qij . This
number is determined by a cost function f(pij), which depends on the problem.
For example, in some routing problems, this function can be directly the total
distance traveled. In other cases this function may be more complex and it can
take into account details such as distance, the use of vehicles or any penalty
for the failure of certain restrictions. Each team has a captain (picap), which
is the player with the best qij of its team. Stated more formally:

picap = pik ∈ ti ⇔ ∀j ∈ {1, . . . , PT} : qik ≥ qij

It should be borne in mind that, as in real life, several pij of the same team
ti might reach at a certain moment a similar or equal qij . These equalities are
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temporary, because each pij evolves on its own way with training methods.
Thereby, when several players have the same qij and that qij is the best of the
team, picap is chosen randomly between these players.

To calculate the strength TQi of each team, the meta-heuristic takes into
account the quality of all the pij that comprise that team. TQi could be
expressed by the following formula.

TQi =

PT∑
j=1

qij/PT

3.3 Competition phase

In this central phase of the algorithm, teams train independently and
cooperatively, and they improve their power by little steps. Meanwhile, teams
face each other creating a league competition that helps to decide the transfer
of players between different teams. This process is divided into seasons (Si).
Each season starts at the step (a) depicted in Figure 1, and has two periods
of player transfers. A Si also has as many matches as necessary to complete
a conventional league, where all teams face each other twice. For this reason,
every season is divided into two parts of equal duration. In these parts, all
teams have to face each other team once. Finally, a season has as many training
phases as matchdays. This process is shown schematically in Algorithm 2.

Algorithm 2: Pseudocode of a season process

1 Points of each team ti are reset to 0;
2 for j = 1, 2 (each season is divided into two equal parts, as in real life) do
3 for each matchday (Section 3.3.2) do
4 for each ti in the system do
5 Training phase for ti (Section 3.3.1);
6 Custom training session for ti (Section 3.3.1);
7 Calculation of the quality TQi of ti (Section 3.2.2);

8 end
9 Matchday in which matches are played (Section 3.3.2);

10 end
11 Period of player transfers (Section 3.3.3);
12 Period of termination of coaches (Section 3.3.3);

13 end

3.3.1 Training methods

The training phase (step (b) depicted in Figure 1) is when all the players from
each team receive a training session that makes them improve. In real life, each
team has its own training method. Some of these training methods are more
effective than others. This way, some teams improve more than others. This
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fact is reflected in the ranking of the league competition, where the teams that
use more effective trainings get a better position, since they have more power
than other teams and they can win more matches.

To capture this situation on the proposed technique, each team has a
different training method, namely, a successor function that works on a
particular neighborhood structure in the solution space. For certain routing
problems, a function of this type could be the well-known 2-opt or 3-opt [55].
The training method is assigned randomly at the initialization process. For
each training, this function is applied a certain number of times (until its
own termination criterion is reached) to improve a pij . The p′ij generated is
accepted only if q′ij > qij . Thereby, each team examines in different manner
the neighborhoods of the players it possesses, making the players evolve in
a completely different way, depending on the team in which they are. This
fact helps to the exploration and exploitation of the solution space, which also
are enhanced by the fact that players can switch teams on multiple occasions.
Algorithm 3 outlines schematically this process.

Algorithm 3: Pseudocode of a training proces

1 while counter < TerminationCriterion do
2 Create a new player (p′ij) from pij using the training function;

3 if q′ij > qij (quality of pij is improved) then

4 pij = p′ij (pij is replaced by p′ij);

5 Counter=0;

6 else
7 Counter++;
8 end

9 end

It must be taken into account that the more times the function is applied,
the more computational time is needed. In addition, the fact of applying
this function more times does not mean a better performance, since the
player can reach a local optimum. For this reason, as mentiones above, each
training process has its own termination criterion. A training ends when there
are a number of successors without improvement in the qij of the player
trained. This number is related to the neighborhood of the team successor
function, or training function in this case. For example, taking the 2-opt as
training function, a training ends when there are n +

∑n
k=1 k (the size of

its neighborhood) successors without improvement, being n the size of the
problem.

This process could make a change in the picap of a ti. This fact occurs when
a player pij improves the quality of the captain of its team. Figure 3 shows an
example of this exchange.

Another kind of training is that we called Custom Training, the step (c)
depicted in Figure 1. It may happen that a player pij is in a period when,
despite receiving training, it does not experience any improvement in its qij .
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Fig. 3 Example of change of captain

From a sport point of view, this can happen because the player is focused too
much on training qualities which cannot improve because he is in a moment of
poor physical form. From the viewpoint of optimization, this happens when pij
is in a local optimum. To make the pij run away of this rut or obstacle, we have
created the custom training concept in our meta-heuristic. These trainings are
performed by a pij with the help of the captain of its team. Through these
trainings, pij can escape from a local optimum and it can move in the solution
space to another region or point, which may be a promising point.

From a practical standpoint, it is a combination of the characteristics of
these two teammates, resulting in a new player who has probably taken a leap
into the solution space. This jump can be beneficial to the search process, as
it help a thorough exploration of the solution space.

As an example of this kind of training, in which pij receives one custom
training with the help of the captain of its team, we can suppose that the two
players are as follows:

pij : [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]

picap : [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9]

Where xi and yi are the components of the players, that is, the variable
values of the solutions represented by pij. One possible combination of the
features of both players, and therefore a player resulting from a custom
training, could be the following:

p′ij : [x0, x1, y2, y3, y4, y5, x6, x7, x8, x9]

The player p′ij created by this kind of training replaces pij . If we take the
TSP as example, xi and yi would be the different cities that comprise the
environment, and a function that combines the characteristics of two players
could be the well-known Order Crossover [56] or the Very Greedy Crossover
[57].

In the real world, this is a widespread practice, in which players with more
quality and experience teach their teammates to improve those qualities that
they have yet to improve.
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3.3.2 Matches

The matches, as in the real world, are between two teams. Matches are created
as needed to complete a league, considering that all teams have to face each
other twice in a season. This phase is the step (d) depicted in Figure 1.

Each match consists of PT chances. Each chance materializes in goal
through a tournament between a pij for each team, which are faced by their
team position. The player with higher qij win the chance and it suppose a goal
for his team. The team that scores more goals is the winner of the match. As
in real life, the team winner of the match obtains 3 points and the loser 0. In
case of a tie each team gets 1 point. The points scored by each team are used
to perform a classification, sorted by the number of points scored. Algorithm
4 shows the process of a match. The players of both teams are ordered in
decreasing order of quality qij .

Algorithm 4: Process of a match

1 GoalsTeam1=0;
2 GoalsTeam2=0;
3 for each player in a team (PT ) do
4 if q1i > q2i (The player of the first team is better) then
5 GoalsTeam1 + +;
6 else if q1i < q2i (The player of the second team is better) then
7 GoalsTeam2 + +;
8 end

9 end

10 end

3.3.3 Period of transfers

The period of transfers is a process in which teams exchange players between
them. Thereby, all teams try to reinforce with the acquisition of new players.
In soccer world this is a process that happens every year. Normally, top teams
sign top players, while the other teams have to settle with lower quality players.
In every season there are two periods of transfers, the first is in the half of the
season, as a winter market, and the other at the end, as a summer market.

This fact has also been implemented in GB. It is placed in the step (e)
represented in Figure 1. In this case, the score of each ti and its position in
the classification of the league are decisive factors to decide the type of transfer
for each ti. In the middle and the end of each season, teams that are in the top
half of the classification are reinforced with the best pij of the teams of the
bottom half. While the ti in the lower half have to settle with the acquisition
of the less good pij of top teams.

