
UNIVERSIDAD DE DEUSTO

A REACTIVE BEHAVIOURAL MODEL FOR

CONTEXT-AWARE SEMANTIC DEVICES

Tesis doctoral presentada por D. JUAN IGNACIO VÁZQUEZ GÓMEZ

dentro del Programa de Doctorado en CIENCIA DE LA COMPUTACIÓN

E INTELIGENCIA ARTIFICIAL

Dirigida por el Dr. D. JOSÉ LUIS DEL VAL ROMÁN

El doctorando El director

Bilbao, Enero de 2007





A mis padres, los verdaderos autores de todo mi trabajo.

iii





Abstract

Our environment is being populated by an increasing number of digital
devices. Even traditional objects are being substituted by their electronic
versions, demanding more skills from users.

The amount of intelligence in these devices does not match the pace
at which they are being disseminated through our lives. This situation
leads to interaction problems with the environment, since the user is the
sole responsible for contextualising the information and solving cooperation
problems between devices; that is, the user is the intelligence provider. One
of the major consequences of this situation is that people are continuously
disturbed and required to configure, operate and interact with these devices.

We deem that digital objects shall be more intelligent, autonomous, and
able to share, interpret and reason upon exchanged information to release
users from part of these activities.

In this thesis, we propose a model for knowledge sharing between
devices and for representing their behaviour in a way that promotes
autonomous context-aware reactivity. In our approach, we bring Semantic
Web technologies to the Ubiquitous Computing world in order to provide the
means for collaboratively transforming data into knowledge and enabling
intelligent reasoning mechanisms.

The model leads to a decentralised architecture where devices
spontaneously discover each other, share context information, perform
reasoning and adapt their behaviour dynamically in order to create a feel for
Ambient Intelligence in the environment. In order to validate our approach
we have identified some evaluation criteria and developed a number of
prototypes that were deployed in experimental scenarios.

The results of our research may contribute to pave the way for a new
wave of social digital objects that we denominate semantic devices.

v





Resumen

Nuestro entorno está siendo invadido por un número creciente de
dispositivos digitales. Esto es aśı hasta el punto en que objetos tradicionales
están siendo sustituidos por sus versiones electrónicas, que requieren más
habilidades por parte de los usuarios para ser utilizadas.

La cantidad de inteligencia existente en estos dispositivos no se ajusta
al ritmo en el que están siendo desplegados en nuestra vida cotidiana.
Esta situación conlleva problemas de interacción con el entorno, ya que
el usuario se convierte en el único responsable de contextualizar la
información y resolver los problemas de cooperación entre dispositivos: el
usuario es la entidad que proporciona la inteligencia . Una de las principales
consecuencias de este hecho es que las personas son continuamente
molestadas para configurar, manejar e interactuar con estos dispositivos.

Consideramos que los dispositivos digitales deben ser mas inteligentes,
autónomos y capaces de compartir, interpretar y razonar sobre la
información que intercambian, con el propósito de liberar a los usuarios
de parte de estas actividades.

Es esta tesis, proponemos un modelo para compartir conocimiento
entre dispositivos y representar su conducta de un modo que fomente la
reactividad autónoma sensible al contexto. En el enfoque que proponemos,
las tecnoloǵıas de Web Semántica se integran con el mundo de la
Computación Ubicua con el objetivo de facilitar medios que permitan
transformar datos en conocimiento de manera colaborativa, y proporcionar
mecanismos de razonamiento inteligente.

El modelo conduce al diseño de una arquitectura descentralizada,
dónde los dispositivos, de manera espontánea, se descubren unos a
otros, comparten información de contexto, razonan y adaptan su conducta
dinámicamente para implementar la visión de la Inteligencia Ambiental en
el entorno. Con el propósito de validar nuestro enfoque, hemos identificado

vii



unos criterios y desarrollado una serie de prototipos que se han desplegado
en escenarios experimentales.

Consideramos que los resultados de esta investigación pueden contribuir
a establecer el camino de una nueva generación de objetos digitales sociales
que denominamos dispositivos semánticos.

viii



Acknowledgements

This work owns a lot to different people who have supported me during all
these years.

I would like to thank my advisor, Dr. José Luis del Val, who tried all the
time to push me further to finish my research, while at the same time trying
to stop me from exploring new branches that would have made this process
never-ending. I am particular grateful for the opportunity that he and Maria
José Gil gave me to spend some months abroad, which undoubtedly helped
me to finish the dissertation, as well as to the University of Deusto and the
Basque Government that funded parts of this research.

I owe a huge debt of gratitude to Dr. Diego López de Ipiña for his
invaluable support from the very initial steps of the research until the final
phases reviewing the dissertation. Diego provided me with very fruitful
discussions and inspiring moments working together in several research
projects. It is easier to carry out a stormy process, as a Ph.D. dissertation
that you have to make compatible with other duties during several years,
when you can count with the help of talented people such as Diego.

I would like to thank Prof. Hans Gellersen from Lancaster University,
who accepted our proposal to host me at their prestigious Embedded
Interactive Systems Group from May to July 2006. It was a great and fruitful
experience; I would have never finished my dissertation on time without
being there.

I am also grateful to different people at the University of Deusto,
especially Iñigo Sedano who developed some parts of the initial prototype
of the smobject, and my friends and colleagues David Buján, Pablo Garcia,
Ana Lago and Asier Perallos; they assumed some tasks that made easier to
save time to work on the dissertation. I am also grateful to all my colleagues
and research staff at Fundación Deusto.

ix



Quiero dar las gracias a mis padres, José y Puri, familia y amigos, por
todo su apoyo durante estos años, siempre preguntándome cuando iba a
acabar la tesis.

Finalmente, ya hab́ıa iniciado el doctorado cuando conoćı a Iratxe y
ahora estamos casados. Quiero darle las gracias por apoyarme durante
todo este tiempo, especialmente por su comprensión cuando me ofrecieron
la oportunidad de pasar unos meses fuera trabajando en la tesis, y el no
haber podido dedicar a nuestras cosas la atención que merećıan durante
estos últimos meses. Espero poder recompensarlo con creces.

Muchas gracias a todos

x



Contents

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Semantic Web in Ubiquitous Computing scenarios . . . . . . . 6
1.3 Semantic devices . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Semantic discovery protocol . . . . . . . . . . . . . . . 10
1.3.2 Semantic devices as social devices . . . . . . . . . . . 12

1.4 Hypothesis and goals . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Evaluation scenarios . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Generalisation . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Research methodology . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Related Work 23
2.1 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Universal Plug and Play . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 UPnP Architecture . . . . . . . . . . . . . . . . . . . . 30
2.2.2 UPnP Activities . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Task Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Task Computing architecture . . . . . . . . . . . . . . 39
2.3.2 Semantic-ization and Service-ization . . . . . . . . . . 42
2.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 CoBrA and SOUPA . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 CoBrA: Context Broker Architecture . . . . . . . . . . 47
2.4.2 SOUPA: Standard Ontology for Ubiquitous and

Pervasive Applications . . . . . . . . . . . . . . . . . . 51
2.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Gaia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 Gaia architecture . . . . . . . . . . . . . . . . . . . . . 55
2.5.2 Semantic Knowledge in Gaia . . . . . . . . . . . . . . 58

xi



2.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Semantic Spaces, SOCAM and CONON . . . . . . . . . . . . . 62

2.6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Other related work . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7.1 Triple Spaces . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.2 The Context Toolkit . . . . . . . . . . . . . . . . . . . 68
2.7.3 Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7.4 Other relevant activities . . . . . . . . . . . . . . . . . 70

2.8 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . 70

3 mRDP: A Semantic Discovery Protocol 73
3.1 Previous approaches . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Introduction to mRDP – Multicast Resource Discovery Protocol 76

3.2.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Resource identification . . . . . . . . . . . . . . . . . . 81

3.3 Plant: Pattern Language for N-Triples . . . . . . . . . . . . . . 82
3.3.1 The Plant Query Resolution Algorithm . . . . . . . . . 84
3.3.2 mRDP SPARQL queries . . . . . . . . . . . . . . . . . . 88

3.4 mRDP message format . . . . . . . . . . . . . . . . . . . . . . 88
3.5 ReDEL: Resource Description Endpoints Language . . . . . . . 91
3.6 Example of advanced uses of semantic queries . . . . . . . . . 93
3.7 Performance evaluation of lexical and semantic discovery

with mRDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.8 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . 96

4 A Theoretical Model for Context-Aware Reactivity 99
4.1 Passively influencing the environment . . . . . . . . . . . . . 99
4.2 A set-theory based approach for context-aware reactivity . . . 103

4.2.1 Environment-oriented approach . . . . . . . . . . . . . 104
4.2.2 Entity-oriented approach . . . . . . . . . . . . . . . . . 106
4.2.3 Managed constraints . . . . . . . . . . . . . . . . . . . 108
4.2.4 The context-awareness process . . . . . . . . . . . . . 110
4.2.5 Behavioural profiles . . . . . . . . . . . . . . . . . . . 112

4.3 Semantic Web mapping . . . . . . . . . . . . . . . . . . . . . 116
4.3.1 Environment and Entity . . . . . . . . . . . . . . . . . 116
4.3.2 Context information . . . . . . . . . . . . . . . . . . . 117
4.3.3 Knowledge domain . . . . . . . . . . . . . . . . . . . . 119
4.3.4 Knowledge domain item . . . . . . . . . . . . . . . . . 121
4.3.5 Knowledge domain item value . . . . . . . . . . . . . 122
4.3.6 Perception capability . . . . . . . . . . . . . . . . . . . 122
4.3.7 Operation capability . . . . . . . . . . . . . . . . . . . 124
4.3.8 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.9 Behavioural profile, precondition and postcondition . . 126

4.4 Serialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xii



4.4.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.3 Behavioural profiles . . . . . . . . . . . . . . . . . . . 132

