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Abstract

Usually, vehicle applications need to use arti�cial intelligence techniques to implement control strategies able
to deal with the noise in the signals provided by sensors, or with the impossibility of having full knowledge
of the dynamics of a vehicle (engine state, wheel pressure, or occupants' weight).
This work presents a cruise control system which is able to manage the pedals of a vehicle at low speeds. In

this context, small changes in the vehicle or road conditions can occur unpredictably. To solve this problem, a
method is proposed to allow the on-line evolution of a zero-order TSK fuzzy controller to adapt its behaviour
to uncertain road or vehicle dynamics.
Starting from a very simple or even empty con�guration, the consequents of the rules are adapted in real

time, while the membership functions used to codify the input variables are modi�ed after a certain period
of time. Extensive experimentation in both simulated and real vehicles showed the method to be both fast
and precise, even when compared with a human driver.

Keywords: Intelligent Transportation Systems, Autonomous Vehicles, Fuzzy Control, On-Line Learning,
Speed Control.

1. Introduction

Intelligent Transportation Systems (ITS) consti-
tute a broad range of technologies applied to trans-
portation to make systems safer, more e�cient, mo-
re reliable, and more environmentally friendly, wit-
hout necessarily having to physically alter existing
infrastructure [1]. In the automotive industry, sen-
sors are mainly used to give the driver information.
In some cases, they are connected to a computer
that performs certain control actions such as at-
tempting to avoid collisions and, if unavoidable, to
minimize injuries [2].
Autonomous vehicle guidance represents one of

the most important challenges of ITS. It involves
two di�erent controls, one associated with the stee-
ring wheel, termed lateral [3] control, and the other
associated with the control pedals (and in some ca-
ses the gear shift) [4].

Excessive or inappropriate speed is one of the
main causes of tra�c accidents [5]. That is one of
the main reasons why automatic speed control is
presently one of the most popular research topics
throughout the automotive industry. The goal of
this automation is to improve safety by relieving
the human drivers of tasks that could distract their
attention, as well as making the tra�c �ow more
e�cient.
There are di�erent approaches to speed regula-

tion. Cruise control (CC) systems have the capabi-
lity of maintaining a pre-set speed. Adaptive Cruise
Control (ACC) systems add the capability of main-
taining a safe distance from a preceding vehicle [6]
by using information coming from on-board devices.
Other approaches are ACC with communications
(CACC) [7, 8] which incorporates the capability of
interchanges of information between cars so as to
improve performance and safety, or ACC with Stop

Preprint submitted to Expert Systems With Applications 26 de junio de 2013



& Go capability (SGACC) [9] to manage situations
in which the car must be stopped. Automation of
both the throttle and the brake pedals is needed
before installing these features in a vehicle.
Some manufacturers incorporate CC or ACC sys-

tems in their cars, but in many cases they do not
operate at low speeds. These systems have been
widely studied in the specialist literature, usually
in simulated environments [10, 11, 12]. The focus,
both in industry and in academic research, has
generally been on application to highway driving
[13, 14]. The reason that low-speed contexts have
generally not been considered is that actions on the
pedals more strongly a�ect the car's dynamics [15]
making the system hard to model, simulate, or con-
trol. In urban environments, it is quite usual that
the speed must be reduced and then kept low even
when there is no vehicle in front due, for example,
to the presence of school zones where time must be
allowed to react to unpredictable or other sudden
events (a pedestrian crossing in front of the car or a
tra�c light turning red). Indeed, the typical speed
limit in urban environments is 50 km/h, for which
the various forms of CC speed management systems
are inappropriate.
The objective of this work is to create a system

capable of allowing the evolution of fuzzy rules for
the management of the pedals of a vehicle in ur-
ban driving contexts. The use of fuzzy logic [16]
for control systems has two main advantages. (i)
Fuzzy logic obviates the need to use complex ap-
proximate models that are either computationally
ine�cient if they are realistic, or unrealistic if they
are computationally e�cient. (ii) The aim is not to
represent the system mathematically, but to emula-
te the behaviour and experience of human drivers.
There is no systematic approach to the design of
fuzzy controllers [17]. Instead, how they are desig-
ned depends on the knowledge available about the
system to be controlled.
The system's evolution must be on-line in order

