

A Middleware Platform for Application Configuration, Adaptation and
Interoperability

A. Uribarren1, J. Parra1, R. Iglesias1,J.P. Uribe1 and D. López-de-Ipiña2

1 Software Technologies Area, Ikerlan – IK4
{auribarren, jparra, riglesias, jpuribe }@ikerlan.es

2University of Deusto
dipina@eside.deusto.es

Abstract

Managing sensors, actuators and devices for

supporting context-aware applications poses great
challenges, such as the efficient coordination and
cooperation among them, their self-configuration, as
well as the management of their interactions.

This papers aims at creating a middleware
platform for the provision of the following
functionalities: Configurability, Adaptability,
Heterogeneity and Interoperability (CAHI). The
capabilities of this middleware platform are assessed
by means of a smart-home scenario populated by
different sensors, actuators and devices.

1. Introduction

Recent advances in communication
infrastructures, computational resources and
computing devices have paved the way for the
development of pervasive computing environments.
They are enabling a broad range of promising
applications ranging from environment monitoring,
smart homes, ambient intelligence in health care, or
mobile multimedia applications.

The virtue of these environments is that the
provision of device functionality and local and
distributed software applications should be given in a
flexible, integrated and almost transparent way for
end-users [1]. However, the management of the state
data and services coming from heterogeneous sensors
and/or embedded and mobile devices everywhere and
at all times is fairly difficult to be managed by end-
users and appropriate systems should deal with it.

On the other hand, pervasive applications need to
be aware of changes (i.e. network or device resources,
devices that are removed, new devices introduces,
devices that change their configuration depending on
the services available) or user desires/actions in the

environment, and adapt themselves to these changes.
Context awareness plays an important role in
applications in order to sense and react accordingly in
the environment to provide high-quality and reliable
data to applications. To achieve it, more research is
needed on building software infrastructures to process
the sensed information, providing more reliable
services, adaptation or enabling interoperability of
devices and applications, among others.

Nowadays, technology seems to be mature enough
to build pervasive environments, in turn, the reality is
very different. The majority of the devices are
isolated offering a specific service and they do not
work or collaborate together to achieve the
application goal [2]. Several protocols have been
developed for such a purpose, for instance, UPnP
(Universal Plug and Play) [3], Jini [4] and HAVi
(Home Audio and Video interoperability) [5].

To our knowledge, a middleware platform should
deal with, communicating devices and applications,
gathering context information and services from
heterogeneous physical sensors and processing it.
These processes should be transparent to applications,
and the applications should adapt to the existing
context configuration by using the processed
information. Adaptation strategies to the ever-
changing environment and user needs are important.
 In this paper, we present a middleware platform
whose function is to provide interoperable
mechanisms of communication between applications
and devices independently of the device APIs or
protocols and context-based coordination, cooperation
and adaptation of the services provided. This
framework intends to be installable and run-able
independent of the underlying hardware, operating
system and of the application itself.
 2. Requirements and challenges

2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops

978-0-7695-3553-1/08 $25.00 © 2008 IEEE

DOI 10.1109/SASOW.2008.36

162

The vision of Weiser’s ubiquitous computing
corresponds to a new paradigm in which computing
systems are seamlessly integrated into everyday life
[1]. With this new paradigm the difficulty of
developing new applications, which should adapt to
the environment with minimum human intervention
has arisen [6]. Applications that should be adapted
according to user position, the presence of more
people or devices or user activity, among other
contexts.

A pervasive environment should be aware of user
presence, sensitive, adaptive and responsive to user
desires, habits, emotions or activity [7, 8]. To fulfill
these requirements, pervasive applications should
provide: ubiquitous access, context awareness,
intelligence and transparent interaction to users [7].
Therefore, these applications need middleware to
interface between heterogeneous devices and
applications [8]. It should hide complexity to
applications, such as, management of protocols,
communication failures or heterogeneity problems [8,
9].

In short, middleware should deal with [2]:
• Configurability: changing the configuration of

applications depending on the services or
network capabilities available.

• Adaptability: it should detect and deal with
changes in the environment. For instance,
detecting new available devices/services, failures
or user movements, although we believe that
some changes still need to be carried out by
applications.

• Heterogeneity: given a diversity of devices (i.e.
cheap/expensive, mobile/stationary), middleware
should be scalable enough to fit types.

• Interoperability: enables devices in a
heterogeneous networked system to work
together to achieve the application goal.

Therefore, the middleware platform proposed,
which is called the CAHIM platform, will attempt to
address these four requirements.

3. Related work

Since this paper research covers a diversity of
different areas, this section describes a non-
exhaustive selection of related work that, to our
knowledge, is more relevant to this research work.