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 SoaM Architecture 139
5.1 Smobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.1 Base components . . . . . . . . . . . . . . . . . . . . . 142
5.1.2 Base core components . . . . . . . . . . . . . . . . . . 144
5.1.3 Platform interfaces . . . . . . . . . . . . . . . . . . . . 145
5.1.4 Built-in platform components . . . . . . . . . . . . . . 151
5.1.5 Awareness components . . . . . . . . . . . . . . . . . 151
5.1.6 The Profiles Resolution Algorithm . . . . . . . . . . . . 154
5.1.7 Selective and comprehensive context information

collection . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1.8 Optimising behavioural profiles resolution . . . . . . . 159
5.1.9 Intelligence and reasoning at the smobject . . . . . . . 159
5.1.10 Smobjects as context-aware entities . . . . . . . . . . . 163
5.1.11 An example scenario . . . . . . . . . . . . . . . . . . . 167
5.1.12 Advanced perceptors and effectors . . . . . . . . . . . 169

5.2 Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2.1 Example scenario with orchestrator . . . . . . . . . . . 175
5.2.2 Reasoning at the orchestrator . . . . . . . . . . . . . . 176

5.3 Ontologies and domain rules discovery for Ubiquitous
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Smobjects-only versus orchestrator-powered scenarios . . . . 181
5.5 BPinjector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.5.1 The smobject as BPinjector . . . . . . . . . . . . . . . 185
5.6 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.7 SoaM Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.7.1 SoaM discovery with UPnP integration and SSDP
extensions . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.7.2 SoaM discovery with mRDP and SoaMonto . . . . . . 195
5.7.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 198

5.8 SoaM Entity Management API . . . . . . . . . . . . . . . . . . 199
5.8.1 HTTP binding operations and messages . . . . . . . . 201

5.9 SoaMonto: the SoaM support ontology . . . . . . . . . . . . . 207
5.9.1 SoaMonto classes . . . . . . . . . . . . . . . . . . . . . 208
5.9.2 SoaMonto properties . . . . . . . . . . . . . . . . . . . 209
5.9.3 SoaMonto instances . . . . . . . . . . . . . . . . . . . 210
5.9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.10 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . 212

6 Prototypes and Evaluation 217

xiii



6.1 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.1.1 Smobject base components . . . . . . . . . . . . . . . 220
6.1.2 UPnP SSDP extensions . . . . . . . . . . . . . . . . . . 223
6.1.3 Orchestrator . . . . . . . . . . . . . . . . . . . . . . . 223
6.1.4 BPinjector . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.1.5 mRDP client and server . . . . . . . . . . . . . . . . . 225
6.1.6 Smobject awareness components . . . . . . . . . . . . 227
6.1.7 Prototyping issues . . . . . . . . . . . . . . . . . . . . 228
6.1.8 Second generation prototypes . . . . . . . . . . . . . . 230
6.1.9 Integration with wireless sensor networks . . . . . . . 232

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2.1 Performance tests . . . . . . . . . . . . . . . . . . . . . 233
6.2.2 Scenarios tests . . . . . . . . . . . . . . . . . . . . . . 241

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

7 Conclusion 265
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . 275

7.2 Future research and challenges . . . . . . . . . . . . . . . . . 278
7.2.1 Exploring other forms of semantic devices . . . . . . . 278
7.2.2 Exploring and extending the SoaM model and

architecture . . . . . . . . . . . . . . . . . . . . . . . . 279
7.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Bibliography 283

Appendices 303

A Basic Semantic Web technologies 305
A.1 Resource Description Framework . . . . . . . . . . . . . . . . 305
A.2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
A.3 SPARQL Protocol And RDF Query Language . . . . . . . . . . 309

B SoaM Numbers, Ports and Namespaces 311

C ReDEL: Resource Description Endpoints Language 313
C.1 ReDEL XML Schema . . . . . . . . . . . . . . . . . . . . . . . 313
C.2 ReDEL Web Service . . . . . . . . . . . . . . . . . . . . . . . . 314
C.3 Simple RDF Web Service . . . . . . . . . . . . . . . . . . . . . 315

D SoaM XML Datatypes and Exchange Messages 317
D.1 SoaM XML Datatypes . . . . . . . . . . . . . . . . . . . . . . . 317
D.2 SoaM XML Exchange Messages . . . . . . . . . . . . . . . . . 321

xiv



E SoaM Entity Management API: SOAP and HTTP bindings 323

F SoaMonto specification 333

G Example of smobject configuration file 337

xv





List of Figures

1.1 The Pervasive Semantic Web. . . . . . . . . . . . . . . . . . . 9
1.2 Schematic view of the research process. . . . . . . . . . . . . 19

2.1 Criteria dependency matrix. . . . . . . . . . . . . . . . . . . . 27
2.2 Criteria dependency map. . . . . . . . . . . . . . . . . . . . . 28
2.3 UPnP protocol stack. . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 UPnP device architecture and services. . . . . . . . . . . . . . 31
2.5 Ordered sequence of UPnP phases. . . . . . . . . . . . . . . . 32
2.6 Example of a SEARCH message and its response during UPnP

Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 UPnP Description Phase. . . . . . . . . . . . . . . . . . . . . . 34
2.8 Task Computing architecture. . . . . . . . . . . . . . . . . . . 40
2.9 Semantic-ization and Service-ization in Task Computing. . . . 43
2.10 CoBrA Architecture. . . . . . . . . . . . . . . . . . . . . . . . 48
2.11 The context acquisition process in CoBrA. . . . . . . . . . . . 49
2.12 CoBrA Ontology. . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.13 SOUPA Ontology. . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.14 Gaia architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.15 Gaia Context Infrastructure. . . . . . . . . . . . . . . . . . . . 58
2.16 SOCAM architecture. . . . . . . . . . . . . . . . . . . . . . . . 64
2.17 CONON ontology. . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.18 Triple Space example with publish/subscribe interaction. . . . 68

3.1 Example of mRDP operation. . . . . . . . . . . . . . . . . . . 78
3.2 mRDP over the TCP/IP protocol stack. . . . . . . . . . . . . . 80
3.3 mRDP UML sequence diagram with all the interactions. . . . . 81
3.4 Optimised mRDP UML sequence diagram. . . . . . . . . . . . 82
3.5 Matchmaking performance during the first execution in

mRDP discovery. . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Stabilised matchmaking performance in mRDP discovery. . . . 96

4.1 Active and passive infuence. . . . . . . . . . . . . . . . . . . . 100

xvii



4.2 A context-aware entity featuring static behavioural reactivity
to context modification. . . . . . . . . . . . . . . . . . . . . . 102

4.3 A context-aware entity featuring influenceable behavioural
reactivity to context modification. . . . . . . . . . . . . . . . . 103

4.4 Constraints as subsets and elements. . . . . . . . . . . . . . . 109
4.5 Valid values for a postcondition and one constraint

representing a subset of it. . . . . . . . . . . . . . . . . . . . . 114
4.6 An infinite number of constraints as subsets of the

postcondition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7 RDF graph representing the Listing 4.1. . . . . . . . . . . . . 120

5.1 Smobject base components communication interfaces. . . . . 143
5.2 Smobject internal structure with base components. . . . . . . 144
5.3 Example of internal perception and operation process in a

smobject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4 Complete smobject communication interfaces. . . . . . . . . . 152
5.5 Complete Smobject internal structure. . . . . . . . . . . . . . 154
5.6 The context awareness process for smobjects. . . . . . . . . . 166
5.7 Example scenario with four smobjects. . . . . . . . . . . . . . 169
5.8 Orchestrator communication interfaces. . . . . . . . . . . . . 172
5.9 Orchestrator internal structure. . . . . . . . . . . . . . . . . . 174
5.10 Example scenario with one orchestrator coordinating four

smobjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.11 Number of connections for retrieving context information

with and without orchestrator. . . . . . . . . . . . . . . . . . . 182
5.12 BPinjector internal structure. . . . . . . . . . . . . . . . . . . 183
5.13 Interactions in a smobjects-only scenario. . . . . . . . . . . . 188
5.14 Interactions in a orchestrator-powered scenario. . . . . . . . . 190
5.15 Transformation of a UPnP device into a SoaM UPnP device. . 193
5.16 Context information provided by a smobject, including

SoaMonto data. . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.1 Incremental prototyping and testing process in SoaM. . . . . . 218
6.2 Image of the ConnectCore 7U platform that hosted the

smobject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3 The mRDP Browser browsing through located smobjects in

the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.4 Image of the Gumxtix 400xm with Wi-Fi card and antenna

that hosted the second generation of smobjects. . . . . . . . . 231
6.5 Performance of the different XML parsers parsing an XML

document in the ConnectCore 7U platform. . . . . . . . . . . 234
6.6 Performance of the different XML parsers parsing an

RDF/XML document in the ConnectCore 7U platform. . . . . 235
6.7 Performance of the different XML parsers in relation to its size. 236

xviii



6.8 Performance measures of the smobjects-powered CC9U
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.9 Performance measures of the orchestrator-powered CC7U
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.10 Comparison of performance measures for the smobjects-only
CC9U and orchestrator-powered CC7U topologies. . . . . . . 239

6.11 Comparison of relative effort for the activities in the
smobjects-only CC9U and orchestrator-powered CC7U
topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.12 3-D view of relationships among relevant factors for
smobjects-only networking. . . . . . . . . . . . . . . . . . . . 241

6.13 Two dimensional projection of the relationships among
relevant factors for smobjects-only networking. . . . . . . . . 242

6.14 3-D view of relationships among relevant factors for a single
smobject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.15 Two dimensional projection of the relationships among
relevant factors for a single smobject. . . . . . . . . . . . . . . 244

6.16 The complete smobject prototype with Wi-Fi, audio and battery.244
6.17 The smobject prototype in the plant protected with a plastic

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.18 The smobject prototype in the umbrella. . . . . . . . . . . . . 254
6.19 The workwear jacket with two wireless accelerometers to

detect body orientation, and the smobject prototype (covered
by fabric) with the BPinjector software. . . . . . . . . . . . . . 258

6.20 An EffectorTrayAlerter at a monitoring centre that generates
an alarm if a worker collapsed in a dangerous environment. . 262

