BOOLE-DEUSTO USER MANUAL

INTRODUCTION

When we set out to design BOOLE-DEUSTO (BOOLE from now on) about ten years ago, we did it because we thought that professional analysis and design tools didn't suit all our academic needs, and because the tools which were developed specifically for classroom use didn't meet our expectations. This doesn't mean that BOOLE is a substitute for Electronics WorkBench, Xilinx's ISE, Or-CAD, etc. It simply sets out to make life easier for students and teachers of digital electronics.

With this in mind, we decided to restrict BOOLE to bit-level combinational systems and finite-state machines, choosing not to include word-level circuits (adders, codifiers, counters, etc.) since those are covered adequately by (for example) EWB. Furthermore, since we also set out to use BOOLE in first-year logic design courses, the exercises would naturally would be simple and small, so bit-level circuits would be enough for our needs. Although we have used BOOLE with very complex circuits, it is not its intended use, and we advise against using it for professional purposes.

In general, BOOLE is a didactic software package, focused on the methodology of the exercises, easy to install, easy to use, graphical, and available in several languages: English, Spanish, and Basque. “Ease of use” is the key concept in BOOLE, so we hope many users will be relieved to see that installation is painless and that the user manual is not 400 pages long.

The manual briefly describes the functionality found in BOOLE-DEUSTO: truth tables, Veitch-Karnaugh diagrams, boolean expressions, logic circuits, canonical forms, NAND/NOR circuits, function minimization, Moore and Mealy finite-state machines (FSM), FSM conversion, FSM minimization, FSM implementation with J-K and D flip-flops, FSM design tables, FSM simulation, code generation, and whole lot of other interesting features.

Finally, take into account that the version of BOOLE in your hands is the final one, at least as far as functionality goes. We don't foresee any new major changes or improvements to BOOLE, but we are nonetheless interested in comments and bug reports from users. Please don't hesitate to send them to us at the following address: zubia@eside.deusto.es. You can also register yourself at that address, so you can receive notifications of any new versions of BOOLE or other didactic software packages. In any case, we would be grateful if you included the following information (although it is not strictly necessary): your name, affiliation (university, teaching center, etc.), faculty, course, and number of students using BOOLE.

INSTALLING AND RUNNING BOOLE-DEUSTO

Installing BOOLE is as simple as copying files from the CD-ROM to a directory on your hard disk. If you have received BOOLE as a ZIP file, you simply have to uncompress the file to an empty directory.

You should have received the following files:

· BOOLE.exe.

· REDUCTIO.exe: This is an advanced minimization environment which is not strictly needed by BOOLE.

· BOOLE.enu and REDUCTIO.enu: Translation files for the English version.

· BOOLE.euq: Translation file for Basque version.

The CD-ROM version contains the English, Spanish, and Basque version. The .exe file is the same for all the languages. However, to activate English or Basque support, some additional files need to be copied to the empty directory. To activate English support, copy file “boole.enu” and “reductio.enu” along with “boole.exe”. To activate Basque support, copy file “boole.euq” along with “boole.exe”.

To run BOOLE, simply double-click on the file BOOLE.exe.

ANALYSIS AND DESIGN OF COMBINATIONAL CIRCUITS

Once the program has started, a window (see figure 1) will ask you to choose between combinational systems or secuential systems (finite-state machines). We'll start by seeing combinational circuits..

[image: image1.png]
Figure 1. BOOLE's main window

1. In the top of the window that appears next (see figure 2) it is mandatory to fill out the name of the system, the number of input lines and the number of output lines. For example, figure 2 shows a system called “ejer” with four input lines and two output lines. BOOLE assigns a default name to the input and output lines, but the user is free to change them.

[image: image2.png]
Figure 2. Main window for combinational systems.

2. Next, the user can choose any of the options available in the lower half of the window. However, we will follow the typical steps of an exercise. Let's start by activating the Manual Truth Table option. A new window will open (see figure 3) showing us the truth table representation of the system. By clicking on the empty output cells we will be able to switch between a 1, 0, or X output. By clicking the “Evaluate” button, the system will be saved.

[image: image3.png]
Figure 3. Truth Table view of a system.

3. Once we have defined the system (in our case, by using the Manual Truth Table option), the user will be able to see the canonical forms of the circuit by clicking on Canonical Sum (see figure 4) or Canonical Product. This window can be used to view the system in a different format (Canonical Sum) or to redefine it. The user can freely modify the canonical form, taking into account that any changes made here will affect the system (i.e. the truth table will be modified). In the Canonical Sum window the different output functions can be accessed using the left scroll bar.

[image: image4.png]
Figure 4. Canonical Sum form of a system

4. The next step is to obtain the minimized expression for the circuit. To do this, we simply have to access the Minimized SOP Expression option. Figure 5 shows the minimized expression for the first function of our system.

[image: image5.png]
Figure 5. Minimized boolean expression.

Using the buttons in the bottom of the window we can choose between seeing the expression as a V-K map, a NAND/NOR circuit, or the circuit representation of the expression. Figure 6 shows the circuit representation of the first function of our circuit.