Many existing middleware approaches have
focused on how to endow mobile applications with
adaptation, reconfiguration and interoperability to
changing resources and changeable environments [10-
15]. The research work described in [11] proposes a
way to provide information related to resources such

that the application interface is unique, WSDL (Web
Services Description Language [16]). However,
complete application development abstraction can
only be achieved if service discovery and interaction
are not limited to a concrete definition language, not
forcing application adaptation. Another example is
the work carried out in the ReMMoC project [10].
Although the ReMMoC middleware enable
applications to use simultaneously different discovery
and interaction protocols, it still requires the
environment to be monitored to allow ReMMoC to
detect the SDPs (Service Discovery Protocols) over
time and interaction protocols that need be supported
/ integrated, due to the very dynamic nature of the
mobile environment. However, this research focuses
on interoperability between mobile clients and
existing middleware applications, rather than on
portability, adaptation and self-configuration of
components across the middleware platform. The
DRACO project aims to simplify the development of
pervasive and ubiquitous environments [12]. In this
research, a distributed runtime infrastructure is used
to distribute software components on heterogeneous,
networked and embedded hardware systems. A Java-
based micro kernel runtime environment runs on their
devices to overcome heterogeneity.

A similar approach can be found in [13] where a
novel mechanism to make reflective middleware is
presented. The usage of reflection enables adaptation
and reconfiguration of systems at run-time, allowing
the system’s behavior to be altered at run-time to
better match the system’s dynamic operating
environment. The cross-platform interoperability is
also achieved using appropriate platform packages or
programs for Java or .NET. A major drawback of this
approach is that it is required a previous installation
of the needed run-able and platform-dependent
engine for installing portion of code in each device.
Despide this fact the data transfer and applications
exchange will be based on this research work.

Another middleware, in which this middleware
platform has been based on, was developed in the
AMIGO project [14, 15]. This middleware aimed at
enabling several pervasive applications within a
networked home environment by seamless integration
of heterogeneous service technologies. This
integration was carried out by using an abstract
“unified service model” describing the service and
providing different interaction protocols to be called
by pervasive services and applications. The
interoperability with concrete services upon different
middleware platforms is achieved by a “bridge layer”
which maps the abstract model to concrete services.
This paper is an extension of [14] and [15] where the
main challenge to be addressed is to deal with self-

163

configuration and context-awareness by abstracting
context-aware applications from devices that provide
context. Hence, a Control layer for data/messages
analysis and management between ideally any upper
high level applications and locally controlled devices
will be introduced.

4. The middleware platform: CAHIM

We regard the system presented here as a core
low-level service for pervasive and ubiquitous
computing applications that operate in a mobile
environment. Many existing approaches formulate
means to deal with device information in general
terms. These approaches look at aspects such as
collection, distribution, transformation and inference
of generic information. Here, one of the main scopes
is to communicate context information, and focuses
on how to allow components running on different
devices to be aware of their network and related
resources so that they can adapt and provide a
pervasive service to upper applications. This feature
will be covered and extended later in Section 4.2
“Context-aware service management”.

Furthermore, by learning from the solutions and
mechanisms found for a specific domain, it is useful
to better understand and recognize the valid principles
of generalized forms for environment handling. It is
also crucial that solutions are generic that is,
independent of the underlying hardware, operating
system and applications involved. Moreover,
solutions should not require complex modifications
for each application. It is important to endow
applications with a mechanism to provide hardware
and software interoperability.

Two aspects need to be addressed: the access to
inter-connected devices at anytime and anywhere and
the coordination and adaptation of available services.

4.1. Interoperability support

An approximation to support plug & play
capabilities can be found in our previous research
work [14]. Here, the same mechanism is used;
however it has been extended to provide adaptability
by means of reconfigurability capabilities. Following
a summary description of the approach is described
(see [14] for further details).

The main goal of the previous middleware
platform was to abstract applications from services
provided by heterogeneous devices that use diverse
technologies. Some authors use precise integrations
between specific protocols (e.g. [17], [18]), while
others have developed a middleware to integrate any

standard in a well-defined protocol (i.e. [19]). We
have followed the first approach, so in that way our
middleware will not restrict developers to use a
particular service discovery protocol. The adopted
solution consists of extracting functional description
of available services in heterogeneous networks,
representing it in a unified syntax and offering such
services to applications by using some standardized
protocols.

4.2. Adaptability, Coordination and
Configurability support

In order to support adaptation, coordination and
self-configuration of services, a new Control layer
(Fig. 1) has been added to our previous work [14].
This Control layer is comprised of a Coordinator
component, a User Profiling component and a
Context Information component.