6.21 The souvenir-aware Google Earth display (the RFID reader
and a tagged souvenir). . . . . . . . . . . . . . . . . . . . . . 264

7.1 Graphical comparison of SoaM and other architectures. . . . . 266

A.1 RDF graph representing the Example A.1. . . . . . . . . . . . 307
A.2 The Semantic Web stack. . . . . . . . . . . . . . . . . . . . . . 309

xix





List of Tables

2.1 Criteria’s relative weights of importance. . . . . . . . . . . . . 29
2.2 Analysis of UPnP against the evaluation criteria. . . . . . . . . 38
2.3 Analysis of Task Computing against the evaluation criteria. . . 46
2.4 Analysis of CoBrA/SOUPA against the evaluation criteria. . . . 55
2.5 Analysis of Gaia against the evaluation criteria. . . . . . . . . 62
2.6 Analysis of SOCAM against the evaluation criteria. . . . . . . 66
2.7 Analysis of architectures against the evaluation criteria. . . . . 72

3.1 Comparison of current discovery systems and mRDP. . . . . . 98

5.1 Comparison among possible context collection strategies. . . . 158
5.2 Comparison of SoaM SSDP extensions and mRDP as SoaM

discovery mechanisms. . . . . . . . . . . . . . . . . . . . . . . 198
5.3 Analysis of SoaM and other technologies against the

evaluation criteria. . . . . . . . . . . . . . . . . . . . . . . . . 215

6.1 Smobject components size. . . . . . . . . . . . . . . . . . . . 228
6.2 Relation among computing power and platform size. . . . . . 231

A.1 URIs assigned to identify the resources in Example A.1. . . . . 306

xxi





List of Listings

3.1 Example of triple patterns based on N-Triples. . . . . . . . . . 83
3.2 An example Plant query. . . . . . . . . . . . . . . . . . . . . . 85
3.3 Augmented BNF grammar for mRDP messages. . . . . . . . . 88
3.4 An example mRDP resource identification message. . . . . . . 90
3.5 An example mRDP resource identification message with

SPARQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 An example mRDP resource description location message. . . 91
3.7 An example of HTTP callback conveying ReDEL payload. . . . 92
4.1 RDF/XML representation of context information from the

Example 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Example of a capability using the any wildcard. . . . . . . . . 128
4.3 Fragment of a capability involving a concrete object. . . . . . 128
4.4 Example capabilities in SoaM XML Datatypes. . . . . . . . . . 128
4.5 Fragment of a capability involving all the predicates in an

ontology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.6 An example of constraints usage. . . . . . . . . . . . . . . . . 131
4.7 A simple behavioural profile. . . . . . . . . . . . . . . . . . . 133
4.8 A more complex behavioural profile with variables. . . . . . . 134
4.9 Generated constraints from the behavioural profile of Listing

4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1 Behavioural profile for the example scenario. . . . . . . . . . 167
5.2 ABNF grammar for SoaM SSDP extensions. . . . . . . . . . . 194
5.3 UPnP Control Point request message. . . . . . . . . . . . . . . 194
5.4 UPnP Device response messages. . . . . . . . . . . . . . . . . 194
5.5 Example of a IDENTIFY mRDP message during SoaM mRDP

Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.6 Complex smobject discovery message in mRDP. . . . . . . . . 195
5.7 Example of a HTTP POST message during SoaM mRDP

Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.8 Example of smobject RDF description retrieval. . . . . . . . . 197
5.9 Example of constraints retrieval. . . . . . . . . . . . . . . . . 202

xxiii



5.10 Example of constraints injection with add. . . . . . . . . . . . 203
5.11 Example of constraint renewal using HTTP GET. . . . . . . . 205
5.12 Example of constraint removal using HTTP POST. . . . . . . . 206
6.1 Behavioural profile disseminated by the smart plant to adapt

the environment. . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.2 Example of native behavioural profile for the smart plant. . . 248
6.3 Excerpt of integrated context information obtained from

several sources by the smart plant. . . . . . . . . . . . . . . . 250
6.4 Domain rules associating sensor nodes measures to their

location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.5 Example of native behavioural profile for the aware umbrella. 255
6.6 Excerpt of integrated context information obtained from

several sources by the aware umbrella. . . . . . . . . . . . . . 256
6.7 Example of a native behavioural profile for an electrical tool. . 259
6.8 Example of a behavioural profile for sending an alarm

whenever a worker collapsed in a dangerous environment. . . 260
6.9 Domain rules associating risk levels of task and materials to

their location. . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
A.1 RDF/XML serialisation of Example A.1. . . . . . . . . . . . . . 306

xxiv



Chapter

1
Introduction

“The most profound technologies are those that disappear.”

Mark Weiser
The Computer for the 21st Century

UBIQUITOUS computing is a major field of research nowadays as
surrounding environments are becoming increasingly populated
with small embedded devices and appliances. The term “Ubiquitous

Computing” was coined and popularised by Mark Weiser in his seminal
article “The Computer for the 21st Century” [Wei99], but other terms
such as pervasive computing, invisible computing, calm computing and
everyware [Gre06] have been increasingly popular.

Ambient Intelligence (AmI) has become a widely overused term, mostly
within Europe, as it has been one of the main ICT research focuses in the
6th Framework Program [Eur03a] [Eur03b].

A great deal of research effort during the last years has been devoted to
making devices more context-aware, smarter and more reactive. There are
several, sometimes overlapping terms to define the spaces created by the
population of these objects: intelligent environments, smart environments,
smart spaces, AmI Spaces, and so forth.

Weiser summarised the requirements for pervasive technologies in the
four principles of Ubiquitous Computing [Wei96]:

• The purpose of a computer is to help you do something else.

• The best computer is a quiet, invisible servant.

1



A Reactive Behavioural Model for Context-Aware Semantic Devices

• The more you can do by intuition the smarter you are; the computer
should extend your unconscious.

• Technology should create calm.

Clearly, these principles are not being honoured in most of current
computing systems which demand our attention continuously1.

In turn, Aarts defines Ambient Intelligence as the synergy of three
attributes [Aar02]:

• Ubiquity: surrounded by a multitude of interconnected embedded
systems.

• Transparency: the equipment is invisible and integrated into the
background of the user’s surroundings.

• Intelligence: the system is able to recognize the people that live in
it, adapt itself to them, learn from their behaviour, and even show
emotion.

Among the novelties introduced by Aarts is the extension to the
Ubiquitous Computing concept towards a more humanistic perspective,
promoting devices that “show emotions” such as the iCat [vBYM05].

The lemma of the project Aura [GSSS02], developed by Carnegie Mellon
University, reads as “towards distraction-free Ubiquitous Computing”. It is
remarkable the lucid interpretation the authors made about user-related
issues:

The most precious resource in a computer system is no longer its
processor, memory, disk or network. Rather, it is a resource not
subject to Moore’s law: User Attention. Today’s systems distract
a user in many explicit and implicit ways, thereby reducing his
effectiveness.

The point is that there is a remarkable amount of interactions, both with
the environment and with the objects contained within, people have to carry
out everyday in order to achieve their goals.

The Ubiquitous Computing and Ambient Intelligence visions pursue
to create reactive environments, populated by smart devices, that react
intelligently and autonomously to user activities.

1Weiser predicted in 1996 that these challenges should be resolved by 2006.

2



Juan Ignacio Vázquez Chapter 1. Introduction

In order to illustrate how these systems are expected to perform,
we reproduce excerpts from probably the first scenario about Ubiquitous
Computing, found in Weiser’s original article “The Computer for the 21st
Century” [Wei99]:

Example 1.1. At breakfast Sal reads the news. She still prefers
the paper form, as do most people. She spots an interesting
quote from a columnist in tile business section. She wipes her
pen over the newspaper’s name, date, section and page number
and then circles the quote. The pen sends a message to the paper,
which transmits the quote to her office. [. . . ] She had lost the
instruction manual and asked them for help. They have sent her
a new manual and also something unexpected – a way to find
the old one. According to the note, she can press a code into the
opener and the missing manual will find itself. In the garage,
she tracks a beeping noise to where the oil-stained manual had
fallen behind some boxes. [. . . ] Once Sal arrives at work, the
fore view helps her find a parking spot quickly. As she walks into
the building, the machines in her office prepare to log her in but
do not complete the sequence until she actually enters her office.
[. . . ]

And yet another example. The following are excerpts of one scenario
depicted in “Scenarios for Ambient Intelligence in 2010” [Eur01] by the IST
Advisory Group.

Example 1.2. After a tiring long haul flight Maria passes
through the arrivals hall of an airport in a Far Eastern country.
[. . . ] Her computing system for this trip is reduced to one
highly personalised communications device, her “P-Com” that
she wears on her wrist. [. . . ] Her visa for the trip was self-
arranged and she is able to stroll through immigration without
stopping because her P–Comm is dealing with the ID checks as
she walks. [. . . ] A rented car has been reserved for her and is
waiting in an earmarked bay. The car opens as she approaches.
It starts at the press of a button: she doesnt need a key. [. . . ]
Her room adopts her “personality” as she enters. The room
temperature, default lighting and a range of video and music
choices are displayed on the video wall. She needs to make
some changes to her presentation – a sales pitch that will be
used as the basis for a negotiation later in the day. Using voice
commands she adjusts the light levels and commands a bath.
[. . . ]

3



A Reactive Behavioural Model for Context-Aware Semantic Devices

In the long road to make these visions true, our environments are being
invaded with digital objects, which embed more computing power than
preceding generations. Everyday examples are automatic doors that open
on the presence of people, taps that provide water as hands are placed
underneath, lights that turn on autonomously when someone gets closer,
digital cameras that contact nearby printers to generate photo printouts or
mobile phones that perceive surrounding partners to play a game.

But often, using these devices becomes cumbersome and troublesome,
as they require advanced knowledge to operate, thus disturbing user’s
activities.

As we mentioned before, people need to be released from the burden
of interacting with the environment all the time and concentrate on their
goal, not on eliminating the barriers. Surrounding objects should be able
to perceive users’ goals and existing barriers, performing the required
operations to facilitate human activities. This is the final goal of Ambient
Intelligence.