for the controller to adapt to changing road or vehi-
cle conditions such as slopes, gear changes, weight
of the occupants, or other unpredictable parame-
ters. To this end, one de�nes a zeroth-order TSK
fuzzy controller [18] with trapezia for codifying in-
puts and singletons as consequents. An initial fuzzy
controller with all consequents located at zero (with
the meaning that the pedals are not acted upon)
evolves over time, adapting both the position of the
singletons and the granularity of the trapezia.
For the initial empty controller to evolve, a �rst

module is designed that adapts the positions of the
singletons de�ning the consequents of the system
depending on the speed and the acceleration of the
vehicle. After a certain amount of time, a second,
structural learning module takes responsibility for
adding or modifying the trapezia that codify the in-
put variables of the system. Finally, a third module
is in charge of �ltering the pedal actions, with the
aim of emulating human actions.
One line of work on on-line fuzzy tuning has

been based on the Controller Output Error Met-
hod [19]. Most of the published contributions in
this line present variations of the method, combi-
ned with the modi�cations of the membership fun-
ctions [20, 21] or the addition of new membership
functions [22, 23]. In the present work, the accele-
ration (derivative of the error) is also considered to
be responsible for the controller's adaptation sin-
ce, for vehicles in urban environments, the desired
speed is supposed not to change continuously in all
cases. Instead, abrupt modi�cations may occur due
to the occurrence of unpredictable events that mean
the vehicle has to make a stepwise change in speed.
The evolution of the speed of the vehicle in such
cases should be: (i) safe for the vehicle's occupants,
guaranteeing comfortable acceleration, and (ii) as
precise as possible.
The system was tested under stepwise changes

of the desired speed of the vehicle in two di�erent
experiments: (i) over 30 di�erent vehicles' in a si-
mulated environment, and (ii) in a real vehicle. The
simulations showed that the system is able to provi-
de similar behaviour in di�erent vehicles. The real
environment results showed the suitability of the
system for real applications, that it had remarka-
ble precision, and was comparable with a human
driver.
The rest of this communication is structured as

follows. A formal statement of the problem and the
initial structure of the fuzzy system that will evolve
are presented in Section 2. the proposal is presen-
ted in detail in Section 3 with its division into three
sub-systems. Section 4 presents the experimental si-
mulation and real vehicle results, comparing the lat-
ter with a human driver. Finally, Section 5 presents
some concluding remarks and discusses possible fu-
ture lines of work.

2. Problem Statement

From a theoretical point of view, a plant to be
controlled may be expressed in terms of di�eren-
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tial equations or di�erence equations, provided that
these are obtained from the former using a short
enough sampling period [19]. The aim of a contro-
ller is to make the plant's output track a reference
signal r(k):

y(k+1) = f(y(k), ..., y(k−p), u(k), ..., u(k−q))(1)

where y(k) is the system's output at time k, f is
an unknown function, u is the control input, and p
and q are constants which determine the order of
the system.
In this context, the aim of many practical control

problems is to produce a controller which will drive
the plant's output towards a given reference speed
representing the desired speed at which the vehicle
should travel. To this end, in the present work we
de�ne a zeroth-order Takagi-Sugeno-Kang (TSK)
fuzzy system with a complete AND-composed rule
base de�ned as:

Rulei : IF (in1 is M
i1
1 ) AND ... (inN is M iN

N ) (2)

THEN out = Ri

where M iv
v ∈ {M1

v ,M
2
v , ...M

nv
v } are the members-

hip functions used to codify the input inv, which
has nv di�erent membership functions, and Ri is
a numerical value representing the location of the
singleton that acts as rule consequent.
The membership functions used to codify input

variables are trapezoidal, de�ned by four real values
(a, b, c, d) such that the degree of membership of an
input value x is calculated as:

µ(x, {a, b, c, d}) =


x−a
b−a , if (x ∈ [a, b]).
1, if (x ∈ [b, c]).
c−x
d−c , if (x ∈ [c, d]).
0, otherwise.