The Control layer is responsible for maintaining
the current state of the middleware platform online
and updated and of providing a mechanism to allow
reconfiguration based on current or stored status
information, as well as on the rules already defined.

Fig. 1. Control layer view

The Context information component is in charge

of maintaining the current state of the available
devices and services in the platform. Moreover, it
stores data concerning previous status changes of the
devices. It stores any kind of information related to
devices and communication states to provide basic
information to the Coordinator in order to achieve the
requested and defined behavior providing the needed
information to upper applications. The User profiling
component is similar to the Context Information

164

component but containing user data. The user and
context information will be served to the Coordinator,
so it can make a decision or take an action in case of
conflict or new situations.

The Coordinator component plays an important
role. It is a monitoring engine with some associated
goals and predefined rules. It orchestrates between the
involved devices in order to satisfy the goals of the
upper applications. For example, if an upper
application requests ‘switch light on’ in a room to the
Coordinator, it checks which device is able to provide
light in that room. The device identified as ‘lamp’ will
be commanded by the Coordinator to be switched on.
On the other hand, and according to user preferences,
with the information received from the device
identified as ‘luminosity level reader’ it checks if the
requested light level is achieved or not, and if not, for
example, the coordinator will perform a pre-recorded
list of actions, opening the louvers in this case before
giving a positive or negative ‘action done’ answer to
the upper level application regarding the original
request. The Coordinator is responsible for mediating
and providing an adequate answer to the request of
upper applications and to do that, it is able to adapt
the services in each moment based on the Event-
Condition-Action or ECA rules.

The deployment of the Coordinator component in
the middleware platform can be distributed and
distributable as well. In that sense, this component
can be fragmented as required and each piece or
subcomponent can be shared among the middleware’s
involved devices.

5. The role of the platform in smart-
homes

Following, a smart-home scenario is introduced
which serves as a proof-of-concept for the proposed
platform. This example shows different pervasive
computing applications in a smart-home environment.

5.1. Smart-home scenario

Ann is watching channel A on TV at the living
room. It is raining, there is a storm. She starts the
Main Home Controller application (MHCA) by
means of the television screen. She can interact with
MHCA via voice or by using a remote controller. She
chooses to close all the windows at home. She can
now continue watching television.

She is a bit hungry and she goes to the kitchen to
prepare some popcorn. The home indoor location
system detects her movement and switches the
kitchen TV on and channel A is automatically

selected. During that process Ann has switched the
lights on, because due to the storm it is getting darker.
Soon after, the MHCA shows an alert window on the
kitchen TV. There is a problem with the bathroom
window. The automated system cannot close the
window. A new option is given to Ann: the system
can close the louver. Ann accepts but she decides to
go to the bathroom to see what happens with that
window. She takes a PDA with her and goes to the
bathroom. In that moment, the system detects that she
is leaving the kitchen with the PDA and a lightweight
version of the MHCA is installed in the PDA. On the
other hand, the TV show now starts being played on
the PDA. Once she enters the bathroom, the system
detects that the luminosity is low, and as a
consequence, the home automation system switches
the light on. The problem is that the curtain impedes
to close the window. Once she removes the curtain
from the window, the window is closed by an
automatic order from the MHC and the louver is
open. Ann starts her way to the living room. The
bathroom light is automatically switched off and a
beep sounds in the PDA with a new message
displayed to let her know that the popcorns are ready.
She takes the popcorns and sits down on her sofa. She
switches the PDA off and TV is switched on and
shows Channel A. The ambient light has been also
adjusted to her previous preferences.

5.2. Features to fulfill the requirements of the
smart-home scenario

In the previous section, a smart-home scenario has
been shown. In this section, that scenario will be used
to identify and clarify how the proposed framework
provides self-configurability and context-aware
adaptability to the MHCA. The requirements of the
MHCA are covered by the proposed framework and
the main features of the framework will be
emphasized.

It should be noted that, on the one hand, in this
scenario it is possible to discover any device at home
and they can interoperate by means of the
interoperability mechanism in the proposed
framework (UPnP Bridge has been used [14]). On the
other hand, such devices’ software is hot-upgradeable
and the solution provided in [13] to support mobility
and reconfigurability has been used. By means of the
Control Layer, it will be shown that it is possible the
self-configuration of different devices and adapt
device behavior according to current context.