1.1 Problem description

After analysing the scenarios depicted in [Wei99] [Eur01] [Eur03a] and
[Eur03b], we found several issues that drew our attention:

1. The scenarios described in those visionary papers are far from being
reached in real life nowadays: existing devices and environments are
not very intelligent. More research efforts must be targeted at porting
AI techniques into Ubiquitous Computing.

2. Current experimental proposals do not feature a spontaneous
collaboration model among devices. They are generally based on a
unique central server and generally need heavy manual configuration
during deployment. We claim that spontaneous discovery and
interoperation [KF02] must be promoted.

3. In fact, it is difficult to find the proper balance between
decentralisation and intelligence, as it seems there exists underlying
opposing forces between both. An additional challenge is to integrate
all these desired features into a small and efficient computing
embodiment.

4. These proposals also tend to integrate different unrelated technologies
to solve a problem, making the resulting system highly coupled,
failure-prone and too large for embedding into small devices.

4



Juan Ignacio Vázquez Chapter 1. Introduction

5. Our environments are getting more and more populated with
electronic / automatic devices, sometimes featuring advanced
complex interfaces to operate them. Since they are not context-aware
they require manual operation, thus troubling users and unnecessarily
taking up their time. Future environments and objects should be more
autonomous, more perceptive, intelligent and reactive.

We can only expect a high degree of intelligence in the environment
if such environment is populated by intelligent devices. In this type of
scenario, devices are able to gather existing information, share it with
others, analyse and reason upon the data, and determine the best reactive
behaviour to perform.

Of course, such environment should not only be composed of individual
autonomous devices acting by themselves, but a certain level of emerging
collaboration is required to perform cooperative tasks in consistent ways.
Some objects may feature specific types of perception capabilities while
others feature complementary ones; some can perform concrete operations
on the environment or on their own state, while others work and act over a
different set of aspects.

Specialised appliances and heterogeneous objects are the common rule
(heating systems, light bulbs, temperature control systems, iris identification
mechanisms, camera-based surveillance systems), but although concrete
features are different, coordination and collaboration should be achieved
among them in order to truly realise the concept of Ambient Intelligence.

While individual behaviours are still required, rich collaboration among
devices boosts the environment to a further degree of intelligence, greater
than the addition of single capabilities. But collaboration requires some kind
of common communication mechanism among entities.

This aspect is of crucial importance, since the expressiveness provided
by the communication language may determine the social capabilities of
devices, and thus, their ability to create a common knowledge space.

Therefore, communication and intelligence are considered two
attributes at the core of the Ubiquitous Computing / Ambient Intelligence
vision. Communication contributes to information sharing and coordination
of activities, intelligence contributes to analysing, reasoning and decision
taking, and both together contribute to device inter-collaboration for the
user’s sake.

It is of foremost importance for the creation of these environments to
identify a technology in which communication and intelligence capabilities
can coexist seamlessly.

5



A Reactive Behavioural Model for Context-Aware Semantic Devices

1.2 Semantic Web in Ubiquitous Computing
scenarios

We consider the web model to be the most suitable technology to provide
both communication and intelligence capabilities to Ubiquitous Computing
environments.

Regarding the communication area, it is clear that the web model
based on HTTP [FGM+99] as a transport protocol, and IRIs [DS05] or
URIs (including URL and URN) [BLFM98] for resource identification and
location, has proved to be one of the most successful technologies of the last
decade.

The application of the web communication model in the Ubiquitous
Computing field has been explored thoroughly in the past (see section
2.7) and it is widely applied today in the UPnP (Universal Plug and Play)
[UPn03] protocol stack (see section 2.2).

However, how the web model can provide intelligence to pervasive
computing environments is not so obvious.

During the last years the whole web model is undergoing an evolution
towards a new paradigm called “the Semantic Web” [BL99]. The basics of
the Semantic Web were outlined in a Scientific American article by Berners-
Lee et al. [BHL01]:

• To date, the World Wide Web has developed most rapidly as a
medium of documents for people rather than of information that can
be manipulated automatically. By augmenting Web pages with data
targeted at computers and by adding documents solely for computers,
we will transform the Web into the Semantic Web.

• Computers will find the meaning of semantic data by following
hyperlinks to definitions of key terms and rules for reasoning about
them logically. The resulting infrastructure will spur the development
of automated Web services such as highly functional agents.

• Ordinary users will compose Semantic Web pages and add new
definitions and rules using off-the-shelf software that will assist with
semantic markup.

Basically the Semantic Web is a web of knowledge, where concepts
and information are represented in a machine readable and understandable
form and liked via URIs. Every concept (people, places, objects, time events,
verbs, and so forth) can be identified via an unique URI, in such a way that
a universe of concepts can be related to each other.

6



Juan Ignacio Vázquez Chapter 1. Introduction

Appendix A provides a basic background on Semantic Web technologies.

As we mentioned earlier, the web model and Semantic Web technologies
feature a series of characteristics that seem to fulfil the two major attributes
of Ubiquitous Computing (communication and intelligence) identified at the
end of section 1.1.

The joint application of the web model and the Semantic Web in
pervasive computing scenarios results in a coherent architectural model,
since core technologies such as URI or namespaces constitute their
technological basis.

The web communication model, based on a network of resources linked
via URIs and the HTTP communication protocol [FGM+99], has been
widely employed in the past, even in pervasive computing scenarios [KB01]
[IST+05], and its validity has been unquestionably proven.

Moreover, existing HTTP complementary mechanisms such as cookies
[Lau98], Basic or Digest Authentication [FHBH+99], or HTTPS can
be also reused in the pervasive computing arena to achieve session
information persistence, authentication or secure communication channels,
respectively. In this way, Ubiquitous Computing architectures can take
advantage of existing HTTP-related technologies to fulfil a great amount
of communication requirements.

The only issue not covered by HTTP is distributed discovery of devices or
services. UPnP [UPn03] proposes SSDP, an HTTP-based alternative that is
analysed in section 2.2. mDNS [CK06b], DNS-SD [CK06a]2 and Bonjour (a
variant of DNS-SD) [App05] are other candidate technologies (see section
3). But neither of them embraces the potential of semantic mark-up.

On the other hand, Semantic Web technologies are a suitable candidate
both for context representation and reasoning. Domain specific RDF
[Wor04f] or OWL [Wor04d] vocabularies can help defining the terms used
in particular situations in order to represent the existing knowledge in a
concrete moment of time.

For example, to represent the context information captured by a light
sensor, a hypothetical vocabulary with verbs such as hasLuminance or
hasColor could be used.

<rdf:Description rdf:about="urn:uuid:light1">

<lit:hasLuminance

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

30

2Both in draft as of December 2006.

7



A Reactive Behavioural Model for Context-Aware Semantic Devices

</lit:hasLuminance>

<lit:hasColor

rdf:resource="http://www.awareit.com/onto/2005/12/color#Yellow

"/>

<rdf:type

rdf:resource="http://www.awareit.com/onto/2005/12/light#Light"/>

</rdf:Description>

Not only an endless number of vocabularies can be created for
representing the context information about multiple knowledge domains,
but reuse of existing vocabularies must be promoted in order to share
common concepts among applications and objects.

Devices with built-in sensors can retrieve raw data from the environment
and annotate these data as illustrated above, applying concrete vocabularies
they have been explicitly configured for when manufactured.

We deem feasible to build small “annotation processes” even in limited
devices in order to characterise captured raw context data in this way and
create a more expressive level of knowledge that can be shared and analysed
with other devices or entities.

Moreover, the Semantic Web does not only provide a mechanism for
context information representation but also for reasoning. OWL is an
example of a Semantic Web technology that can be used to represent
description logics formalisms in such a way that new information (new
context information) can be automatically generated from existing one by
applying OWL intrinsic reasoning mechanisms.

Emerging Semantic Web rules technologies such as SWRL (Semantic
Web Rules Language) [HPSB+04] can be also applied to generate new
context information based on Horn-like clauses instead of description logics.

Using SWRL it is possible to describe a rule such as “if the color of light1
is yellow and the ambient sound has a low volume then the environment is
suitable for reading”, which generates new information about the suitability
of the environment for certain task based on previously existing knowledge.
Thus, a concrete device can behave differently depending on whether the
environment is suitable for reading (for example, an electronic ink book),
taking advantage of the results obtained by the reasoning process.

Semantic Web is particularly interesting for Ubiquitous Computing
because of its future-proof characteristics: it can provide a solution
framework for “problems and situations yet to be defined” [Las06].

Semantic Web -enabled artifacts would be able to interpret and process
concepts and relationships not defined at the moment they were designed;

8



Juan Ignacio Vázquez Chapter 1. Introduction

they would be able to cope with new situations and exchange currently
undefined information structures with other entities, featuring a higher
degree of interoperability than previous technologies.

Our conclusion is that the application of the Web model as
communication infrastructure and Semantic Web technologies for context
representation and reasoning seems to provide a consistent framework
for creating context-aware devices and environments. We coined the
term Pervasive Semantic Web for designating this ubiquitous communication
model [VLnS06].

6HQVRUV�	�

(IIHFWRUV

:LUHOHVV�6HQVRU�

1HWZRUNV

$SSOLDQFHV

8VHU�GHYLFHV

/RFDWLRQ�FRQVWUDLQHG

:HE�RI�.QRZOHGJH

3HUYDVLYH�
6HPDQWLF�:HE

id416898343 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 1.1: The Pervasive Semantic Web.

The vision of the Pervasive Semantic Web pursues to create a space of
knowledge, where devices are interconnected, hosting information about
environmental perceived conditions and using URIs to link resources inside
and outside this space.

This vision determines the creation of a new type of logical environment
in Ubiquitous Computing scenarios: a location-constrained Semantic Web
with information flows back and forth among communicating devices,
sharing their knowledge about the environment and coordinating their
tasks via distributed reasoning procedures in order to provide an ambient
intelligence experience (see Figure 1.1).