The t-norm minimum is used to implement the
AND operator. Mamdani-type inference [24] is
used, and the defuzzi�cation operator is the weigh-
ted average. In the system, all output membership
functions are singletons. Therefore, the crisp value
of the output variable (out) is calculated as:

out =

∑
Ri · wi∑
wi

(3)

where wi represents the degree of truth of the i-th
rule, and Ri is the value of the singleton inferred by
the i-th rule. The weight of a rule represents its con-
tribution to the overall control action (calculated

as the minimal degree of current crisp input value
membership of its respective fuzzy partitions).
Sugeno et al. [25] proved that a fuzzy system mo-

deled with singleton consequents is a special case
of a fuzzy system modeled with trapezoidal conse-
quents, and can do almost everything the latter can.
To quote from that paper: From a theoretical point
of view, we do not need a type-I controller (trapezoi-
dal consequents) unless we want to use fuzzy terms
in the consequents of fuzzy rules, which is not our
case. They also state that such a fuzzy system is
simple for identi�cation and yet has a good appro-
ximation capability.
Fuzzy rule based systems with singleton conse-

quents are very commonly used in practical control
system applications [26, 27, 28, 29]. In the present
case, the use of singletons instead of more complex
shapes to codify output variables allows fast calcu-
lation and straightforward interpretation of conse-
quents.
Our ultimate goal with the present work is to

control the speed of a vehicle in a precise way inde-
pendently of its dynamics or the road conditions
(slopes). Hence, given an initial fuzzy controller
with all the consequents (singletons) located at zero
(Ri = 0, ∀i), our immediate objectives were: (i) to
learn on-line the appropriate position of the single-
tons, and (ii) to determine whether it is necessary
to add a new membership function or to modify an
existing one.
The fuzzy controller consisted of two input varia-

bles:

1. Error: Codify the di�erence between the ac-
tual speed of the controlled car and the desired
speed in km/h.

2. Acceleration1: Codify the variation of the
speed in km/h/s.

Both variables were codi�ed with an initial num-
ber of trapezia (that can be modi�ed during the
process). The initial trapezia were generated by uni-
formly distributing their centres and displacing the
top points 10% of the size of the base, as shown
in Figure 1. They overlapped to ensure that every
input combination would be covered by more than
one rule. Values outside the range were assumed to
be equal to the corresponding limit, thereby o�ering
maximum coverage.

1We considered it clearer to relate to human driving to
say that the vehicle is decelerating at a rate of −1km/h per
second than at −0,27m/s2.
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Min Max Min Max

Figura 1: Distribution of the initial trapezia. Examples for 2,
3, 4, and 5 trapezia. Initial and displaced top points marked
by dashed lines.

The output is codi�ed by as many singletons as
AND-composed rules exist in the rule base. The sin-
gletons are limited to the interval [−1, 1]. Negative
values represent actions on the brake while maintai-
ning the throttle at zero, and positive values actions
on the throttle with no brake action. At the begin-
ning of the process all the singletons are located at
zero.

3. The Solution

The proposal is divided into three stages. (i) In
the singleton learning stage, the positions of the
singletons that de�ne the output variable are adap-
ted according to the activation of the rules invol-
ved, as well as to the current error and acceleration
of the vehicle. (ii) In the structure learning stage,
the structure of the fuzzy controller is modi�ed by
adding a new trapezium to an input variable or mo-
difying an existing one. (iii) In the pedal adjustment
stage, the control actions are �ltered to make them
more human-related. Figure 2 shows an overview of
the proposed solution.

3.1. Singleton Learning

This stage adapts the consequents of the rule ba-
se, with the aim of reaching and tracking the re-
ference more precisely. The adaptation process is
based on evaluating both the error and the acce-
leration. It is done in this way since the desired
speed signal is assumed to be stepwise up-dated in
the system rather than continuously.