It has to keep in mind that the better position of the team, the better
the player it receives. That is, the best team gets the best player of the worst
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team. On the other hand, the second best team receives the second best player
of the penultimate team. In addition, if TN is an odd number, the team at
the central position of the classification does not exchange any player. Below
is an example of this process for a league composed of 4 teams, taking into
account that players are ranked in order of their qij and the ti depending on
their position in the league:

Team t1 : {a0, a1, a2, a3, a4, a5, a6, a7, a8}

Team t2 : {b0, b1, b2, b3, b4, b5, b6, b7, b8}

Team t3 : {c0, c1, c2, c3, c4, c5, c6, c7, c8}

Team t4 : {d0, d1, d2, d3, d4, d5, d6, d7, d8}

After the period of signings, these teams could be composed as follows:

Team t1 : {a0, a1, a2, a3, a4, a5, a6, a7,d0}

Team t2 : {b0, b1, b2, b3, b4, b5, b6, c1, b8}

Team t3 : {c0, b7, c2, c3, c4, c5, c6, c7, c8}

Team t4 : {a8, d1, d2, d3, d4, d5, d6, d7, d8}

These interchanges of pij help the search process, since they allow a
different processing of solutions during the execution, avoiding falling easily
into local optima and increasing the searching capability of the meta-heuristic.
In other words, this process of neighborhood changing improves the exploration
capacity of the technique, and especially, contributes to greater exploitation
of promising regions of the solution space.

Other type of transfers that we take into account, and also help to the
exploration and exploitation, are the called special exchanges. In the world of
soccer, players change the team not just to go to a better team and win more
titles. It is possible that a player has played a long time on a team, and his
ambitions have fallen or he thinks that it cannot improve more if he stays in
the same team for more time. Therefore, the player can decide to change of
team, regardless of whether the target is a worse or better team.

In our meta-heuristic this fact is also raised, although it is applied
differently to reality. If a pij takes a certain number of trainings without
improvements in its qij even receiving custom trainings, it changes from its ti
to another random tk, with the aim of obtaining new different trainings. In
addition, it is no matter if TQk < TQi. To keep the PT per team, there is an
exchange with a random pij of tk. In addition, this exchange can happen at any
time of the season, so, despite having a philosophy that adapts itself to real
life, is not completely faithful to the rules imposed by the soccer federation.
The number of trainings without improvements that has to happen before the
team change is an input variable, which has to be set by the developer to
the technique. In the experimentation shown in this paper, this number has
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been set to 10. An example of this process might be as follows, assuming the
following ti and tk:

Team ti : {a0, a1, a2, a3, a4, a5, a6, a7, a8}

Team tk : {b0, b1, b2, b3, b4, b5, b6, b7, b8}

Supposing that a3 is the player that has not experienced any improvement
in its qij , an exchange is produced with a random player of another random
team. In this case this team is tk. Assuming that the selected player for the
exchange is b5, the teams would be as follows:

Team ti : {a0, a1, a2, b5, a4, a5, a6, a7, a8}

Team tk : {b0, b1, b2, b3, b4,a3, b6, b7, b8}

Moreover, in soccer, not only the players are transferred between teams,
usually coaches are also replaced, when their coached teams are not getting
the expected results, or when they are getting bad results continuously.

This fact, really common in real life, is also reflected in the proposed
method, in a process called Cessation of coaches. In each period of transfers, all
ti from the bottom half of the table change their form of training, hoping to get
another training method, i.e., another coach, which improves the performance
and the TQi of the team, seeking for best results. The change of training is done
randomly among all the types of training that exist in the system, allowing
repetitions between different teams. This neighborhood random change, which
affects all players of the team, improves the exploration capacity of the
technique.

3.4 Termination criterion

The finalization of the algorithm depends on the fulfillment of three factors.
This criterion has to allow the search performed by the algorithm to trace
a wide part of the solution space. For this reason, the developed criterion is
composed of three termination clauses:

TN∑
i=1

TQ′i ≤
TN∑
i=1

TQi (1)

TN∑
i=1

q′icap ≤
TN∑
i=1

qicap (2)

BestSolution′ ≤ BestSolution (3)

In other words, the execution of the GB finishes when the sum of the powers
TQ′i of all the teams does not improve comparing to the previous season (1),
the sum of the quality q′icap of all the captains has no improvement over the
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previous season (2), and there is no improvement in the best solution found
by the whole system (BestSolution′) in relation to the previous season (3).

When the finalization criterion is reached, the algorithm returns the pij
with the best qij of the system, which is the solution that our technique gives
to the problem.

3.5 Contribution of the GB technique

After describing in detail the GB, in this section the original contribution
that our technique brings is introduced. We compare the GB with the meta-
heuristics presented in Section 2, which are some of the most widely used
today.

Regarding the PABC, the main differences compared to GB can be listed
as follows:

1. In PABC there are three types of individuals in the population, each with
different behavior. In GB all individuals behave the same way.

2. The GB presents a system of exchange of players between subpopulations
based on the quality of each subpopulation. To the best of our knowledge,
this system has never been given in the literature for any multi-population
ABC.

3. In the PABC, bees share information between them. In GB, players not
only share information between them, if necessary, they also share their
own characteristics with the custom training.

In relation to the differences between GB and PPSO, the two following
differences can be highlighted:

1. In PPSO, each particle performs its movement based on its current
position, his best known position and the best position found in the entire
swarm. In GB, all players make their moves autonomously, without the
need of obtaining information from other individuals (Except for custom
training, which is a combination between individuals and it is rarely
performed).

2. In parallel versions of PSO, each subpopulation executes its movements
in the same way, based on the parameter of velocity. In GB, each sub-
population evolves differently, each of them with a different neighborhood
function. Moreover, players can change their way of evolving depending of
the training function of the team.

Regarding PGAs, taking into account the philosophy of the three types of
PGA, we can say that the Island Model or Distributed GAs (DGA) are the
most similar to our GB. With all this, the main differences between DGA and
GB are the following.

1. Both algorithms have two operators, the first one is applied to single
individuals (mutation and training), and the second one is a cooperative
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operator (crossover and custom training). As can be read in [47], the vast
majority of the DGAs give more importance to the second operator, leaving
the first in a secondary plane. In GB, by contrast, the local improvement of
individuals receives more importance, using the cooperation between them
on a few occasions, as a resource for exploration.

2. Regarding the cooperative operators and their way of working, in DGAs,
the typical selection function of the uni-population GAs is used to choose
the individuals that participate in a crossover. In GB, however, custom
trainings are performed rarely, and between an individual probably trapped
in a local optimum, and the better individual of its subpopulation.

3. As can be read in the literature [58,47], in the DGAs, the migration system
(or exchange of individuals between subpopulations) is a very complex
issue, and there are a great variety of architectures and topologies. In GB,
on the other hand, there is a well-defined exchange strategy with a dynamic
topology, based on the quality of each one of the subpopulations.

4. In DGAs, subpopulations cooperate, while in GB they compete.

Talking about the ICA, the philosophy and way of working of ICA is very
different compared to GB. Main differences may be listed as follows:

1. In ICA, all colonies make their movements based on the position of the
imperialist state of their empire, while the latter remains motionless. In
GB, on the other hand, each individual makes his moves autonomously.

2. In ICA, the number of subpopulations is reduced during the execution up to
1. In GB, subpopulations number is maintained throughout the execution.

3. Individuals transfer system is very different in both algorithms. While in
GB it is an exchange, in ICA is a single transfer.

Finally, as happens with PPSO, the difference between SOA and GB are
significant, being the most notable the fact that in SOA, each individual
makes its movement based on its current or historical positions of themselves
or their neighbors (depending on its behavior). In GB, on the other hand,
each individual has the same behavior and makes its moves autonomously.
Another important difference is the system of individual migration between
subpopulations. In SOA, these migrations are performed making crossovers
between individuals from different populations. In GB, complete individuals
are exchanged, basing these migrations on the quality of each subpopulation.

3.6 Selecting the proper technique for comparison

As can be seen, our proposal offers several differences with each and every one
of the techniques presented above. These techniques are some of the most used
today, and we can say that our approach proposes certain originality respect
to all of them.

Analyzing the philosophy and way of working of the algorithms described,
it can be concluded that the DGAs are the techniques that shares most
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similarities with our GB. In the evolution of their individuals, both meta-
heuristics rely on two operators, a local and a cooperative one, which are used
for the exploitation and exploration. In addition, both techniques are easy to
apply to routing problems and easy to parameterize. For this reason, to check
the quality of the proposed technique, we use the uni-population GA and DGA
in the experimentation phase. All the details of this phase are explained in next
section.