The evolution in the ratio of computing power per square centimeter, as
well as improvements in battery-saving technologies support the feasibility
of creating intelligent devices at low cost in the near future.

9



A Reactive Behavioural Model for Context-Aware Semantic Devices

1.3 Semantic devices

Lassila and Adler [LA03] introduced the concept of semantic gadget to
describe devices capable of performing “discovery and utilization of services
without human guidance or intervention, thus enabling formation of device
coalitions”. Again, the approach of taking humans out of the loop and smart
objects working in the periphery of our attention appears here.

Although semantic discovery and service composition are identified as
two major focuses of the semantic gadget concept, no advances have been
achieved so far in creating such a kind of intelligent and cooperative objects.

However, some of the ideas presented in [LA03] contributed to clarify
our vision for semantic-powered objects, and our definition for semantic
device:

A semantic device is a system that is spontaneously aware
of surrounding context information, capable of reasoning and
interpreting this information at a semantic level, and finally able
to develop a reactive behaviour accordingly.

A semantic device should be able to spontaneously discover,
exchange and share context information with other fellow semantic
devices as well as augmenting this context information via
reasoning in order to better understand the situation and perform
the appropriate reactive response.

Under this point of view, a fundamental issue concerning semantic
devices is semantic discovery.

1.3.1 Semantic discovery protocol

Concerning discovery protocols we regard semantic technologies as the
means to provide expressiveness for rich descriptions and search queries,
not only for devices and services in the network, but at a much broader
extent for any existing resource.

If every device in the network could create an RDF graph of the
information it deals with, including its device type, ID, manufacturer, owner,
device status, stored documents and any other available data, this RDF
graph could be queried by other objects to perceive its overall state.

Moreover, reasoning could be applied to augment device-related
information via inference, thus increasing the intelligence during the
discovery process.

10



Juan Ignacio Vázquez Chapter 1. Introduction

For instance, some examples of queries that cannot be accomplished by
traditional Ubiquitous Computing discovery protocols, but could be carried
out by a semantic-powered one could be:

• “Find all the devices that store a popular document”

• “Find all the devices that store an image authored by a friend of A”

• “Find all the services in the network managed by a computer located
near O”

• “Find the location of all the users of mobile phones”

• “Find all the devices whose user is a woman”

Some of these queries are much more powerful than required for usual
Ubiquitous Computing applications, but they illustrate the almost unlimited
expressive capabilities of semantic querying. Queries are not limited to
devices and services, but any kind of resource can be searched for3: devices,
users, documents, emails, radio stations, towns, colours, ans so forth,
anything that can be defined using RDF/OWL or other semantic mechanism.

But the real power of semantics is achieved by using ontologies and
reasoning: queries could be resolved to produce results that were not
explicitly stated. For instance, let us consider the following scenario:

• Fact 1: The mobile phone mphone1 has a built-in microphone

• Fact 2: mphone1 is located in room21

• Fact 3: room21 is located in buildingJ

• Ontology declaration: Location is a transitive relation

• Domain rule: Every device with a built-in microphone is an input
device

• A client issues the query “find all the input devices in buildingJ”

If reasoning is performed over the data, before actually executing the
query, two new facts would be generated:

3There is a collateral effect about this assumption: since RDF predicates are resources
themselves, such a discovery protocol could be even used to find “predicates” or “properties”,
such as in the query “find all the properties relating the user U with the device D”.

11



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Fact 4 (from facts 2, 3 and the ontology declaration): The mobile
phone mphone1 is located in buildingJ

• Fact 5 (from fact 1 and the domain rule): The mobile phone mphone1

is an input device

Therefore, the previous query would obtain mphone1 as a valid result,
which could not be accomplished without generating facts 4 and 5 through
reasoning and, of course, would have never been obtained via any of the
traditional discovery protocols.

Semantic discovery for Ubiquitous Computing seems very promising
and there are not any references in this field, since most of the work
about semantic matchmaking is oriented to enterprise information systems
(“although RDF has been proposed as the service description format for
interoperability between service discovery systems [Rey01], so far there is no
service description standard yet” [ZS05]).

1.3.2 Semantic devices as social devices

We consider semantic devices to be highly social: they are natively
collaborative in the sense that they share all the information they can.

The Web has transitioned from a basically “one publisher – many
readers” model to a more collaborative “many publishers – many readers”
model, in an approach that was called Web 2.0 [O’R05]. The major
representatives of this culture are weblogs, social bookmarking, wikis, RSS
feeds and so forth.

We consider that this model can be also applied to semantic devices,
featuring a collaborative nature, sharing information, and creating a
community of intelligent objects in the environment in order to better serve
their users.

Semantic devices behave in a social way because a higher and more
useful knowledge can be obtained from the generous contributions of
individual entities, rather than from selfishly not sharing information (of
course, taking into account existing privacy concerns).

Semantic devices must be communicative in order to cooperate for the
purpose of helping people in their everyday activities.

12



Juan Ignacio Vázquez Chapter 1. Introduction

1.4 Hypothesis and goals

Based on the definition of semantic device, we enunciate the hypothesis of
our research as:

To prove that devices based on semantic technologies provide the
level of context-awareness, intelligence and adaptability required
in smart environments.

In order to validate the hypothesis a complete model and communication
architecture for this kind of devices must be designed. Therefore, the
general goal of our research is:

To design an architectural model for the collaboration of semantic
devices.

Three specific goals originate from the general goal:

SG1. To design a semantic discovery mechanism for environments
populated by semantic devices.

SG2. To define a theoretical model for representing context-aware
reactivity involving semantic devices.

SG3. To design a decentralised communication architecture in
which semantic devices can spontaneously share context
information and feature an adaptive behaviour, while
allowing the implementation in resource constrained
platforms.

The first specific goal addresses the need for an intelligent discovery
mechanism as already mentioned. The second specific goal emerges from
the convenience of creating some theoretical basis to better understand the
context-awareness process in semantic devices. This basis will serve as a
guide for designing the architecture as covered by the third specific goal.

Since the synergistic integration of the web architecture and the
Semantic Web provide both communication and intelligence capabilities,
we will focus on the use of these technologies as the main constituent for
semantic devices 4.

We will accomplish the specific goals, and thus the general goal, by
means of a number of operational goals:

4This approach is also coherent with the vision of semantic devices as ubiquitous
representatives of the Web 2.0 concept.

13



A Reactive Behavioural Model for Context-Aware Semantic Devices

OG1. To establish a set of criteria for analysing Ubiquitous
Computing architectures that embrace Semantic Web
technologies.

OG2. To design and implement a discovery protocol based on the
web architecture and the Semantic Web.

OG3. To identify the constituent concepts of the context-awareness
process and their relationships.

OG4. To design mappings between context-awareness theory and
concrete web-based technologies.

OG5. To identify the constituent entities of the architecture, their
activities and their relationships.

OG6. To design and implement the software modules representing
the entities in the architecture, in such a way that they are
light enough for deployment in embedded platforms.

OG7. To design and implement the communication protocols and
languages for the architecture.

OG8. To build, deploy and evaluate several prototypes in
experimental scenarios recreating the Ambient Intelligence
vision.

These operational goals depict the concrete activities we will carry out
during the research process.

In order to validate the hypothesis we describe a number of scenarios,
with similar characteristics to those that appear in the Ubiquitous
Computing and Ambient Intelligence literature. These scenarios represent
real-life situations our model should be able to cope with.

1.5 Evaluation scenarios

All of these scenarios share a common distinguishing mark: they are
populated by semantic devices collaborating spontaneously. They share
their knowledge with others, take decisions based on existing information,
and are autonomous and reactive.

Scenario 1. Autonomous objects: plants that influence their
environment

It is sometimes difficult to remember when plants need watering, more
light or some fresh air. As a result their lifespan can be severely reduced

14



Juan Ignacio Vázquez Chapter 1. Introduction

or they can die. A semantic device could be installed on the plant flowerpot,
periodically checking plant’s life signs and alerting the user via a buzzer or
a flashing light, when some action must be accomplished.

Even more, the plant could manage to take care of itself and
influence their environment to adjust the conditions depending on the plant
requirements. For example, if the plant needs some more light, it could
instruct the room curtains to move apart; or if some fresh air is needed it
could instruct the room window to open for some minutes; powered by a
small motor, these plants could autonomously move around to find a better
place in the room, away from undesirable conditions.

Automatically watering the plant as needed can be difficult except
in special premises or greenhouses, but plants could balance the lack of
water, maybe with a reduction of temperature or adjusting the air humidity.
A small self-regulated water tank attached to the flowerpot could also
accomplish this task.

Of course, users’ preferences about environmental conditions have
priority over those from plants, but they do not always happen to be disjoint.

These plants would become active elements in our home, “users”
themselves of the environment, worth not only for decorative purposes but
also because of their initiative and self-protective behaviour, requiring less
effort from owners to bloom and become healthier.

Scenario 2. Augmented objects: an umbrella that knows about the
weather forecast

Traditional passive objects can be activated in new and amazing ways. We
generally need to be aware of the weather when leaving home for some
hours, and remember to take an umbrella if necessary.

There are several ways of empowering the umbrella with context
awareness capabilities to assist the user in these situations. At an initial
level, this “aware umbrella” could discover rain sensors in the vicinity and
retrieve information from them periodically. It could also discover the home
access control system, the main entrance, and display a visual cue or a sound
whenever the user is leaving home without the umbrella while it’s raining.

At a second, more challenging level, the umbrella could retrieve the
weather forecast from the Internet (or from any surrounding device acting
as a weather information provider) and issue an alert if chances of raining
are probable during the next hours.

This kind of device would feature both local and global communication
capabilities to poll surrounding devices (rain sensors, main door) and

15



A Reactive Behavioural Model for Context-Aware Semantic Devices

remote information sources (weather forecast site). Its behaviour might
be fully configurable: which conditions trigger the warning (user leaving,
rain sensors, others), as well as the desired reactivity (visual clue, acoustic
warning), depending on built-in actuators.