Figura 2: Schematic view of the three stages in the proposed
solution. Example for a 2× 2 controller.

At each instant, only the rules that were trigge-
red are modi�ed. Since not all the rules contributed
to reaching the current state, this modi�cation is
proportional to the activation of the rules:

Ri(k) = Ri(k − 1) + µi(k − 1) ·Reward(e(k), a(k))

where Ri denotes the position of a singleton, µi(k−
1) represents the activation of the rule at previous
instant, and e(k) and a(k) are the current error and
acceleration, respectively.
The rewards direct the controller to maintaining

a constant acceleration equal to some comfortable
value when the error is large, and reduce the acce-
leration linearly down to a value of zero when the
speed error reaches e = 0. For this purpose, the nine
cases listed in Table 1 were considered:

The set {C1, C2, C3, C4} represents situations
in which the vehicle is traveling more slowly
than desired. In particular:

� The set {C1, C2} describes the situation
when the vehicle is traveling very slowly
with respect to the desired speed. In this
case the vehicle is expected to accelerate
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# Case conditions Reward

C1

e > 0
e > a+c

a > a+c + T −C · |e|
C2 a < a+c − T C · |e|
C3 e ≤ a+c

a > e+ T −C · |e|
C4 a < max(0, e− T ) C · |e|
C5

e < 0
e < a−c

a < a−c − T C · |e|
C6 a > a−c + T −C · |e|
C7 e ≥ a−c

a < e− T C · |e|
C8 a > min(0, e+ T ) −C · |e|
C9 Otherwise 0

Cuadro 1: Cases to consider in implementing the singleton
learning.

with positive constant acceleration equal
to the comfort value (a+c ):

◦ C1: the acceleration is greater than
the comfort value plus a threshold, so
singletons must be reduced.

◦ C2: the acceleration is less than the
comfort value minus a threshold, so
singletons must be augmented.

� {C3, C4} describes the situation when the
vehicle is traveling slowly but near the
desired speed. In this case, the vehicle
is expected to reduce the acceleration li-
nearly until reaching the reference speed:

◦ C3: the acceleration is greater than
the error plus a threshold, so single-
tons must be reduced.

◦ C4: the acceleration is less than the
error minus a threshold, so singletons
must be augmented.

The set {C5, C6, C7, C8} represents situa-
tions where the vehicle is traveling fas-
ter than desired. The cases are described
and rewards are applied mirroring those for
{C1, C2, C3, C4}, but considering a di�erent
constant negative comfort acceleration (a−c ).

Finally, C9 represents the case when no chan-
ge must be applied to the singletons since the
speed and acceleration of the vehicle are within
the desired range.

The cases are dependent on the following para-
meters. First, a+c represents the comfort accelera-
tion when the vehicle is increasing in speed, i.e.,
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Figura 3: Cases covered by the singleton learning. Red area:
zone where singletons are reduced; green area: zone where
singletons are augmented; gray area: zone where singletons
are unmodi�ed.

the desired maximum acceleration when the vehi-
cle's speed is far from the reference value. The value
used for the experiments was �xed at 4km/h/s. Se-
cond, a−c represents the comfort acceleration when
the vehicle is braking. In this case, −8km/h/s was
set for the experiments. Third, T represents a th-
reshold used to mitigate the possible e�ect of noise
in the measurements. We set T = 2km/h/s for ex-
periments. And fourth, C = 0,01 is used as a nor-
malization constant.
With this con�guration of the parameters, the

cases used in the learning of the singletons de�-
ne the zones shown in Figure 3, where the red and
green zones indicate cases when rewards are negati-
ve ({C1, C3, C6, C8}) or positive ({C2, C4, C5, C7}),
respectively, and the gray zone represents the
desired situation where no reward is applied to the
singletons (Case C9).

3.2. Structure Learning

This stage evaluates the behaviour of the current
controller during a certain amount of time (cycle =
100, in seconds), and decides whether it is necessary
(i) to add a new trapezium, or (ii) to modify an
existing one.
To decide which, if any, modi�cation is applied,

�rst the histogram of the input values is generated,
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Figura 4: Example of label addition. Original labels with
superimposed histogram (left); resulting labels (right).