4 Experimentation setup

In this section, all the details about the experimentation that has been carried
out in this work are introduced. First, in Section 4.1 the details of the 4
algorithms used in the comparison are described, and the two routing problems
used are introduced. Then, in Section 4.2, a small study to determine how to
adjust the parameters of the GB is conducted. Finally, another small study
about the parametrization of one of the techniques used in the experimentation
is performed in Section 4.3.

4.1 General description of techniques and problems used in the comparison

As mentioned before, results obtained by the GB are compared with the
outcomes obtained by two versions of the basic uni-population GA [23,24] and
two different DGAs [47]. The comparison is performed with these algorithms,
since, as we have seen in Section 3.5, are those with more similarities compared
to GB. Next, the details of the four algorithms used in the experiment are
introduced:

– Classic Genetic Algorithm with conventional parameters (GA1): Classic
GA, with classic structure, conventional operators, and conventional
parameters, i.e., a high crossover probability and a low mutation
probability. These concepts are the most used in the literature.

– Classic Genetic Algorithm with parameters adjusted to GB (GA2): In this
case, the structure of the algorithm is the classical, but the operators and
the parameters are adjusted to be similar to those used in GB. With this,
the number of individual movements (mutations and individual trainings)
and cooperative movements (crossovers and custom trainings) made are
the same. The functions used are similar for both algorithms, so that
the function of mutation are one of those used by the GB as training
method, while the crossover function is the same as the custom training
function. To match this numbers, probabilities of crossover and mutation
are adjusted. Our aim is to perform a 100% reliable comparison, wherein
the only difference between the algorithms is the structure. Thus, it may
be deduced which technique gets better results using the same operators
the same number of times.
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– Distributed Genetic Algorithm with conventional parameters (DGA1): A
multi-deme genetic algorithm, in which multiple subpopulations, or demes,
evolve separately and exchange individuals occasionally. This is the most
popular distributed GA. The topology used for this algorithm is the
dynamic topology. In this topology, a deme is not restricted to communicate
with some fixed set of subpopulations. This way, whenever a deme improves
its best solution found, it shares this new best solution with all the other
demes. This individual replaces the worst individual of each subpopulation.
In every deme, a GA1 runs in parallel, each of them with different crossover
and mutation probabilities.

– Distributed Genetic Algorithm with parameters adjusted to GB (DGA2):
This last technique is a hybrid between DGA1 and GA2. The structure of
the algorithm is exactly the same as DGA1, but in each deme a GA2 is
executed. In this case, each deme has a different mutation function. Thus,
the similarity with the GB, in terms of operators and parameters, is more
faithful.

Tests were performed with two different combinatorial optimization
problems oriented on the vehicle routing, which are the Traveling Salesman
Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP).

TSP [3], is one of the most famous and widely studied problems throughout
history in operations research and computer science. It has a great scientific
interest and today is used in a large number of studies [59–61]. This problem
can be defined on a complete graph G = (V,A) where V = {v0, v1, . . . , vn} is
the set of vertices which represents the clients of the system, and A = {(vi, vj) :
vi, vj ∈ V, i 6= j} is the set of arcs which represents the interconnection between
clients. Each arc has an associated distance cost dij which is in a known
distance matrix C. The TSP objective is to find a route that visits each and
every customer once and that minimizes the total distance traveled.

The second problem to be studied is the Capacitated Vehicle Routing
Problem [62]. Like the TSP, this problem is also used in a large number
of studies nowadays [6,63,64]. The problem can be defined on a complete
graph G = (V,A) where V = {v0, v1, . . . , vn} is the set of vertices and
A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs. The vertex v0 represents the
depot and the rest of vertices are the customers, each of them with a demand
qi. A fleet of vehicles is available with a limited capacity Qk for each vehicle.
The CVRP objective is to find a minimum number of routes of minimum cost
such that i) each route starts and ends at the depot, ii) each client is visited
exactly by one route and iii) the total demand of the customers visited by one
route does not exceed the total capacity of the vehicle that performs it [65].

4.2 Setting Golden Ball parameters

Before starting the tests, a small study about the parametrization of the
Golden Ball is shown in this section. It should be taken into account that
performing a comprehensive study on the parameterization of the algorithm
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would be very extensive. That study has been planned as future work, since the
goal of this paper is the presentation of the technique, and the demonstration
that it is a good alternative to solve routing problems. For this reason, in this
paper we show a small portion of that study, in order to justify the parameter
settings used, related to the number of teams and players per team. For that,
we compare 4 different versions of GB, applied to the TSP. In this four versions,
the initial population has 48 players, and the only difference between them is
the distribution of players. This distribution is as follows:

– Version 1: 2 teams and 24 players per team.
– Version 2: 4 teams and 12 players per team.
– Version 3: 6 teams and 8 players per team.
– Version 4: 8 teams and 6 players per team.

The training functions used for the 4 versions are the same as has been used
for the tests presented in the following section. These functions are described
in Section 5.1. Results obtained by the four versions can be seen in Table 1.
Those tests were performed on an Intel Core i5 2410 laptop, with 2.30 GHz
and a RAM of 4 GB. Since this is a comparison between different GB versions,
for each run we display only the average of the results and the average of the
execution time (in seconds). The number of executions for each instance is 20.
Instances were obtained from the TSP Benchmark TSPLIB [66]. The name of
each instance has a number that displays the number of nodes it has.

Instance Version 1 Version 2 Version 3 Version 4
Name Avg. Time Avg. Time Avg. Time Avg. Time
Oliver30 420.30 0.12 420.00 0.18 420.00 0.32 420.00 0.47
Eilon50 431.30 0.46 427.00 0.85 427.40 1.23 427.40 1.64
Eil51 433.30 0.54 428.50 0.91 429.20 1.43 427.90 1.76
Berlin52 7599.80 0.75 7542.00 1.25 7542.00 2.18 7542.00 2.84
St70 685.85 1.55 679.45 2.09 678.20 4.08 678.00 5.75
Eilon75 553.55 1.63 544.35 3.37 541.50 5.23 541.70 6.53
Eil76 553.10 2.09 545.30 3.85 545.60 5.52 544.45 6.99
KroA100 21549.60 5.54 21386.70 8.12 21318.70 13.98 21325.70 17.76
KroB100 22729.20 4.58 22311.05 7.51 22337.50 11.95 22284.70 21.55
KroC100 21055.30 5.76 20968.25 8.05 20846.60 16.84 20840.25 18.14
KroD100 21602.00 6.44 21485.80 7.75 21481.60 13.93 21510.60 17.48
KroE100 22385.00 6.78 22266.80 7.95 22211.90 16.79 22157.80 19.08
Eil101 648.70 6.08 643.70 7.97 641.20 12.76 640.55 19.68
Pr107 45049.00 6.46 44693.00 9.45 44492.90 16.18 44561.85 24.26
Pr124 59664.10 10.41 59348.20 14.67 59402.10 17.45 59288.10 32.25
Pr136 99215.45 18.33 98906.50 21.25 98356.85 29.53 98155.80 62.36
Pr144 59120.40 19.92 58712.00 25.76 58698.50 50.63 58656.55 69.54
Pr152 74952.20 21.56 74320.70 28.45 74275.35 55.30 74190.00 64.25

Table 1 Results of the four GB versions. For each instance, the results average and the
execution time average are shown.

Some conclusions can be drawn if the data presented in Table 1 are
analyzed. We can see a slight trend of improvement in the results when the
number of teams increases. This improvement could be explained simply. The
greater the number of teams, the greater the exploration and exploitation
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capacity of the algorithm is. This is so, because the number of training sessions
and the number of interactions between teams increases (exchanging more
players, for instance).

Even so, this fact involves a significant increase of runtime, which is not
directly proportional to the improvement in results. In this paper, to achieve
the goals we have proposed, we select the option which best balances the
runtime and results quality. This option is the version 2, with 4 teams and
12 players per team. This version has acceptable execution times, and is
the alternative that more improvement offers regarding its previous version
(version 1). Versions 3 and 4, on the other hand, need very high execution
times in relation to the version 2, without offering significant improvements in
the results quality.