While the first level (local communication) is moderately useful, since
users would notice immediately the rain after leaving home, the second
level (global communication with weather forecast providers) provides a
remarkable added value, making the umbrella to seem more perceptive than
humans are.

Scenario 3. Protective working environments: enforcing user care in
adaptive spaces

Health and user care is also an important concern, even more in the case
of impaired users, when reactive environment behaviour can provide better
living conditions.

If environments were populated with different semantic sensors
providing information about temperature or humidity levels, for instance,
the user could be notified if current conditions were harmful, according to
his profile.

An intelligent room or workplace could be configured with a particular
behaviour to address these situations and modify the environmental
conditions depending on the users’ preferences or current activities. Alerts
could be notified to very sensitive users whose health requirements
recommend to abandon the place immediately.

This kind of scenario acquires a particular importance in the case of
workplaces where workers spend intensively 8 hours a day, 5 days a
week. Certifying safe conditions at work in terms of parameters as those
referred earlier, as well as others such as background noise, air conditioning
operation or non disturbing elements, are of utmost importance.

Scenario 4. Collective awareness among home devices

Home environments are more heterogeneous than office environments, with
different appliances and electronic devices. Could users benefit from a
common exchange of information among them?

Digital TV offers a plethora of new possibilities for interaction. But the
digital TV can also provide users with additional information and reactive
behaviour in their home environment.

16



Juan Ignacio Vázquez Chapter 1. Introduction

For example, if the user leaves the room, the TV could be aware of it, as
the information is provided by the indoor location system, and turn itself off
completely, or just turn off the screen.

While several users are watching a concrete TV show, the device, aware
of their preferences, could display suggestions unintrusively in a small area
about other shows that best match collective predilections. This feature
implies that users should share their profiles with the TV set – maybe
through a PDA or a wearable computer – if they actually want to influence
the suggestions.

The same mechanism could be used to configure the mapping of remote
control buttons to concrete TV channels in places such as hotel or hospital
rooms, so that the user is not required to learn different mappings, but the
device is aware of his / her preferred remote control configuration.

The TV set could also act as notifier of several circumstances of interest
the user is not aware of while engaged in watching TV, such as oven timeout
while cooking or phone ringing at the other end of the house.

The TV interaction while the user is making a phone call is also
interesting. The TV set could reduce the volume to facilitate conversation,
restoring the original level after the call is over. The phone could provide
state information, so that surrounding devices can adapt their behaviour
accordingly, as it is the case.

Scenario 5. Driver-aware vehicles

Both rental cars and shared cars by several members of a family, pose certain
problems every time there is a driver switch: driving settings need to be
readjusted and some hazardous situations may happen if this is not carried
out properly. This situation happens typically due to forgetting to customise
the settings (e.g. the rear mirror), or doing it while driving.

Used to drive one’s car, rental car driving is even more difficult, specially
till the driver gets used to the brake and accelerator pressures, the steering
wheel calibration, and so forth.

A driver-aware car, with the users providing their driving profiles, could
be able to adjust all these settings automatically, those related to the driving
position as well as those related to controls’ calibration and pressure.
Although the user would still be able to readjust some of them manually,
this would reduce the “start-up” time of driving as well as enforce security
aspects.

17



A Reactive Behavioural Model for Context-Aware Semantic Devices

1.5.1 Generalisation

All these problems have to do with context-aware devices collecting
information from their built-in sensors, sharing this information with others,
reasoning over their collective knowledge and trying to react accordingly
to honour some behaviour. It is also about actors, devices or users,
who influence surrounding objects to change their behaviour and achieve
environmental personalisation.

The problem is not designing and implementing these individual
devices separately and specifically for the described purposes. The
scientific challenge is designing a universal context-awareness model where
information can be discovered and shared among all participating entities,
whatever the nature of this information.

A model in which devices’ behaviour can be dynamically modified
depending on existing demands and conditions, thus adapting their context-
aware reactivity and taking advantage of rich information flows to interpret
new situations. That is, a self-describing semantic information model.

Our challenge is to create an open model where the aware umbrella can
use the TV to inform the user about raining chances, or the smart plants can
make a phone call asking for being taken to the terrace if raining.

Although the above scenarios illustrate specific situations, our purpose
is not to design a model for developing a “phone call”-aware TV but a
context-aware TV that can be “profiled” for being “phone call”-aware; not
just a rain-aware umbrella, but a context-aware umbrella whose behaviour
can be configured as desired; not just self-protective plants, but plants
that can collect and provide information to surrounding devices, reacting
appropriately, maybe to create a balanced living ambient.

We pursue to create a model for designing fully versatile and flexible
context-aware devices, able to discover, share and process semantic
information from available sources and develop any kind of required
reactive behaviour.

1.6 Research methodology

Similar research goals may be faced in completely different ways depending
on the research context: availability of infrastructures, accessibility and
proximity of experts, synergies with ongoing research projects, and so forth.

Based on our context, we designed a research strategy based on the
following activities:

18



Juan Ignacio Vázquez Chapter 1. Introduction

1. Update our knowledge by reviewing recent and state-of-the-art
publications, and attending congresses.

2. Design and development of the different parts of the model and
architecture, augmenting the scope gradually in an iterative process.

3. Experimentation and evaluation of the incremental prototypes.

4. Attending congresses and workshops to present partial results and to
check existing state-of-the-art progresses.

5. Networking with experts in congresses, meetings, via email, and
visiting other research centres5.

6. Redesign with the feedback obtained from all the above means.

7. Development and deployment of final prototypes for embedded
platforms in real world -like scenarios to gather results. Integration
with ongoing projects.

8. Dissemination of the obtained knowledge and experiences to the
research community.

Figure 1.2 illustrates graphically this research process, with the major
activities as well as the inputs and outputs that contribute to the final results.

id247497140 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 1.2: Schematic view of the research process.

5The author was a visiting Ph.D. student during three months at the Embedded Interactive
Systems Group of Lancaster University, where similar initiatives, such as the “Cooperative
artifacts” project, were under development.

19



A Reactive Behavioural Model for Context-Aware Semantic Devices

Underlying this research process is the action-research methodology
composed of five different phases:

• Diagnosing: identifying the problem.

• Action planning: considering the possible courses of action.

• Taking action: selecting the course of action.

• Evaluating: analysing the consequences of the action.

• Specifying learning: identifying general findings.

These phases will be applied throughout all the mentioned activities
in our research with the aim of providing rigor, reflexive critique and
continuous challenges.

1.7 Thesis outline

The thesis is structured in seven chapters and a number of appendices.

Chapter 1 (this chapter) outlines the motivation, problem description,
the hypothesis and goals of our research. It also presents the concept of
semantic device, a number of evaluation scenarios and an overview of the
research methodology we applied.

In the analysis of related work, chapter 2, we identify the evaluation
criteria to apply and describe different initiatives linked to our research and,
more importantly, we analyse them under the light of the evaluation criteria.
A final comparative table is provided at the end of the chapter.

Chapter 3 is devoted to mRDP, the semantic discovery protocol designed
for the model. Different parts of the protocol are described and compared
to other discovery protocols at the end of the chapter.

A theoretical model defining the major concepts underlying our context-
aware reactivity mechanism is introduced in chapter 4, along with Semantic
Web mappings and XML serialisation mechanisms for these concepts.

Chapter 5 contains the description of the architectural elements, along
with their behaviour and interactions. The SoaM (Smart Objects Awareness
and Adaptation Model) architecture honours the theoretical model
described in the previous chapter, providing a concrete materialisation of
the concepts. The SoaM Entity Management API over HTTP, and SoaMonto,
the ontology for the model, are thoroughly described along with possible
implications. A final section updates the table provided at the end of chapter
2, now comparing the SoaM architecture with the previous initiatives.

20



Juan Ignacio Vázquez Chapter 1. Introduction

Chapter 6 provides a description about the hardware and software
prototypes developed in order to evaluate SoaM and the results themselves.
The evaluation is performed from two complementary perspectives: testing
the performance of different entities in the architecture and deploying some
of the evaluation scenarios described in chapter 1.

Finally, chapter 7 provides the conclusions of our research. The
hypothesis and goals are revisited, and the major contributions, along with
some discussion about several issues, are provided. Open research lines and
challenges are also included for future reference, and the chapter ends with
some final remarks.

The thesis also includes some appendices to contextualise and obtain
more in-depth knowledge about several aspects of the research, such as
Semantic Web technologies or formal specifications developed during the
design phase.

21





Chapter

2
Related Work

“Research is what I’m doing when I don’t know what I’m doing.”

Wernher Von Braun
NASA Center Director 1960–1970

SEVERAL initiatives have experimented with the integration of Semantic
Web technologies into Ubiquitous Computing architectures in recent
years. This chapter is devoted to the analysis of these experiences,

identifying their constituent parts, the extent to which they have applied
semantic technologies, their contributions, benefits and drawbacks.

In order to evaluate their suitability for our goals, we identified a
number of evaluation criteria representing different complementary aspects
to examine, and ranked the architectures according to these criteria. In this
way, it will be also possible to rank our proposal and compare it to previous
work in the field.

Analysis of the following architectures are included:

• UPnP as a web-based infrastructure architecture

• CoBrA (Context Broker Architecture) and SOUPA (Standard Ontology
for Ubiquitous and Pervasive Applications)

• Task Computing

• Gaia

• Semantic Space, SOCAM (Service Oriented Context-Aware Middle-
ware) and CONON (CONtext ONtology)

23



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Other related work

– Triple Spaces

– The Context Toolkit

– Oxygen

– Other relevant activities

The list starts with UPnP (Universal Plug and Play). Even though
not directly using Semantic Web technologies, UPnP is an example of
Ubiquitous Computing architecture based on web standards that has been
the inspiration and communication infrastructure of other technologies
(including some of those analysed below).

Afterwards, four initiatives (CoBrA, Task Computing, Gaia and SOCAM)
are thoroughly examined and evaluated: these are the major experiences in
which we focused our investigation at this stage. We applied the evaluation
criteria identified at the beginning of the process to generate a profile of
these systems.