[image: image6.png]
Figure 6. Logical circuit.

5. Besides seeing the circuit representation, we can also see a V-K map representation of the system. Figure 7 shows the V-K diagram (with minimization loops included) corresponding to the system''s first function. The use can choose between seeing the full diagram or each loop one at a time by using the list shown in the bottom left corner of the window. Finally, using the list on the top left the user can choose between two common representations of V-K diagrams.

[image: image7.png]
Figure 7. Veitch-Karnaugh diagram showing a minimized function.

6. Although the minimized expression is usually what most users are interested in (as a final result), some users will probably want to implement the circuit in a lab. Although BOOLE is not intended as a professional tool, it does provide some basic code generation functionality so the user can obtain the VHDL or OrCAD-PLD code of a circuit (both these languages are widely used in programmable logic devices). BOOLE also offers limited JEDEC support (currently only the PAL 22V10 device is supported). Figure 8 shows the JEDEC code for our circuit.

[image: image8.png]
Figure 8. JEDEC file generated by BOOLE

The six steps we have just described are the typical ones many students follow when solving a combinational exercise. However, BOOLE can also be used in other exercises, following different steps. We will now describe other interesting features found in the combinational part of BOOLE.

1. By clicking on the “Boolean Expression” button in the main window (see figure 9), the user will be able to define a circuit by using any boolean expression, as long as the fundamental syntax rules of boolean expressions are followed (balanced parenthesis, using the correct operators: + OR, * AND, - NOT, ^ XOR, etc.) Once the boolean expression has been introduced, the user can then see the circuit in all the representations mentioned above (Manual Truth Table, Minimized Expression, etc.)

[image: image9.png]
Figure 9. Boolean expression

2. By clicking on “Circuit Viewer” the user can introduce a SOP, POS, NAND, or NOR and BOOLE will draw the logical circuit. Take into account that the circuit viewer can only interpret these types of expressions (not any boolean expression).

3. Once of the most interesting features for students is the Learning Mode, where students can interactively solve a V-K diagram. The student must draw the V-K loops, and BOOLE will tell the student if the solution is incorrect, correct but not optimal, or correct and optimal.

The first step is to define the function to solve. Although the student can use any of the input interfaces described above (e.g. Manual Truth Table), for the Learning Mode it is specially interesting to define the system using the “V-K Diagram” option.. Figure 10 shows how a student can define the system using a V-K diagram. To define the function, the user simply has to click on the empty squares, which will change value with each click (0, then 1, then X, then 0 again).

[image: image10.png]
Figure 10. Defining a function using a V-K diagram

To enter learning mode, we must click “Learning Mode: Draw Loops”. The user is shown the V-K diagram (with no loops) where he must manually draw the loops. There is a second learning mode (“Learning Mode: Boolean Expression”) where the user doesn't have to draw the loops, instead he must write the minimized boolean expression directly. Besides that difference, both learning modes are the same.

In the Draw Loops mode, a loop is drawn by clicking on the squares which will form the loop (the value in the square will turn red to show that it has been selected). Once all the squares have been selected, the loop is created by clicking on “Create loop” or simply by right-clicking on the diagram. Figure 11 shows a learning mode window where the user has defined a couple loops.

[image: image11.png]
Figure 11. Learning mode with a couple loops drawn

To find out if the loops are correct, we must press the “Evaluate” button. This will show a message telling us if the solution is incorrect (i.e. the V-K can be solved with less loops), correct but not optimal (the number of loops is correct, but there is a better solution), or correct and optimal. In the case of the map shown in figure 11, BOOLE would show the message in figure 12 telling us that the diagram can be solved with less loops.

[image: image12.png]
Figure 12. Learning mode message

Figure 13 shows the correct solution (four loops instead of five).

[image: image13.png]
Figure 13. Learning mode with a correct minimization.

Besides all the options described up to this point, BOOLE can also save and load systems to/from disk, print results, copy results to the clipboard, and associate text to a system (such as notes, suggestions on how to solve the exercise, etc.).

This section has given a brief description of the combinational functionality included in BOOLE. Although this description is not complete, they are enough to get the user acquainted with the program and to start using it to analyze and design combinational systems.

ANALYSIS AND DESIGN OF SEQUENTIAL SYSTEMS (FINITE-STATE MACHINES)

Choosing “Finite State Machines” in BOOLE's main window gives us access to the sequential system portion of BOOLE. This part of BOOLE is not as open and versatile as the combinational part (where a system could be designed in multiple steps, choosing between different system representation formats), since the sequential part requires that we follow some very specific steps. Let's take a look at a typical sequence of steps.

1. First of all, we need to create the new FSM (File Menu -> New). Figure 14 shows the creation window, where we'll have to specify if the FSM is a Moore or Mealy machine and the number of input and output lines. In figure 14 we have chosen to create a Moore machine with one input line and one output line.