4.3 Setting GA1 parameters

In order to make a fair and rigorous comparison, another small study about
the parametrization of the GA1 is performed in this section. As in Section 4.2,
four different GA1 versions are compared. The initial population has also 48
individuals, and the only difference between each version is the crossover and
mutation probabilities (pc and pm). The characteristics of each technique are
as follows:

– GAv1
1 : pc = 95% and pm = 5%.

– GAv2
1 : pc = 90% and pm = 10%.

– GAv3
1 : pc = 80% and pm = 20%.

– GAv4
1 : pc = 75% and pm = 25%.

Crossover and mutation functions used in these tests are the same as in
the following section, and they are described in Section 5.1. Results obtained
by the different version of the GA1 are shown in Table 2. These tests follow
the same directions as those presented in the previous section.

If the results obtained in this small study are analized, it can be concluded
that the differences between the four versions are not very large in many
instances. Anyway, it can be seen how GAv3

1 gets better results in 55.56%
of the instances (10 out of 18), while GAv1

1 , GAv2
1 and GAv4

1 obtain better
outcomes only in 5.55% (1 out of 18), 11.11% (2 out of 18) and 27.78% (5 out
of 18) of the cases, respectively. On the other hand, regarding execution times,
despite an improving trend can be seen according the probability of crossover
descends, the differences are not too wide. For these reasons, and taking into
account the quality of the results, version 3 (pc = 80%, pm = 20%) has been
chosen for the experimentation of this work.

5 Tests with Traveling Salesman Problem (TSP)

In this section, the details of the tests performed with the TSP are detailed.
First, in Section 5.1, characteristics of the algorithms used are introduced.
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Instance GAv1
1 GAv2

1 GAv3
1 GAv4

1
Name Avg. Time Avg. Time Avg. Time Avg. Time
Oliver30 427.65 0.35 426.05 0.40 425.95 0.29 427.20 0.25
Eilon50 458.50 1.86 453.05 1.75 451.55 1.31 452.25 1.27
Eil51 459.45 2.24 453.70 2.12 453.65 1.85 453.80 1.59
Berlin52 7969.20 2.34 7949.30 1.88 7945.65 1.42 7896.45 1.31
St70 743.35 5.54 720.55 5.75 711.85 5.21 712.65 4.85
Eilon75 593.95 6.12 601.60 6.61 582.05 5.86 579.10 5.23
Eil76 615.80 6.44 593.40 6.24 582.85 6.06 584.60 5.34
KroA100 22842.95 15.12 22536.80 14.52 22559.30 12.48 22591.30 11.54
KroB100 24096.45 16.47 23717.70 15.75 23342.40 12.45 23378.45 12.15
KroC100 22374.25 15.46 22239.65 14.28 22010.30 12.82 22148.15 12.13
KroD100 22781.35 13.93 22778.40 14.31 22642.25 12.21 22469.80 11.85
KroE100 23413.95 13.70 23433.15 13.81 23228.35 11.13 23332.65 10.84
Eil101 721.00 19.85 700.75 18.42 696.00 17.29 685.05 17.16
Pr107 47827.70 18.19 47118.65 18.01 47356.15 16.84 46956.45 15.72
Pr124 61271.70 28.75 60832.30 26.45 60871.80 24.52 61062.25 24.15
Pr136 102637.85 42.53 103810.80 41.78 102819.10 38.43 103040.65 36.95
Pr144 64064.20 58.75 62563.30 56.42 60715.40 53.61 61209.00 53.15
Pr152 78429.90 75.87 78071.20 72.48 76819.05 68.15 77581.60 67.58

Table 2 Results of the four GA1 versions. For each instance, the results average and the
execution time average are shown.

Then, in Section 5.2 results obtained by the techniques are shown. Finally,
these result are analyzed in Section 5.3.

5.1 Characteristics

Now, parameters and characteristics of the algorithms used to address the
TSP are detailed. First, these are the characteristics of the GB:

– Number of teams (NT): 4
– Number of players per team (PT): 12
– Termination criteria for the training sessions: A session finishes when there

are a number of successors proportional to the neighborhood of the training
function without improvements

– Number of trainings without improvement for a player to make a change
of team: 10

– Number of trainings without improvement for a custom training: 5

The characteristics of GA1 are as follows:

– Size of the population: 48
– Number of generations: The execution of the algorithm terminates when

there are a number of generations proportional to the neighborhood of the
mutation function without improvements.

– Crossover probability: 80%
– Mutation probability: 20%
– Selection function and Survivor function: 100 % Elitist

On the other hand, the characteristics of DGA1 are as follow:
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– Number of subpopulations: 4
– Number of individuals per subpopulation: 12
– Number of generations: The execution of the algorithm terminates when

there are a number of generations proportional to the neighborhood of
one randomly chosen mutation function without improvements in the best
solution found by all the demes.

– Crossover probability: 95%, 90%, 80% and 75%, respectively
– Mutation probability: 5%, 10%, 20% and 25%, respectively
– Selection function and Survivor function: 100 % Elitist

The characteristics of GA2 and DGA2 are the same as GA1 and DGA1,
respectively, changing only the probabilities of crossover and mutation to
0.003% and 100%, to fit with the parameters of GB.

The objective function for this problem is the total distance traveled, so
that the objective is to minimize it. In both techniques, solutions are encoded
using the Path Representation [67]. The successor functions used as training
functions are as follows:

– Vertex Insertion: This function selects randomly a node of the route,
removes it and reinserts in another random position. This operator is often
used for any kind of problem, because it is easy to implement and it obtains
very good results [68,69].

– Swapping: In this case two nodes are selected randomly to swap their
positions. It is also a very used operator [70,71].

– 2opt: It was defined by Lin in 1965 [55] and, as in other cases, this operator
has been used a lot of times for any kind of problem [72–74]. This function
eliminates at random two arcs within the existing path and creates two
new arcs, avoiding the generation of sub tours.

– 3opt: The operation way of 3opt, proposed also by Lin, is similar to 2opt,
with the difference that in this case the arcs removed are 3. The complexity
of using this operator is greater than the 2opt. Therefore, the 3opt has not
enjoyed the popularity of the previous. Despite this, the operator has been
used a large number of times throughout the history [75,76].

These functions are used as training functions in the GB algorithm and as
mutation functions for DGA2. For the GA1, GA2 and DGA1 the 2opt is used
as mutation operator, since it is the one that gets best results. The custom
training operator for the GB is as follow:

– Golden Help Funtion: In this operator take part two players, the player
to coach and the captain of the team. The result of this operator is a
new player that combines the characteristics of both players. Assuming a
10-node instance, an example of the 2 players could be next:

picap : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

pij : [4, 2, 6, 5, 0, 1, 9, 7, 8, 3]
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First, the first half of the nodes (in this case, customers, or cities)
composing the captain are selected and inserted in the new player.

p′ij : [0, 1, 2, 3, 4]

Finally, the remaining nodes are inserted in the same order in the final
solution.

p′ij : [0, 1, 2, 3, 4, 6, 5, 9, 7, 8]

This function is also used as crossover operator in GA2 and DGA2. In GA1

and DGA1, the well-known Order Crossover (OX) is used [56].
Finally, Table 3 summarizes the characteristics of the 4 algorithms with

which we compare our proposal.

Alg. Population pc and pm Cross. operators Mut. operators

GA1
1 population, 48 indi-
viduals

80% & 20% OX 2-opt

GA2
1 population, 48 indi-
viduals

0.003% & 100% Golden Help Function 2-opt

DGA1
4 subpopulations, each
with 12 individuals

Respectively:
95% & 5%,
90% & 10%,
75% & 25%,
80% & 20%

OX
2-opt (the same for all subpop-
ulations)

DGA2
4 subpopulations, each
with 12 individuals

0.003% & 100% Golden Help Function
2-opt, 3-opt, Swapping & Ver-
tex Insertion (a different func-
tion for each population)

Table 3 summary of the characteristics of GA1, GA2, DGA1 and DGA2 for the TSP

5.2 Results

Table 4 shows the results obtained by the GB and GA. Those tests were
performed on the same computer described in Section 4.2. In this case, for
each instance we display the total average (x̄) and, in brackets, the standard
deviation. We also show the best result obtained (ẋ) and the average of the
execution time (T), in seconds. The number of executions for each test is 20.
We have used the same 20 seeds to generate random initial solutions, thus,
the final result depends only on the evolution of the technique. The instances
are the same used in Section 4.2, and the number inside brackets beside the
name of each instance is its optimum value.