Finally, other related work, a comparative table ranking UPnP and the
four major initiatives using the evaluation criteria and the final conclusions
of the analysis are provided.

2.1 Evaluation criteria

In order to analyse and evaluate the state-of-the-art architectures as well as
to determine how our proposal ranks, we need to define a set of evaluation
criteria.

Most of the selected criteria can be found, implicitly or explicitly,
throughout all the literature concerning ubiquitous and pervasive
computing architectures: they represent core concepts and hot topics.
Examples of these criteria are decentralisation, context-awareness,
autonomy or standards adherence. Other criteria are more specific to
our research goals such as reasonability or device implementation cost.
However, the latter principles can also be easily found in similar related
research.

We have organised the criteria into four different categories depending
on their nature:

24



Juan Ignacio Vázquez Chapter 2. Related Work

Architectural

Decentralisation: at the heart of any Ubiquitous Computing system,
decentralisation promotes an spontaneous and serendipitous nature,
non-critical components in the architecture, dynamic reconfiguration
according to every situation, natural deployment of elements and
scalability, among others. However, the design and planning of
decentralised systems is more difficult, as well as resulting in a
higher load of network traffic due to synchronisation and coordination
messages.

Lightness: architectural elements and software components in particular
should be designed in such a way that they can be easily embeddable
in resource-constrained platforms and devices, as well as promote
operational simplicity if possible.

Intelligence

Reasonability: is the ability of the system to acquire and apply knowledge
via reasoning processes. In order to create the intelligence-enabling
component of any smart device or environment, artificial intelligence
techniques must be applied to a certain degree.

Context-awareness: is the ability of the system to perceive and identify
relevant information and perform reactive behaviour to provide the
desired response. Intelligent context-awareness is the ultimate goal of
Ubiquitous Computing and Ambient Intelligence.

Autonomy: is the ability of the system to operate and perform without
user intervention. Autonomic computing is one of the major trends
in the Ubiquitous Computing arena, in order to design self-* systems:
self-configuring, self-healing, self-optimised and self-protected [KC03]
[MK07].

Technological

Technological consistency: represents the degree of coherence among
the technologies used in a system. If possible, complementary
technologies must be applied in order to obtain synergistic
performance and future reusability. For example, transporting XML
messages over HTTP is more natural, standardised and desirable than
doing it over CORBA.

25



A Reactive Behavioural Model for Context-Aware Semantic Devices

Standards adherence: represents the degree to which the designed system
reuses and applies widely accepted standards, thus taking advantage
of previous works and promoting skill reuse within the industry and
academia. It is a major intention of our research to create new
original work while assuring the highest possible degree of standards
adherence.

Economical

Device implementation cost: is the cost, both in terms of money and
effort, required for the desired system to be implemented in actual
devices and appliances. In some architectures, due to their centralised
nature, device implementation is neither required nor feasible.

Scenario deployment cost: is the cost, both in terms of money and effort,
required for the desired system to be deployed in a particular scenario.
Hard-to-configure systems use to exhibit the higher degree of cost
at this item, while seamlessly connected decentralised systems can
be deployed naturally as connections and information flows emerge
spontaneously. Our intention is to achieve some kind of plug-and-play
architecture with minimum cost during deployment.

These criteria are not isolated. Certain dependencies exist among some
of them in such a way that the degree of fulfilment in one concrete criterion
can affect other in a positive or negative manner. These dependencies are
illustrated in Figure 2.1, where rows represent influencing criteria while
columns represent influenced criteria.

First, a high degree or decentralisation favours the design of distributed
lightweight components, instead of a bulky and heavy central controller.
Decentralisation also promotes a higher level of autonomy in architectural
elements while reducing the scenario deployment cost, since environments
are created by the emergent coordination of distributed elements.

Lightweight components make feasible the actual implementation and
promote a lower device implementation cost, but they also reduce the
degree and quality of the embedded reasoning processes which normally
demand some amount of software complexity.

Reasonability affects lightness negatively in the same way, since the more
reasoning power the device is provided with, the heavier the component
becomes. In a similar way, hosting reasoning processes in constrained
devices increases their costs and the efforts in terms of specialised workforce
to implement these features. However, reasonability promotes both

26



Juan Ignacio Vázquez Chapter 2. Related Work

'HFHQWUDOLVDWLRQ

6
F
H
Q
D
ULR
�'
H
S
OR
\
P
H
Q
W�

&
R
V
W

'
H
Y
LF
H
�

,P
S
OH
P
H
Q
WD
WLR
Q
�&
R
V
W

6
WD
Q
G
D
UG
V
�$
G
K
H
UH
Q
F
H

7
H
F
K
Q
R
OR
J
LF
D
O�

&
R
Q
V
LV
WH
Q
F
\

$
X
WR
Q
R
P
\

&
R
Q
WH
[
W�D
Z
D
UH
Q
H
V
V

5
H
D
V
R
Q
D
E
LOLW\

/
LJ
K
WQ
H
V
V

'
H
F
H
Q
WUD
OLV
D
WLR
Q

/LJKWQHVV

5HDVRQDELOLW\

&RQWH[W�DZDUHQHVV

$XWRQRP\

7HFKQRORJLFDO�

&RQVLVWHQF\

6WDQGDUGV�$GKHUHQFH

'HYLFH�

,PSOHPHQWDWLRQ�&RVW

6FHQDULR�'HSOR\PHQW�

&RVW

$UFKLWHFWXUDO

,QWHOOLJHQFH

7HFKQRORJLFDO

(FRQRPLFDO

,Q
IO
X
H
Q
F
LQ
J

,QIOXHQFHG

id1905500 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 2.1: Criteria dependency matrix.

context-awareness and autonomy, which can take advantage of the built-
in intelligence to better determine the behaviour to perform.

Context-awareness promotes autonomy, since architectural components
can self-regulate their behaviour depending on context information
provided by surrounding entities. The penalty for achieving a greater degree
of awareness is, as usual, a higher device implementation cost.

Again, device implementation cost and component lightness can be
affected by the degree of individual autonomy in the resulting architecture,
since this autonomy also demands provision of intelligent mechanisms. On
the other hand, scenario deployment cost is reduced significantly due to
the self-management, self-healing and the other self-* properties of the
autonomic nature, which eases the deployment process in any environment
with minimal human intervention.

Technological consistency can significantly reinforce APIs reusability
during the implementation, thus promoting more lightweight components
that would be negatively affected by mixing up non-complementary
technologies. At the same time, we consider that technological
consistency simplifies overall design by taking advantage of existing
mechanisms, procedures and interfaces, thus reducing somehow the device
implementation costs.

27



A Reactive Behavioural Model for Context-Aware Semantic Devices

Finally, standards adherence promotes reduction of time and device
implementation costs, since existing designs and APIs can be reused or
slightly adapted, as well as trained workforce can be more easily found.

Figure 2.2 illustrates in a graph-like way the existing influences
among the different criteria. As expected, device implementation cost
is the more sensitive item, being affected by several others, but possibly
counterbalanced by lightness, technological consistency and standards
adherence.

'HFHQWUDOLVDWLRQ

7HFKQRORJLFDO�

&RQVLVWHQF\

/LJKWQHVV

5HDVRQDELOLW\

$XWRQRP\

6WDQGDUGV�

$GKHUHQFH

'HYLFH�

,PSOHPHQWDWLRQ�

&RVW

6FHQDULR�

'HSOR\PHQW�&RVW

&RQWH[W�

DZDUHQHVV

id1039828 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 2.2: Criteria dependency map.

On the other hand, decentralisation and autonomy do not only
contribute to enhance other criteria, but also create a somewhat synergistic
positive flow, as well as reasonability enhance the other intelligence-related
factors.

Not all these criteria are equally important, but depending on the desired
strengths of the resulting architecture some of them must be promoted. We
will focus primarily on maximising decentralisation, reasonability, context-
awareness and, in a lesser extent, technological consistency. We think that
the three first items retain the core functionality of pervasive computing,
while technological consistency contributes to a neat and academically
elegant solution.

Standards adherence, device implementation cost and scenario
deployment cost form our second target group, while lightness and
autonomy, despite important, constitute value-added factors.

28



Juan Ignacio Vázquez Chapter 2. Related Work

Table 2.1 enumerates the criteria with relative weights depending on
their importance to our goals.

Criterion Weight
Decentralisation 4
Reasonability 4
Context-awareness 4
Technological Consistency 3
Standards Adherence 2
Device Implementation Cost 2
Environment Deployment Cost 2
Lightness 1
Autonomy 1

Table 2.1: Criteria’s relative weights of importance.

Jointly, all these criteria also support the physical integration
and spontaneous interoperation characteristics of Ubiquitous Computing
[KF02], and the resulting architecture should meet the main intention and
hypothesis of our research.

2.2 Universal Plug and Play

Universal Plug and Play (UPnP) is a standard architecture for pervasive peer-
to-peer connectivity of computers, devices and appliances, mainly aimed at
home environments. UPnP is strongly based on TCP/IP and specially on web
technologies (HTTP and XML), with open specifications distributed by the
UPnP Forum, a consortium backed up by more than 700 firms, covering
all the range from software solutions companies such as Microsoft or
Hewlett-Packard, semiconductors manufacturers such as Intel or Siemens,
to appliances manufacturers such as Philips or Sony.

The UPnP architectural concept is based on the traditional Personal
Computers’ Plug and Play model that eases the process of installing and
configuring a peripheral device. The goal in UPnP is to extend this model
in order to allow users to have automatically installed and configured
their own network of interconnected heterogeneous devices (computers,
printers, routers, TV, video & audio appliances, surveillance cameras,
lighting controls, ans so forth) without all the burden of manual work: this
is called zero-configuration networking. No drivers are required in UPnP;
standard interfaces over communication protocols, mainly XML over HTTP,
enable devices for universally interacting in dynamic ad-hoc networks.