Figura 5: Examole of label modi�cation. Original labels with
superimposed histogram (left); resulting labels (right).

and then an analysis is made of how the commonest
values are covered by the current trapezia. This pro-
cess is carried out as follows:

If the most repeated value in the histogram
is covered with an activation degree less than
0.75 then a new membership function is inser-
ted into the variable. The trapezia are reini-
tialized (Figure 1), and singletons are reset to
zero. This process is illustrated in Figure 4.

If both of the two most repeated values are
covered with an activation degree greater than
0.75 then the shorter base of the trapezium is
reduced by 80%. Singletons are not reset after
this. This process is illustrated in Figure 5.

Adding a new trapezium is designed to cover the
most repeated input range to a greater degree so as
to generate a clear control action, while reducing
the shorter base is aimed at obtaining a controller
that is more speci�c leading to better di�erentiation
in the commonest input range.

3.3. Pedal Adjustments

Three aspects are taken into account to provide
a more human-like control of the pedals:

1. When the sign of the control signal changes,
the system returns zero for 0.5 seconds in order
to simulate the delay of the foot changing from
one pedal to the other.

2. When the reference speed changes, the single-
ton learning process is deactivated for 1 second,
to allow the controller to act without any dis-
turbance produced by possible modi�cations of
the singletons.

3. The pedal is set to zero when its absolute value
is less than 0.02, since at this low level it has
no real e�ect.

With these modi�cations, the system is expec-
ted to emulate the actions of a human driver more
precisely, as well as to smooth out any potential
abrupt modi�cations of the singletons produced by
large changes in the reference speed.

4. Experimentation and Results

Experiments were carried out in two phases: (i)
in a simulated environment in order to analyse the
system without risk and for a broad set of vehicle
dynamics; and (ii) in a real vehicle both to study
the performance in real driving situations and to
compare it to a human driver.

4.1. Tests in the Simulated Environment

For the experiments in a simulated environment,
TORCS2 (The Open Racing Car Simulator) was
used as testbed. This is one of the most popular
car racing simulators for academic research due to
its various advantages: (i) it lies between an ad-
vanced simulator and a fully customizable environ-
ment, such as those used by computational inte-
lligence researchers; (ii) it features a sophisticated
physics engine; and (iii) it implements an ample set
of tracks and vehicles with di�erent physical beha-
viour.
There are 30 models of vehicles implemented in

TORCS, all of them di�ering in their longitudinal
behaviour. To illustrate this, Figure 6 gives the va-
lues for some of the parameters that a�ect the lon-
gitudinal dynamics of all TORC's vehicles. In this
�gure, the red lines and the blue boxes represent the
values of the mean and standard deviation. The va-
lues are normalized with respect to the minimum
and maximum values found.
All the vehicle models were used in the experi-

ments in order to test the robustness of the con-
trol system for di�erent dynamics. The experiments
consisted of giving the vehicles the following re-
ference speeds: {20, 35, 30, 20, 40}km/h, for 20 se-
conds each, and repeated 8 times.

2http://torcs.sourceforge.net/

6



Mass (kg)
600 1500

Front−Rear Weight
Repartition (%) 0.4 0.56

Front−Rear Brake
Repartition (%) 0.5 0.7836

Brake Maximum
Pressure (kPa) 10000 55000

Front Wheels
Diameter (cm) 30.48 45.72

Rear Wheels
Diameter (cm) 30.48 45.72

Front Wheels
Inertia (kg m2) 0.6 1.22

Rear Wheels
Inertia (kg m2) 0.6 1.25

Front Wheels Rolling
Resistance (%) 0.0005 0.031

Rear Wheels Rolling
Resistance (%) 0.0005 0.031

Front Wheels
Stiffness (%) 5 30

Rear Wheels
Stiffness (%) 5 30

Front Wheels
Dynamic Friction (%) 70 100

Rear Wheels
Dynamic Friction (%) 70 100

Figura 6: Comparison between some of the longitudinal at-
tributes of the vehicles in TORCS. Red line: mean value;
blue box: mean ± standard deviation.