In order to determine if GB average is significantly different than the
averages obtained by other techniques, we have performed Students t-test.
The t statistic has the following form:

t =
X1 −X2√

(n1−1)SD2
1+(n2−1)SD2

2

n1+n2−2
n1+n2

n1n2
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Instance Golden Ball GA1 GA2 DGA1 DGA2

Oliver30 (420) 420.0 (±0.0) 425.9 (±7.1) 426.0 (±9.9) 428.0 (±4.8) 424.1 (±6.8)
ẋ & T 420 0.2 420 0.3 420 0.2 420 0.3 420 0.2
Eilon50 (425) 427.0 (±1.5) 451.5 (±15.1) 442.5 (±6.5) 442.1 (±7.4) 435.8 (±5.8)
ẋ & T 425 1.1 435 1.3 432 1.5 433 0.9 429 0.8
Eil51 (426) 428.6 (±1.3) 453.6 (±10.5) 444.8 (±9.8) 442.5 (±7.9) 438.4 (±4.8)
ẋ & T 427 1.4 439 1.8 434 1.8 432 1.1 430 1.3
Berlin52 (7542) 7542.0 (±0.0) 7945.6 (±168.6) 7841.3 (±256.7) 7914.3 (±186.9) 7866.0 (±296.4)
ẋ & T 7542 2.1 7542 1.4 7542 1.8 7542 1.2 7542 1.9
St70 (675) 679.4 (±3.5) 711.8 (±33.6) 716.4 (±44.3) 719.6 (±18.8) 699.0 (±11.9)
ẋ & T 675 4.2 682 5.2 684 4.2 705 3.8 683 3.9
Eilon75 (535) 544.3 (±3.3) 582.0 (±14.3) 565.6 (±12.0) 570.4 (±10.6) 557.1 (±8.9)
ẋ & T 536 5.4 570 5.8 550 5.5 556 5.1 544 4.5
Eil76 (538) 545.3 (±3.7) 582.8 (±15.0) 569.7 (±11.5) 574.8 (±15.1) 563.5 (±6.4)
ẋ & T 539 5.5 560 6.0 545 5.7 556 5.1 552 5.1
Eil101 (629) 643.7 (±4.3) 696.0 (±16.8) 676.6 (±11.2) 678.7 (±13.7) 665.6 (±10.3)
ẋ & T 636 8.9 676 17.2 657 10.7 657 12.9 643 8.4

KroA100 (21282) 21386.7 (±99.7) 22559.3 (±538.4) 21838.8 (±419.1) 22757.1 (±433.6) 21940.6 (±313.1)
ẋ & T 21282 9.5 21679 12.4 21376 9.3 22206 13.7 21478 10.4
KroB100 (22140) 22311.0 (±139.6) 23342.4 (±468.6) 22896.3 (±424.8) 23323.1 (±375.8) 22815.3 (±329.7)
ẋ & T 22140 9.7 22574 12.4 22178 10.5 22763 13.5 22264 10.9
KroC100 (20749) 20968.2 (±111.3) 22010.3 (±607.1) 21536.1 (±396.1) 22311.5 (±582.6) 21472.3 (±321.9)
ẋ & T 20769 9.3 21348 12.8 20880 9.8 21454 13.6 21039 9.5
KroD100 (21294) 21485.8 (±188.2) 22642.2 (±543.2) 22205.6 (±401.6) 22719.0 (±616.2) 22065.0 (±406.2)
ẋ & T 21294 9.7 21696 12.2 21495 9.9 22013 12.7 21459 10.8
KroE100 (22068) 22266.8 (±158.1) 23228.3 (±416.4) 22752.7 (±304.3) 23062.8 (±443.9) 22819.0 (±312.2)
ẋ & T 22068 9.8 22418 11.1 22147 9.5 22299 13.5 22819 10.4

Pr107 (44303) 44693.0 (±210.7) 47356.1 (±1210.1) 45614.4 (±1389.4) 46533.1 (±1507.9) 45506.8 (±1323.4)
ẋ & T 44391 10.1 45512 16.8 44387 10.6 44872 16.1 44438 12.4
Pr124 (59030) 59348.2 (±190.3) 60871.8 (±694.0) 59943.7 (±544.7) 61149.0 (±888.2) 60193.8 (±569.4)
ẋ & T 59030 16.2 59953 24.5 59030 17.1 59490 30.2 59076 14.3
Pr136 (96772) 98906.5 (±1296.2) 102819.1 (±1929.7) 100610.5 (±1230.7) 102585.2 (±3241.8) 100949.0 (±1706.6)
ẋ & T 97439 23.5 99468 38.4 98137 24.1 98973 40.9 98797 26.2
Pr144 (58537) 58712.0 (±247.7) 60715.4 (±1753.4) 60662.3 (±2330.9) 61447.3 (±1763.7) 59470.5 (±641.1)
ẋ & T 58537 34.1 58922 53.6 58599 32.5 59143 58.3 58538 33.5
Pr152 (73682) 74320.7 (±390.3) 76819.0 (±2038.8) 75699.1 (±912.0) 76563.5 (±904.8) 75663.9 (±1253.3)
ẋ & T 73818 36.7 74268 68.1 74526 37.5 74613 80.0 74249 35.8

Table 4 Results of GB, GA1, GA2, DGA1 and DGA2 for the TSP. For each instance
results average, standard deviation, best result and time average are shown.

where:

X1: Average of GB

SD1: Standard deviation of GB,

X2: Average of the other technique,

SD2: Standard deviation of the other technique,

n1: GB size,

n2: Size of the other technique,

In Table 5, we show a direct comparison between GB and each of the other
techniques, GA1, GA2, DGA1 and DGA2, using the Student’s t-test. This
comparison is made for each of the instances used in Table 4. The t values
shown can be positive, neutral, or negative. The positive value of t indicates
that our proposal is significantly better than the technique with which it is
facing. In the opposite case, GB obtains significant worse solutions. If t is
neutral, the difference between the two algorithms is not significant. We stated
confidence interval at the 95% confidence level (t0.05 = 1.96).
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Instance GB vs. GA1 GB vs. GA2 GB vs. DGA1 GB vs. DGA2

Oliver30 + (3.71) + (2.71) + (7.45) + (2.69)
Eilon50 + (7.22) + (10.39) + (8.94) + (6.56)
Eil51 + (10.56) + (7.32) + (7.76) + (8.81)
Berlin52 + (10.70) + (5.21) + (8.90) + (4.88)
St70 + (4.28) + (3.72) + (9.40) + (7.12)
Eilon75 + (11.48) + (7.61) + (10.51) + (6.03)
Eil76 + (10.85) + (9.03) + (8.48) + (11.01)
Eil101 + (13.48) + (12.26) + (10.90) + (8.77)

KroA100 + (9.57) + (4.68) + (13.77) + (7.53)
KroB100 + (9.43) + (5.85) + (11.29) + (6.29)
KroC100 + (7.55) + (6.17) + (10.47) + (6.61)
KroD100 + (8.99) + (7.25) + (8.55) + (5.78)
KroE100 + (9.65) + (6.33) + (7.55) + (7.05)

Pr107 + (9.69) + (2.93) + (5.40) + (2.71)
Pr124 + (9.46) + (4.61) + (8.86) + (6.29)
Pr136 + (7.52) + (4.26) + (4.71) + (4.26)
Pr144 + (5.05) + (3.72) + (6.86) + (4.93)
Pr152 + (5.38) + (6.21) + (10.17) + (4.57)

Table 5 Students t-test for TSP. ’+’ indicates that GB is significantly better (at 95%
confidence level).