5.2.1. MHCA and TV.In this scenario, the
MHCA is a high level application that uses the

165

middleware capabilities to perform the desired tasks.
Ann wishes to use the MHCA, which is running
somewhere at home, on television. First, the system
checks whether or not there is a user interface
installed to use the MHCA (MHC_UI). If it is not
installed, MHCA searches and copies the required
software from the Home Application Repository
(HAR), and it installs and starts this application on
TV.

It is considered that TV and in general other
computing devices are resource limited and
sometimes, it is required to unload/uninstall
applications in order to load/install others (i.e. a game
application, a music player). The proposed framework
takes care of this mobility software issue, with
application independence.

Different computing devices [20] may operate on
a generic hardware platform to control and manage
any kind of device (i.e. TVs, fridges, ovens, lamps,
louvers and so on) and software can be attached and
installed in these devices, if required, by using the
proposed framework. Therefore, TV can perform the
role of MHC_UI, a game player or an internet
browser by loading/unloading the run-able
components (using a reflection mechanism). They are
adapted according to user needs at each period of
time.

From the TV, Ann selects the option of closing
windows in the MHC_UI. Then, MHC requests for
closing all automatic windows. The windows have
automatic locking/opening, moreover they can
provide their status to other systems. In that sense,
once the action is performed, the MHCA should
receive acknowledgement and the pending request is
deleted from the Message Delivery Controller
(MDC). If there is a problem, a warning message or
an alternative service can be offered to Ann. In this
case, a warning message (an adaptive solution) ‘all
windows were closed except for a window in the
bathroom’ is sent to the active MHC_UI to show it on
television. Although there are some automatic actions,
in some cases, the MHCA requires user intervention.
We believe that user intervention cannot be totally
avoided to fulfil user expectations. Another example,
it is requested to Ann whether to move the MHC_UI
to the kitchen TV.

So far, we have seen different components of the
MHCA to attach, install, send and show to Ann,
showing the adaptation of the application.

Later on, when Ann removes the curtain, the
MHC can request for closing the window properly.
An ‘isClosed’ message is sent to the MHC and it is
unqueued from the MDC. Moreover, the MHC will
close the window (the original request) before
opening the louver. It is somehow an automatic

system recovery, getting back to the previous well-
known or desired state to be fulfilled. The MHC
already stored the state before changing the main goal
and as a result it can roll back until the desired one:
opening the louver.

5.2.2. Notifying the user and Lighting,
Switching on/off.With regard to the PDA two main
aspects are remarkable. The first one is the fact that
how the MHC application is installed and executed on
it. The MHC needs to check whether or not the
MHC_UI is already installed in the PDA. If not, it
checks if there are enough resources to install and run
a specific version. Regarding the MHC for PDA’s (or
in general for any handheld device) there are different
versions stored in the Home Application Repository.
So the main system checks the availability in the PDA
and depending on that it will decide to install full or
customized version. In this case the main restriction
used to decide has been the free available memory.

The second aspect is how TV is shown on the
PDA in her way to the bathroom. We have not TV
tuner on the PDA. In the kitchen TV when Ann
moved, the MHCA has switched TV on and tuned the
desired channel to view. To watch TV on the PDA,
first the MHCA has detected that the destination of
the video information needs to be broadcasted; PDA
hasn’t got a TV tuner, so in consequence, MHCA has
started the home entertainment multimedia set box
and has selected the desired channel to broadcast the
TV show as multimedia streaming. On the other hand,
it has started a media player on the PDA and has
configured to connect to the media server, to receive
the online video content. So, the MHCA, although the
goal was to show TV, depending on the requirements
of the device, needs to adapt and reconfigure
components to provide the same TV service.

There are other actions involving the cooperation
of different devices and components. For example,
notifying Ann that the popcorns are ready to eat, the
microwave device sends a message to the MDC. The
coordinator deals with it and sends an order to the
current user interface. If the user interface is being
used through TV, the message will be directly shown
on TV screen. In any case, the user will be notified in
a different way (i.e. vibrating, beep sound,
notification balloon) depending on the user context.

The coordinator also deals with other actions
related to user presence. The coordinator
automatically adjusts the lighting level according to
user location and by switching lights on/off if
required. Moreover, devices, like TV, are put on/off
depending on user presence. RFID-based locators are
used for user location. TinyOS operating system
enabled by Crossbow’s MicaZ sensors[21] are used

166

for monitoring lighting level and many different
automated lamps (i.e. with RS232 controlled lamps or
lamps based on the BDF home automation bus [22]).
These types of actions are supervised by the MHCA
and the coordinator is in charge of following up the
correct execution by the corresponding device.