The track was an oval comprising two straights of
1.6 km joined by semi-circles, with the aim of not
conditioning the system's behaviour to managing
the steering. Since the gear must also be controlled,
a simple policy was implemented which shifts up the
current gear if the revolutions per minute (rpm) of
the vehicle's engine are over 4000, and shifts down
when rpm < 2500. The parameters of the learning
system were set as follows:

Ranges of [−25, 25]km/h for the Error and
[−8, 8]km/h/s for the Acceleration.

The controller started with 2 trapezia per in-
put (4 rules).

Figure 7 shows the speed results of the 30 vehicles
superimposed in the top graph, and in the bottom,
zoomed zones of the graph with only the fastest,
the slowest, and the averaged speeds shown. The
results seem to re�ect good precision: one obser-
ves in the zoomed plots the e�ect of learning, since

Figura 8: Vehicle (top), and test zone with path to follow
(bottom).

the di�erence between the highest and the lowest
speeds decreases over time (until t he maximum
error ≤ 1km/h).
Given the promising results in the simulated en-

vironment, we proceeded to test the system in a real
vehicle, as will be described in the next subsection.

4.2. Tests in the Real Environment

A Citroën C3 (Figure 8, top) modi�ed to per-
mit autonomous control of the pedals, was used for
these trials [30]. The gear is unknown to the contro-
ller since the control implemented by Citroën was
used. In particular, there was no knowledge about
the current gear, or how or when it changed. Figu-
re 8 (bottom) shows an aerial view of the path to
follow over the test zone. It has slopes of up to 3%,
and a long straight segment of about 200 metres.
The points marked are references for experimenting
with variable speeds.
Some modi�cations were made to the con�gura-

tion used in the simulated environment:

The input ranges were reduced to
[−20, 20]km/h for the Error and to
[−5, 5]km/h/s for the Acceleration.
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Figura 7: Execution of the learning process in 30 vehicles (top). Zooms showing the highest, lowest, and averaged speeds
(bottom).

The starting controller codi�ed Error with 4
trapezia instead of the 2 used in the simula-
tion experiments, thereby obtaining an initial
controller with 8 rules.

Finally, singletons were restricted to [−0,3, 0,5]
since values outside that range could cause da-
mage to the vehicle's equipment.

At �rst, the system was tested using two cons-
tant reference speeds � 15 and 5 km/h. The results
are shown in Figures 9 and 10 in which the speed,
pedal action, and evolution of the consequents over
time are shown. The speed results are compared
with the behaviour of a human driver, who was hel-
ped by being shown on a screen the vehicle's real
speed, since the speedometer was insu�ciently ac-
curate for adequate control.
In both tests, the structure learning was execu-

ted at t = 100s, converting a 4 × 2 controller into
a 5× 3 one, so that resetting the singletons produ-
ced the speed reduction. Furthermore, at t = 200s
the central labels of both variables were stretched
without any signi�cant e�ect. At the top of each �-
gure, two Mean Absolute Error (MAE) values are
shown. The one after t = 25s (transitory state) and
the overall value. It is important to remark that
most of the singletons seem to reach a state of sta-
bility once the granulation of the controller has been
modi�ed. In both experiments, only one singleton
signi�cantly varied over time, and in both cases co-
rresponding to the rule that covered both the error
and the acceleration equal to zero. The oscillations

0 50 100 150 200 250 300
10
12
14
16
18
20

4x2 → 5x3 Reduction

Time (s)

S
pe

ed
(k

m
/h

)

 

 

System (MAE: 0.36 | 0.47) Human (MAE: 0.45 | 0.64)

0 50 100 150 200 250 300
−0.1

0
0.1
0.2
0.3
0.4
0.5

Time (s)

P
ed

al
 (

%
)

0 50 100 150 200 250 300

−0.2

0

0.2

0.4

Time (s)

S
in

gl
et

on
s

Figura 9: Results maintaining a �xed reference speed of
15km/h. Evolution of the speed (top), pedal action (centre),
and singletons (bottom).

of this singleton occur to adapt the system to the
variations in the road or the vehicle's dynamics.