5.3 Analysis of the results

We can conclude from the Table 4 that the proposed technique gets better
results for each and every one of the instances in terms of averages and best
solution. Furthermore, thanks to Students test presented in Table 5 we can
say that these improvements are significant. The only point in which the GB
has been outperformed is in the best result for the instance Pr107, where GA2

has obtained a better solution (44391 by GB, compared to 44387 by GA2).
Even so, is less of an issue because the average is lower in quality than the
average of GB.

The fact of obtaining better results by GB may occur for several reasons.
GB is a technique that combines local search with the cooperation and
competition between the various players in the system. While our technique
gives greater importance to the improvement of players individually, the other
algorithms focus more in the cooperation among individuals of the population
and subpopulations. Even so, the GB also has mechanisms for cooperation
between players, with the custom training. This resource is used only when it
is beneficial to the search process and exploration of the solution space. The
custom trainings help to avoid local optimums and to explore the solution
space more exhaustively. Another advantage over GA1, GA2 and DGA1 is the
option that a player can explore different neighborhood structures. This occurs
because players can switch teams and receive different trainings methods
throughout the execution of the algorithm. This mechanism is another way to
avoid local optima and helps players to explore in different ways the solution
space. In addition, players can delve into those parts of space which are
most interesting to the search process. GA1, GA2, DGA1 and DGA2, on the
other hand, have several mechanisms to avoid local optima, but optimization
mechanisms are not as powerful as the GB.
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Talking about the execution time, GA1 and DGA1 require more execution
time than GB, while GA2 and DGA2 need similar times to GB. This fact
gives an advantage to GB, since in times similar to GA2 and DGA2, it can
obtain better results than the rest of meta-heuristics.

The reason why our algorithm needs lower runtime than GA1 and DGA1

is logical. If individual operators (mutation and individual training) and
cooperative operators (crossover and custom training) are compared, the
last ones needs more time to execute, since they operate with two different
solutions, and their working way is more complex. On the other hand,
mutations and individual trainings operate with one solution and they make a
simple modification in a solution which can be made in a minimum time. GB
makes less cooperative movements than the GA1 and DGA1, and this fact is
perfectly reflected in the runtimes. Furthermore, GB, GA2 and DGA2 obtain
similar runtimes because they use their operators similarly.

Another important feature that is obligatory to highlight is the robustness
of the GB. The standard deviation of the results obtained by the GB is lower
than the deviation of other algorithms. This means that for the GB, the
differences between the worst and the best results of every instance are not
very large. This characteristic gives robustness and reliability to the algorithm,
something that is very important if we want to use our technique in a real
environment.

To conclude the analysis of the results, and with the aim of making a deeper
analysis, we compare the convergence behavior of the GB and the DGA2. We
have selected the DGA2 for this comparison because it is the most similar to
GB, both in concept and in results average. In Table 6, the average number
of objective function evaluations needed to reach the final solution for each
instance is shown (in thousands).

Instance GB DGA2

Oliver30 10.72 17.06
Eilon50 52.86 49.74
Eil51 51.46 54.27
Berlin52 53.04 54.00
St70 127.62 104.61
Eilon75 138.40 128.78
Eil76 144.30 137.77
Eil101 312.89 311.03

KroA100 232.86 281.11
KroB100 285.29 242.91
KroC100 277.70 308.12
KroD100 199.56 248.74
KroE100 294.94 287.33

Pr107 338.33 362.50
Pr124 408.16 464.77
Pr136 616.52 706.00
Pr144 771.01 867.56
Pr152 1195.98 996.85

Table 6 Convergence of GB and DGA2 for TSP, expressed in thousand of objetive function
evaluations
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The Table 6 shows that both algorithms have similar behavior related to
convergence, being slightly better for the GB. This is an advantage for GB,
since making a similar number of objective function evaluations can obtain
better results.

As a conclusion we can say that using the same functions and the same
parameters, our meta-heuristic is more efficient than GA1, GA2, DGA1 and
DGA2 solving the TSP. Now, let’s test whether this fact is true also for the
next problem.

6 Tests with Capacitated Vehicle Routing Problem (CVRP)

In this section, the details of the tests performed with the CVRP are
introduced. First, in Section 6.1, characteristics of the algorithms used are
mentioned. Then, results obtained by the techniques are shown in Section 6.2.
Finally, in Section 6.3, results are analyzed.

6.1 Characteristics

The parameters and characteristics of the algorithms used to address this
problem are the same that we used to solve the TSP, except the number of
teams, which increases to 6. This fact makes the system players total amount to
72, therefore, the size of the population of the GA1 and GA2 also ascends to 72.
Furthermore, for DGA1 and DGA2, the number of subpopulations increases
to 6. This increase is due to the complexity of the problem, which requires
more treatment and further exploration of the solution space.

The objective function for this problem is also the total distance traveled, so
that the objective is to minimize it. Solutions are encoded using an adaptation
of the Path Representation. In this case, the routes are also represented as
a permutation of nodes. To distinguish the routes of one solution, they are
separated by zeros. For example, if we have a solution with three routes, for
instance [2-4-6], [1-3-7] and [5-8-9], the solution will be coded as follows:

[0, 2, 4, 6,0, 1, 3, 7,0, 5, 8, 9,0]

This form of encoding has been widely used in the literature for the VRP
and its variants [77–79].

Two successor functions used as training functions are the same that we
use for the TSP. These functions are the 2opt and the Vertex Insertion. In this
case, both are intra-route functions, which mean that they work only within
a specific route of a solution. Remaining functions are, as Savelsbergh called
[80], inter-route functions, and they work as follows:

– Swapping Routes: In this case two nodes are selected at random from two
random routes to swap their positions. Within this function the creation
of new paths may happen by selecting a node from a random route and
creating a new one with the selected node.
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– Vertex Insertion Routes: In this case a node is selected randomly from a
random route and re-inserted in a random position of another randomly
selected route. The creation of new routes is also possible in this function
with the selected node.

These functions are used as training functions in the GB algorithm, and
as mutation functions in DGA2. For GA1, GA2 and DGA1, Vertex Insertion
Routes is used as mutation operator, since it is the one that gets best results. To
get to this statement, several tests have been performed with the four mutation
functions described above. Anyway, it has been considered that the objectives
of the paper is to introduce the proposed technique and to demonstrate that
it is a good alternative to solve combinatorial optimization problems. For this
reason, and because of the large extension of this work, these tests have not
been shown in the paper.

The custom training function for the GB, which is also used as crossover
operator for the GA1, GA2, DGA1 and DGA2, is as follow:

– Golden Help Funtion: In this operator take part two players, the player to
coach and the captain of the team. Assuming a 17-node instance (including
the depot), an example of the 2 players could be as follows:

picap : [0, 1, 2, 3, 4,0, 5, 6, 7, 8,0, 9, 10, 11, 12,0, 13, 14, 15, 16,0]

pij : [0, 1, 11, 6, 8,0, 2, 4, 14, 10,0, 3, 16, 15, 12,0, 5, 9, 13, 7,0]

First, the 50% of the best routes of the captain are selected and inserted
in the new player.

p′ij : [0, 1, 2, 3, 4,0, 5, 6, 7, 8,0]

Finally, the remaining nodes are inserted in the same order in the new
player, creating new routes. Thus, taking into account the capacity of the
vehicles, it is probably the creation of more than one route. Continuing the
example, the resulting player could be the next:

p′ij : [0, 1, 2, 3, 4,0, 5, 6, 7, 8,0, 11, 14, 10, 16,0, 15, 12, 9, 13,0]

As we have said in Section 3.3.1, in GB, the player p′ij resulting from this
operation replaces pij .