6. Conclusions and future work

In this paper, a middleware platform has been
introduced as a mechanism to provide flexibility to
pervasive applications. This application flexibility
refers to challenging issues, such as, configurability,
adaptability, heterogeneity and interoperability. This
platform attempts to address new challenges in user-
centered and ever-changing pervasive environments.
Although it has been shown the validity of the
middleware platform in a smart-home environment, it
can be generalized to other pervasive applications.

As per future work, we believe that intelligent
software agents can facilitate the deployment of
context-aware pervasive application, and we plan to
evaluate the use of agent technologies in the
Coordinator component. In this sense user behaviour
patterns could be applied for anticipating to the user’s
future needs and actions, improving the human-
system interaction.

7. References

[1] M. Weiser. The computer for the 21st century. Scientific
American, 256(3):94-104, 1991.
[2] E. Aarts and S. Marzano, eds. The New Everyday:
Visions of Ambient Intelligence, 010 Publishing,
Rotterdam, The Netherlands, 2003.
[3] UPnP Forum. Universal Plug and PlayTM Device
Architecture, July 2008. http://www.upnp.org/.
[4] JINI technologies http://www.sun.com/software/jini/.
[5] HAVi http://www.havi.org/.
[6] Diego López de Ipiña, Juan Ignacio Vázquez, Daniel
García, Javier Fernández, Iván García, David Sainz and
Aitor Almeida, EMI2lets: a Reflective Framework for
Enabling AmI, Journal of Universal Computer Science
(J.UCS), vol. 12, no. 3, pp. 297-314, March 2006.
[7] A. Ferscha. Coordination in pervasive computing
environments. IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pp. 3-9, Jun 2003.
[8] D. Saha and A. Mukherjee. Pervasive computing: a
paradigm for the 21st century. Computer Vol. 36(3), pp. 25-
31, March 2003.
[9] C.A. da Costa, A. C. Yamin and C.F.R. Geyer. Toward
a general software infrastructure for ubiquitous computing.
IEEE Pervasive Computing, Vol. 7, No. 1, pp. 64-73, Jan-
March 2008.

[10]
http://www.comp.lancs.ac.uk/computing/research/mpg/_
reflection/remmoc.php.
[11] Carlos A. Flores-Cortés, Gordon S. Blair, and Paul
Grace. An Adaptive Middleware to Overcome Service
Discovery Heterogeneity in Mobile Ad Hoc Environments.
IEEE Distributed Systems Online Volume 8, July 2007, pp.
546–563.
[12] P. Rigole, C. Vandervelpen, K. Luyten, Y.
Vandewoude, K. Coninx, and Y. Berbers. A component-
based infrastructure for pervasive user interaction. In
International Workshop on Software Techniques for
Embedded and Pervasive Systems, pages 1–16, May 2005.
[13] A. Uribarren, J. Parra, J.P. Uribe, M. Zamalloa, K.
Makibar. Middleware for Distributed Services and Mobile
Applications. Proceedings of the first international
conference on Integrated internet ad hoc and sensor
networks, May 2006.
[14] A. Uribarren, J. Parra, J.P. Uribe, K. Makibar, I.
Olalde, and N. Herrasti, “Service Oriented Pervasive
Applications Based On Interoperable Middleware”,
Proceedings of the 1st International Workshop on
Requirements and Solutions for Pervasive Software
Infrastructures, 2006.
[15] F. Le Mouël, N. Ibrahim, Y. Royon, and S. Frénot,
“Semantic Deployment of Services in Pervasive
Environments”, Proceedings of the 1st International
Workshop on Requirements and Solutions for Pervasive
Software Infrastructures, 2006.
[16] http://www.w3.org/TR/wsdl
[17] J. Allard, V. Chinta, S. Gundala, and G. Richard III.
Jini meets UPnP: An architecture for Jini/UPnP
interoperability. In The 2003 International Symposium on
Applications and the Internet (SAINT- 2003), Orlando,
Florida (USA), January 2003.
[18] A. Sameh and R. El-Kharboutly, “Modeling Jini-UPnP
Bridge using Rapide ADL,” Proceedings of the IEEE/ACS
International Conference on Pervasive Services (ICPS'04),
Beirut, Lebanon, July 2004, p. 237.
[19] Lin, Cheng-Liang; Huang, Chi-Chih; Wu, Zheng-Ying;
Wang, Pang-Chieh; Hou, Ting-Wei. A Collaboration Proxy
for Converging UPnP and Jini Devices Based on OSGi.
CCNC 2007. 4th IEEE Volume, Jan. 2007 Page(s):916 -
919
[20] http://www.gumstix.com/products.html.
[21] http://www.xbow.com/
[22] http://www.fagor.com/es/_bin/cast/productos.php.

167