[image: image14.png]
Figure 14. Creating a new FSM

2. The second step is to define the FSM graphically. We will be faced with a white canvas where we will be able to 'draw' the FSM. A toolbox window (see figure 15) appears alongside the canvas. This toolbox allows us to create new states (top-right button), new transitions (bottom-right button), and manipulate existing states or transitions (left button).

[image: image15.png]
Figure 15. Drawing tools.

3. First of all, we will need to define the states in the FSM. We will do this by clicking on the state button in the toolbox and clicking on the canvas. Each click creates a new state. For example, we'll create for state. Then, we'll select the transition button to create the transitions between states. To do this, we simply have to click on the origin state and then on the destination state to define a transition between those two states. To make a transition going from and to the same state, simply click twice on that state.

Take into account that transitions might sometimes appear hidden 'under' states, so it is sometimes necessary to move the states around a bit to see all the states and transitions correctly. To move a state or transition, simply click on the selection tool (left button in the toolbox) and then click and drag the state or transition you want to move. To move a transition, make sure you click on the arrow portion of the transition. To erase a state or a transition, again use the selection tool, click on the state and transition and then right-click on it.

Using the toolbox can seem cumbersome, specially if you're constantly switching tools. However, there is a small trick to save you time: to switch from the state or transition tool to the selection tool, simply right-click on the canvas (make sure you right-click on the canvas and not on a state or transition, otherwise it will be erased)

Figure 16 shows our Moore machine with four states and a couple transitions. Notice how we still haven't defined outputs for the states or conditions for the transitions.

[image: image16.png]
Figure 16. Drawing a FSM

4. Once the states and transitions have been created, we will need to specify their attributes. To do this, choose the selection tool, and double-click on the state or transition you want to modify. A new window will open allowing us to modify its attributed (such as output, transition conditions, etc.) Figure shows our completely defined Moore machine (with outputs defined in the states and conditions defined in the transitions)..

[image: image17.png]
Figure 17. Completely defined Moore machine

5. The FSM shown in figure 17 is, in fact, a machine capable of detecting three or more 1's in the input line. The first option we can use is Results -> Correct to check if the FSM is correctly defined. BOOLE checks if we have forgotten to specify a condition, or repeated a condition. This option is very useful in complex FSM. If the FSM is correct, we can access the Results -> System Design option which shows a windows with all the tables and equations in a D or J-K flip-flop design. Figure 18 shows the tables for the Moore machine we have defined.

[image: image18.png]
Figure 18. Design tables for a Moore FSM

6. Once the user has seen and reviewed the tables, the user can choose the View Circuit menu option to see the logical circuit representation of the FSM (see figure 19).

[image: image19.png]
Figure 19. Logic circuit representation of a Moore FSM using J-K flip-flops.

7. The previous step is usually the final one. However, there are other steps we can follow. For example, converting the Moore machine into a Mealy machine by choosing the Results -> Convert to Mealy option. Figure 20 shows the equivalent Mealy machine which would be obtained.

[image: image20.png]
Figure 20. Moore machine converted into a Mealy machine.

8. Next, we could choose to minimize the system by choosing the Results -> Minimization option. BOOLE uses an algorithm capable of dealing with a wide assortment of FSM, inclusing machines with X conditions in transitions and incompletely-specified systems. When minimizing, BOOLE allows us to see all the steps followed during the minimization process and then draw the minimized machine on the canvas. The new drawing might look garbled, so it will sometimes be necessary to move the states around to give it a clean look again. Figure 21 shows how the Mealy machine we obtained earlier has been minimized from four states to three.

[image: image21.png]
Figure 21. Minimized Mealy machine.

9. The previous sequence of steps cover most of what is considered the design of the system. However, BOOLE also allows the system to be analyzed once it has been defined by providing a powerful, yet easy to use, FSM simulation feature. There are two types of simulation: normal and advanced (each of which can be performed in interactive or batch mode). We will take a look at the normal interactive simulation. To activate this type of simulation, click on Results -> Interactive Simulation.

In this type of simulation, the user enters the input it wants to feed the machine and clicks the CK button so the machine will process them and show its evolution graphically of the diagram (see figure 22). BOOLE keeps a log of the simulation so the user can review the steps he has taken.

[image: image22.png]
Figure 22. Interactive simulation of a Mealy machine.

10. Interactive simulation is usually sufficient for simple systems. However, batch simulation is usually more adequate for complex systems with many states and transitions. In this case, the use first specifies the whole simulation in advance (instead of running the simulation interactively, changing the inputs at each step). Then, the whole simulation can be processed step by step or all at a time. Figure 32 shows that out machine is indeed correct since it outputs a 1 when three or more 1s are sent through the input line.

[image: image23.png]
Figure 23. Batch simulation of a Mealy machine.

Advanced simulation simply allows the user to change input values between clock signals. This is useful to show the student the difference between Mealy and Moore machines, but has little practical use.

Finally, besides all the features described in this section, BOOLE also allows the user to save and load the FSM to/from disk, print results, copy results to the clipboard, and generate VHDL, OrCAD-PLD, or JEDEC code.