Table 7 summarizes the characteristics of the 4 algorithms with which we
compare our proposal.
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Alg. Population pc and pm Cross. operators Mut. operators

GA1
1 population, 72 indi-
viduals

80% & 20% Golden Help Function Vertex Insertion Routes

GA2
1 population, 72 indi-
viduals

0.003% & 100% Golden Help Function Vertex Insertion Routes

DGA1
6 subpopulations, each
with 12 individuals

Respectively:
95% & 5%,
90% & 10%,
85% & 15%,
80% & 20%,
75% & 25%,
70% & 30%

Golden Help Function
Vertex Insertion Routes (the
same for all subpopulations)

DGA2
6 subpopulations, each
with 12 individuals

0.003% & 100% Golden Help Function

2-opt, Swapping Routes, Ver-
tex Insertion Routes & Vertex
Insertion (a different function
for each population)

Table 7 summary of the characteristics of GA1, GA2, DGA1 and DGA2 for the CVRP

6.2 Results

Table 8 shows the results obtained. As in the TSP, for each instance we display
the total average (x̄) and, in brackets, the standard deviation. We also show
the best result (ẋ) and the average of the execution time (T), in seconds.
The number of executions for each instance is 20. As in TSP, we have used
the same 20 seeds to generate random initial solutions. The instances were
obtained from the CVRP set of Christofides and Eilon, picked up at [81]. The
name of each instance has a number that displays the number of nodes it
has, and the number inside brackets beside the name of each instance is its
optimum value. In Table 9, the Students t-test is shown. The test has been
performed in the same way as for the TSP.

Instance Golden Ball GA1 GA2 DGA1 DGA2

En22k4 (375) 376.0 (±2.2) 390.3 (±13.4) 410.0 (±14.4) 401.0 (±15.3) 393.5 (±15.0)
ẋ & T 375 0.9 375 2.4 390 1.2 375 3.8 375 1.8
En23k3 (569) 589.7 (±17.7) 625.1 (±31.5) 660.0 (±27.8) 655.1 (±23.1) 587.6 (±23.5)
ẋ & T 569 0.7 569 3.8 602 1.1 601 3.1 569 1.8
En30k3 (503) 517.4 (±15.6) 574.3 (±28.4) 597.4 (±49.3) 560.4 (±49.5) 577.7 (±71.5)
ẋ & T 503 2.2 521 5.1 529 2.8 503 4.1 503 2.2
En33k4 (835) 857.8 (±9.6) 917.0 (±35.1) 947.7 (±26.5) 921.8 (±27.1) 919.8 (±23.4)
ẋ & T 844 2.8 862 7.6 902 2.8 888 6.1 862 2.3
En51k5 (521) 578.1 (±10.9) 681.6 (±51.4) 677.9 (±81.7) 635.4 (±31.6) 624.4 (±43.7)
ẋ & T 561 9.8 574 17.6 589 10.1 572 23.1 568 7.6

En76k7 (682) 755.8 (±13.1) 852.5 (±47.5) 849.9 (±53.5) 819.7 (±31.6) 799.9 (±43.7)
ẋ & T 736 25.5 755 59.6 753 24.8 722 67.0 750 23.4
En76k8 (735) 816.9 (±14.8) 923.2 (±37.0) 908.9 (±38.4) 883.3 (±53.5) 873.9 (±43.7)
ẋ & T 795 31.5 851 64.6 859 32.5 801 69.2 808 28.5
En76k10 (830) 913.6 (±15.6) 1002.8 (±32.4) 995.2 (±58.7) 962.6 (±41.5) 959.0 (±50.6)
ẋ & T 888 37.8 932 65.4 928 37.6 906 55.2 888 27.2
En76k14 (1021) 1124.6 (±11.5) 1198.8 (±20.0) 1186.7 (±47.9) 1177.3 (±52.8) 1172.2 (±37.1)
ẋ & T 1107 28.8 1142 60.1 1117 32.7 1104 46.4 1110 29.4

En101k8 (815) 906.4 (±16.4) 1104.4 (±44.8) 999.9 (±46.0) 971.7 (±69.1) 991.1 (±41.1)
ẋ & T 867 69.8 1042 124.5 908 67.5 893 134.2 933 67.5
En101k14 (1071) 1191.5 (±26.1) 1298.0 (±112.4) 1288.8 (±52.8) 1249.9 (±56.5) 1273.5 (±50.7)
ẋ & T 1155 77.9 1175 119.4 1187 78.5 1182 134.4 1194 75.4

Table 8 Results of GB, GA1, GA2, DGA1 and DGA2 for the CVRP. For each instance
results average, standard deviation, best result and time average are shown.
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Instance GB vs. GA1 GB vs. GA2 GB vs. DGA1 GB vs. DGA2

En22k4 + (4.70) + (10.43) + (7.23) + (5.16)
En23k3 + (4.38) + (9.53) + (10.03) ∗ (-1.03)
En30k3 + (7.85) + (6.91) + (3.70) + (3.68)
En33k4 + (7.27) + (14.26) + (9.95) + (10.96)
En51k5 + (8.80) + (5.41) + (7.66) + (4.59)

En76k7 + (8.77) + (7.64) + (8.35) + (4.32)
En76k8 + (11.92) + (9.99) + (5.34) + (5.52)
En76k10 + (11.09) + (6.00) + (4.94) + (3.83)
En76k14 + (14.38) + (5.63) + (4.36) + (5.48)

En101k8 + (18.56) + (8.56) + (4.11) + (8.55)
En101k14 + (4.12) + (7.38) + (4.19) + (6.43)

Table 9 Students t-test for CVRP. ’+’ indicates that GB is better. ’*’ indicates that the
difference between the two algorithms is not significant (at 95% confidence level)

6.3 Analysis of the results

As in the TSP, the proposed method obtains significantly better results in
almost all CVRP instances compared with other techniques. The only case
in which GB has been overcome is in En23k3 instance, by DGA2. Anyway,
this improvement over GB is not significant, as can be seen in the Students
t-test. Regarding execution times, GB needs less time than GA1 and DGA1.
Compared to GA2, the runtimes of both algorithms are similar. Finally, the
parametrization and operators used for DGA2 and GB are the same, which
is why their runtimes are also similar. Still, comparing with DGA2, the GB
is a more complex technique, and it has a greater capacity of exploitation
and exploration. For this reason, GB performs a more exhaustive search of
the solution space, and its runtimes are slightly higher compared with DGA2.
Apart from this, the standard deviation is lower in the GB technique than in
the other algorithms. Therefore, solutions are more regular for the GB also in
this problem. This feature gives robustness and reliability to the algorithm.

Following the same steps as for the above problem, in Table 10 can be seen
the convergence behavior of GB and DGA2 for the CVRP.

Instance GB DGA2

En22k4 29.56 33.16
En23k3 16.65 24.04
En30k3 57.51 72.39
En33k4 40.99 63.09
En51k5 122.76 138.45

En76k7 227.84 307.19
En76k8 242.37 284.69
En76k10 216.19 262.75
En76k14 232.66 227.74

En101k8 595.84 796.99
En101k14 502.24 591.75

Table 10 Convergence of GB and DGA2 for CVRP, expressed in thousand of objetive
function evaluations
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Unlike the above problem, for the CVRP, the GB shows better convergence
behavior than DGA2 for almost all the instances. This is an advantage for
GB, because it demonstrates a better ability of exploitation than the DGA2,
requiring fewer number of objective function evaluations to obtain better
results

In conclusion we can say that the GB proves to be better than GA1, GA2,
DGA1 and DGA2 also for CVRP. It is better in terms of quality, convergence
behavior and robustness. Regarding runtime, it is similar compared with GA2

and DGA2 and better than GA1 and DGA1. The reasons why our technique
is better are the same that we have mentioned in Section 5.3.

7 Conclusions

In this paper we have presented a new multi-population meta-heuristic for
solving combinatorial optimization problems. In this meta-heuristic, various
solutions that make up the population are called players, which are grouped
into different teams that together form a league. Teams face each other playing
soccer matches that serve to guide the process of players exchange between
teams and change of coaches. A training phase is used for the improvement of
the players and it is different for each team, so that players receive different
trainings depending on the team they are in.

In this work, we have tested the quality of our new technique, showing
the results that it has obtained with two problems, and comparing them with
the results obtained by the basic GA and a Distributed GA. First, we have
described in detail the different steps of the GB. Then, we have introduced
the problems to solve, which are two well-known problems in the field of
combinatorial optimization, the TSP and the CVRP, and finally, we have
shown the results of the tests. We have shown that our meta-heuristic is a
good alternative to solve these problems, since it improves in every way the
GA and DGA.