In both cases, the speed management provided
by the learning system outperformed that of the
human driver. It is important to remark that 15
km/h was selected because it represented a fron-
tier between �rst and second gear in the case that
the vehicle is accelerating rapidly. During the test,
the vehicle maintained �rst gear, indicative of the
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Figura 10: Results maintaining a �xed reference speed of
5km/h. Evolution of the speed (top), pedal action (centre),
and singletons (bottom).

quality of the acceleration given to the vehicle. The
speed of 5 km/h was an interesting challenge sin-
ce at this speed the slightest slope or variation on
the pedal can induce major changes in speed. The
controller maintained MAE ≈ 0,5km/h, which not
only re�ects good accuracy but is also insigni�cant
for the vehicle.
A second experiment was conducted in which the

reference speed was changed over time. The vehicle
started at Point A (Figure 8), and the reference
speed was changed at each marked point. The evo-
lution of the speed is shown in Figure 11. During
the experiment, at t = 100s the 4x2 controller was
converted into a 5x3 one, which is the reason for
the poor behaviour around that instant. Also, at
t = 200s, the central label of the Error was redu-
ced.
For a quantitative analysis of the behaviour du-

ring the experiment, Figure 12 shows measures of
the precision of the execution during the experi-
ment, distinguishing the accelerating (top) and bra-
king (bottom) steps. In this �gure, the values were
calculated with respect to the desired speed of the
vehicle assuming it is following the indications of
the singleton learning module (Figure 3). As can
be seen, MAE is smaller in the braking steps. This
is because the dynamics of the vehicle when using
the brake are faster than when using the throttle,

so that it is easier to follow the acceleration indica-
tions. In all the steps, the stationary MAE evolves
until MAE ≈ 0,5km/h, and the transitory value
until MAE ≈ 1,0km/h. In the overall execution,
the average MAE decreases over time. The excep-
tion (25 ⇓ 15) is due to the resetting of the sin-
gletons made by the structure learning module at
t = 100s.

5. Conclusions and Future Work

This communication has presented a method for
the on-line evolution of a fuzzy controller respon-
sible for managing the pedals of a vehicle, based
on data obtained while the vehicle is moving. The
method is divided into three phases: (i) a single-
ton learning phase, responsible for modifying the
positions of the singletons of the controller depen-
ding on the speed and acceleration of the vehicle;
(ii) a structure learning phase that, after a certain
amount of time, varies the number or shape of the
trapezia used to codify the input variables; and (iii)
a pedal adjustment phase in which the actions gi-
ven by the controller are �ltered to make them more
reliable.
The system was tested in both a simulated envi-

ronment, and on a real vehicle. In the simulations,
it was tested on 30 cars with di�erent dynamical
behaviour, and yielded accurate results with low
deviations over time for all the cars. In the real vehi-
cle trials, the results were compared with those of
a human driver. The control system outperformed
the human under conditions of constant reference
speeds, and gave excellent results in both speed and
acceleration for a changing reference speeds.
Future work will focus on greater sophistication

in the structural learning, since the present imple-
mentation resets the singletons after a granularity
change. This can be resolved by interpolating the
new rule base with respect to the previous one. In
the same line, the present structural learning chan-
ges both the number and amplitude of the trapezia,
but not their centres. It is planned to use data con-
cerning the input histogram to redistribute the new
trapezia accordingly.
New transport applications are expected to be

implemented with the proposed method. An ACC
system able to maintain a safe distance with a pre-
ceding vehicle can be easily implemented by using
the di�erence with the desired distance as error sig-
nal, and then applying the same approach as has
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Figura 11: Speed of the vehicle with changing reference speed.

been presented in this work. Similarly, steering con-
trol can be based on using the error with respect to
the reference path to follow.
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