As future work, we can mention the intention of applying this new meta-
heuristic to a real environment, making a more elaborate objective function
and creating more complex constraints. Now, the proposed meta-heuristic
is used in the PRODIS project (Grant PI2011-58, funded by the Basque
Government in Spain). This project combines in one system, the industrial
production with the distribution of materials. The GB is used in this work as
an algorithm to solve a distribution problem, which is defined as a Capacitated
Vehicle Routing Problem with Time Windows and Backhauls. Also, at this
time, we are planning the application of GB to a dynamic distribution system
of car windscreen repairs. In this case the problem is defined as a dynamic
CVRP, wherein the routes may be re-planned according to the needs of
customers.

In addition, we are planning to compare our technique with any commercial
solver. These techniques are not similar to the GB in terms of concepts
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and philosophy. Anyway, we think that the comparisons on results could be
interesting.

ACKNOWLEDGMENT

This work is an extension of the two-page late-breaking abstract presented
in the fifteenth annual conference on genetic and evolutionary computation
(GECCO)[82]. In that short abstract we introduce a preliminary version of
our technique in a very concise way.

References

1. Papadimitriou, C.: The new faces of combinatorial optimization. Combinatorial
Optimization (2012) 19–23

2. Korte, B., Vygen, J.: Combinatorial optimization: theory and algorithms. Volume 21.
Springer-Verlag (2012)

3. Lawler, E., Lenstra, J., Kan, A., Shmoys, D.: The traveling salesman problem: a guided
tour of combinatorial optimization. Volume 3. Wiley New York (1985)

4. Coffman, E.G., Bruno, J.L.: Computer and job-shop scheduling theory. John Wiley &
Sons (1976)

5. Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks
11(2) (1981) 221–227

6. Mattos Ribeiro, G., Laporte, G.: An adaptive large neighborhood search heuristic for
the cumulative capacitated vehicle routing problem. Computers & Operations Research
39(3) (2012) 728–735

7. Xu, Y., Qu, R.: A hybrid scatter search meta-heuristic for delay-constrained multicast
routing problems. Applied Intelligence 36(1) (2012) 229–241

8. Onieva, E., Naranjo, J., Milanes, V., Alonso, J., Garcia, R., Perez, J.: Automatic lateral
control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal
11(1) (2011) 1303–1309

9. Zheng, Y.J., Chen, S.Y.: Cooperative particle swarm optimization for multiobjective
transportation planning. Applied Intelligence 39(1) (2013) 202–216

10. Kang, M.H., Choi, H.R., Kim, H.S., Park, B.J.: Development of a maritime
transportation planning support system for car carriers based on genetic algorithm.
Applied Intelligence 36(3) (2012) 585–604

11. Masoud, H., Jalili, S., Hasheminejad, S.M.H.: Dynamic clustering using combinatorial
particle swarm optimization. Applied Intelligence 38(3) (2013) 289–314

12. Shin, K.S., Jeong, Y.S., Jeong, M.K.: A two-leveled symbiotic evolutionary algorithm
for clustering problems. Applied Intelligence 36(4) (2012) 788–799

13. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engineering:
Techniques, taxonomy, tutorial. In: Empirical Software Engineering and Verification.
Volume 7007. Springer (2012) 1–59

14. Gao, J., Sun, L., Gen, M.: A hybrid genetic and variable neighborhood descent algorithm
for flexible job shop scheduling problems. Computers & Operations Research 35(9)
(2008) 2892–2907

15. Wang, L., Zhou, G., Xu, Y., Wang, S., Liu, M.: An effective artificial bee colony
algorithm for the flexible job-shop scheduling problem. The International Journal of
Advanced Manufacturing Technology 60(1) (2012) 303–315

16. Zhang, R., Wu, C.: Bottleneck machine identification method based on constraint
transformation for job shop scheduling with genetic algorithm. Information Sciences
188(1) (2012) 236–252

17. Wang, K., Zheng, Y.J.: A new particle swarm optimization algorithm for fuzzy
optimization of armored vehicle scheme design. Applied Intelligence 37(4) (2012) 520–
526



Golden Ball: A Novel Meta-Heuristic Based on Soccer Concepts 33

18. Rahmati, S.H.A., Zandieh, M., Yazdani, M.: Developing two multi-objective
evolutionary algorithms for the multi-objective flexible job shop scheduling problem.
The International Journal of Advanced Manufacturing Technology 64(5-8) (2013) 915–
932

19. Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by simmulated annealing. science
220(4598) (1983) 671–680

20. Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering arrays using
simulated annealing. Information Sciences 185(1) (2012) 137–152

21. Glover, F.: Tabu search, part i. ORSA Journal on computing 1(3) (1989) 190–206
22. Hedar, A.R., Ali, A.F.: Tabu search with multi-level neighborhood structures for high

dimensional problems. Applied Intelligence 37(2) (2012) 189–206
23. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley Professional (1989)
24. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. PhD thesis,

University of Michigan, Michigan, USA (1975)
25. Shi, K., Li, L.: High performance genetic algorithm based text clustering using parts of

speech and outlier elimination. Applied Intelligence 38(4) (2013) 511–519
26. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical computer

science 344(2) (2005) 243–278
27. Wu, J., Abbas-Turki, A., El Moudni, A.: Cooperative driving: an ant colony system for

autonomous intersection management. Applied Intelligence 37(2) (2012) 207–222
28. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Techn.

Rep. TR06, Erciyes Univ. Press, Erciyes (2005)
29. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:

artificial bee colony (abc) algorithm and applications. Artificial Intelligence Review
(2012) 1–37

30. Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C.: Enhanced artificial bee colony optimization.
International Journal of Innovative Computing, Information and Control 5(12) (2009)
5081–5092

31. El-Abd, M.: A cooperative approach to the artificial bee colony algorithm. In: IEEE
Congress on Evolutionary Computation. (2010) 1–5

32. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: Artificial bee colony algorithm on
distributed environments. In: IEEE Second World Congress on Nature and Biologically
Inspired Computing. (2010) 13–18

33. Parpinelli, R.S., Benitez, C.M.V., Lopes, H.S.: Parallel approaches for the artificial bee
colony algorithm. In: Handbook of Swarm Intelligence. Springer (2010) 329–345

34. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the IEEE Sixth International Symposium on Micro Machine and Human Science.
(1995) 39–43

35. Langdon, W., Poli, R.: Evolving problems to learn about particle swarm optimizers
and other search algorithms. IEEE Transactions on Evolutionary Computation 11(5)
(2007) 561–578

36. Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle
swarm optimizer. Applied Intelligence 39(2) (2013) 397–420

37. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences. In: Evolutionary Programming VII, Springer
(1998) 601–610

38. Xu, Y., Wang, Q., Hu, J.: An improved discrete particle swarm optimization based
on cooperative swarms. In: IEEE International Conference on Web Intelligence and
Intelligent Agent Technology. Volume 2. (2008) 79–82

39. Niu, B., Zhu, Y., He, X., Wu, H.: Mcpso: A multi-swarm cooperative particle swarm
optimizer. Applied Mathematics and Computation 185(2) (2007) 1050–1062

40. Chanj, J., Chu, S.C., Roddick, J.F., Pan, J.S.: A parallel particle swarm optimization
algorithm with communication strategies. Journal of Information Science and
Engineering 21(4) (2005) 809–818

41. Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithms. In: Proceedings of
the third international conference on Genetic algorithms, Morgan Kaufmann Publishers
Inc. (1989) 428–433



34 E. Osaba et al.

42. Reeves, C.R.: Modern heuristic techniques for combinatorial problems. John Wiley &
Sons, Inc. (1993)

43. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Information
Technology 7 (1999) 33–48

44. Li, C., Yang, S.: An island based hybrid evolutionary algorithm for optimization. In:
Simulated Evolution and Learning. Springer (2008) 180–189

45. Calégari, P., Guidec, F., Kuonen, P., Kobler, D.: Parallel island-based genetic algorithm
for radio network design. Journal of Parallel and Distributed Computing 47(1) (1997)
86–90

46. Abbasian, R., Mouhoub, M.: A hierarchical parallel genetic approach for the graph
coloring problem. Applied Intelligence 39(3) (2013) 510–528
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