29



A Reactive Behavioural Model for Context-Aware Semantic Devices

The UPnP architecture [UPn03] is capable of discovering new devices
and disconnections, retrieving devices’ characteristics, invoking functions
and sending notifications about detected events, all these features
with device and platform independence, vendor interoperability and
extensibility. Device and platform independence is achieved through
standard communication protocols that can be implemented in any
language or operating system; in fact, there are UPnP stacks for Microsoft
Windows, PocketPC, Linux, and several embedded OS among others. In
order to achieve interoperability, vendors collaborate standardising device
capabilities on a device-type basis in documents called DCPs (Device Control
Protocol) that constitute declarative contracts about device’s characteristics
and capabilities. Finally, extensibility is achieved by augmenting DCPs with
vendor’s own proprietary extensions.

2.2.1 UPnP Architecture

The UPnP protocol stack illustrates clearly how the architectural
requirements are met (see Figure 2.3). Upper layers negotiate UPnP specific
information structures: from the generality of the device architecture
to the DCPs standardized by the UPnP Forum, and finally vendor
provided extensions at the topmost layer. Lower layers are populated by
communication protocols, some of them specially created and designed for
UPnP and not yet accepted as de jure standards, such as SSDP, GENA and
unicast/multicast HTTP over UDP; and others widely accepted as standards:
IP, UDP, TCP, HTTP and SOAP.

Figure 2.3: UPnP protocol stack.

There are two types of devices in UPnP: control points and controlled
devices (referred simply as “devices”). Control points act as clients reques-
ting services from devices in a master/slave-like model. Devices act as
servers exhibiting services to surrounding control points and fulfilling their
requests. Control points are generally complex appliances like computers,
PDA or TVs, with some kind of user interface (graphical or vocal), so that the
user can interact with them and perform control actions on devices, which

30



Juan Ignacio Vázquez Chapter 2. Related Work

are simple appliances featuring communication capabilities with control
points.

Controlled devices can be composed logically by other “embedded
devices” in a hierarchical way. For example, a DVD player/recorder is a
unique “root device” that is composed logically of two embedded devices, a
DVD player and a DVD recorder, which are announced to the environment
and managed individually. This features allow a separation of roles in UPnP:
despite having a unique physical device, there are different logical devices.

Root and embedded devices are populated by services, which are the
real target of control points in order to invoke specific actions on devices
and perform the desired behaviour. For example, the DVD player can offer
services such as “play”, “pause” and “stop playing”, while the DVD recorder
can provide “record” and “stop recording” services.

The diagram of Figure 2.4 illustrates the hierarchical model of UPnP
device architecture and services.

Figure 2.4: UPnP device architecture and services.

31



A Reactive Behavioural Model for Context-Aware Semantic Devices

2.2.2 UPnP Activities

UPnP activities are divided into six steps that can be partially or fully
performed by control points and devices: addressing, discovery, description,
control, eventing and presentation [JW03].

Figure 2.5: Ordered sequence of UPnP phases.

Addressing

Addressing is one of the foundations for UPnP networking, defining how
a device can obtain a valid IP address in the setting-up process. If a
DHCP server is available in the network, the address is obtained by leasing
from the DHCP server. Otherwise, the device must implement the Auto
IP mechanism: selecting randomly a link-local IP address in the range
169.254/16, checking whether the address is already taken by any other
device or not via ARP probe and gratuitous ARP, and selecting another if so.

Discovery

Discovery is the second step in UPnP, enabling control points to
find surrounding devices via either polling mechanisms or device
advertisements. When a new control point joins the network it multicasts
a discovery message, requesting existing devices to show up and respond.
Similarly, when a new device joins the UPnP network it multicasts
advertisements messages about itself, its embedded devices and services.
The combination of these two mechanisms allow control points to have a
continuously updated list of existing devices and services in the network. A
device can disseminate a revocation of its advertisements when abandoning
the network to inform that it is no longer available, or when its IP

32



Juan Ignacio Vázquez Chapter 2. Related Work

address has changed. The multicast endpoint for the Discovery process is
239.255.255.250:1900.

SSDP (Simple Service Discovery Protocol) [GC+99] is the protocol
used during Discovery in UPnP. SSDP is an extension on HTTPMU
(HTTP multicast over UDP) [GS00], similar to the traditional HTTP, but
conveniently adapted for UDP limitations. SSDP includes NOTIFY and
SEARCH messages for advertisements and polling. Advertisements and search
responses originated by a device include several important headers that are
used later on during the UPnP Description phase:

• Location: contains the URL where description of the root device can
be downloaded to retrieve its full set of characteristics .

• USN (Unique Service Name): identifies the advertised device or service
via its unique UUID.

An example of interaction with a SEARCH message and one response is
shown in Figure 2.6.

UPnP Control Point UPnP Device
Request→ ← Response

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 3

ST: upnp:rootdevice

HTTP/1.1 200 OK
Cache-Control:max-age=60

EXT:
Location:http://192.168.2.1/igd.xml

Server:DSL router/1.02 UPnP/1.0 UPnP-Device-Host/1.0
ST:upnp:rootdevice

USN:uuid:00000000-0000-0001-0000-000d54a55be6::upnp:rootdevice

Figure 2.6: Example of a SEARCH message and its response during UPnP
Discovery.

Description

After Discovery, the UPnP control point still knows very little about the
device. The Location header of the response message contains a URI where

33



A Reactive Behavioural Model for Context-Aware Semantic Devices

the control point can retrieve the full description of the device during
the Description phase. Description is partitioned into two complementary
sections: device description and services description.

The device description is an XML document that provides information
about the manufacturer, device type, name, model, serial number and
other specific characteristics depending on the device type. The UPnP
Forum has standardized some common device descriptions, called Device
Control Protocols (DCP), but vendors are free to extend them to add extra
information about the device following the standard template. Of course, a
vendor can create a device description from scratch for a particular device
for which no DCP exists. Device description also includes a list of available
services the device is able to execute under request (including control
and eventing information about those services), embedded devices and the
presentation URL.

Service description is achieved by accompanying every entry at the list
of available services by a URL, contained in the XML element <SCPDURL>,
where extended information about the concrete service can be retrieved in
an XML-based language called Service Control Protocol Definition (SCPD).
SCPD contains descriptions about service arguments, return values, state
variables and its ability to send events when variables change. Service
descriptions are also standardized by the UPnP Forum for common devices,
but vendors can extend them to incorporate new services.

Both device and service descriptions are retrieved via a simple HTTP
GET operation on the URI of the Location header for device descriptions and
<SCPDURL> for service descriptions as shown in Figure 2.7.

Figure 2.7: UPnP Description Phase.

34



Juan Ignacio Vázquez Chapter 2. Related Work

Control

After Description, UPnP control points are aware of the characteristics of
existing devices and available services. During the Control phase, control
points take advantage of this information in order to invoke services on
devices and poll them for values. Invocation takes the form of remote
invocations using SOAP [Wor03] over HTTP, although the language for
describing the invocation interface is not the traditional and standardized
WSDL [Wor01a] but SCPD, being the service description available at
<SCPDURL> as explained above.

The response to a UPnP SOAP invocation can convey the appropriate
return values honouring the service description, or UPnP defined error
codes.

UPnP devices are generally modelled through state variables that
represent state information about the device. As previously explained,
service descriptions in SCPD do not only provide information about in/out
arguments for invocation, but also related state variables that can be altered,
so the service operation interface is completely provided.

Eventing

Eventing is one possible step in UPnP after Description, so being sibling of
Control, and allowing control points to subscribe to event notifications on
devices when state variables change their value. Not every state variable in
a UPnP device is evented, so it is up to the manufacturer to decide which
notifications are allowed.

UPnP Eventing uses GENA (General Event Notification Architecture)
[CAG00] as underlying protocol. GENA is an HTTP-like protocol that defines
new kinds of methods and headers for event notification management.

In order to subscribe to some state variable changes, the subscriber sends
a subscription message (SUBSCRIBE) that is confirmed by the device, acting
during Eventing as a notification publisher. The request message contains
a callback URL for receiving notifications, and the response message
contains the subscription duration. Subscription works following a leasing
mechanism, so that subscription renewal is mandatory for obtaining longer
subscription periods. Of course, unsubscription messages (UNSUBSCRIBE)
exist for subscription cancellation.

After subscription, the publisher sends an event message (NOTIFY)
notifying the actual values for all the evented variables in the device. From
that point on, every time a value changes a notification message is delivered
to the specified callback URL at the subscriber.

35



A Reactive Behavioural Model for Context-Aware Semantic Devices

Presentation

The UPnP Presentation phase is the unique user-oriented step in the
architecture. During the Description phase a presentation URL is provided,
where an HTML page is available for direct user interaction with the
device. This feature allows a user to directly access and visualize a friendly
representation of the UPnP device, including functions such as querying
state variables and invoking actions directly over this user-interface, acting
as a kind of remote control.

The web page can be hosted in an embedded server at the device or at a
external server acting as UPnP gateway.

2.2.3 Conclusion

Among the main advantages of UPnP are its simplicity to create a distributed
inter-device communication system based on web technologies, and the
evidence that it is probably the most popular architecture in the market in
terms of manufactured devices and commercial success, specially Internet
gateways. Among the disadvantages, the most important are the lack
of security mechanisms and the limitations in terms of scalability as the
number of devices increases [FDW+04, MAA+04].

UPnP is a suitable candidate for a pervasive computing architecture
based on simplicity and performance in constrained devices, and backed
up by web technologies. Particularly, SSDP performs well in small
environments with a limited number of devices and its HTTP-like format
seems suitable for extension with new headers to support smarter
negotiation processes during discovery, including some form of semantic
information exchange.

However, UPnP does not feature any built-in intelligent mechanism.
Intelligence must be provided from other external sources, either the user
or other reasoning infrastructure.

An analysis of UPnP against the evaluation criteria leads to the following
results:

Decentralisation: UPnP features a somewhat centralised nature, since
control points constitute a sort of central coordination entity. UPnP
devices do no act autonomously and communicate themselves directly,
but control points command their operation. However, since control
points can be easily embeddable in any device, it is possible to design
appliances with both built-in control points and devices in order to
achieve a more decentralised architecture. Medium.

36



Juan Ignacio Vázquez Chapter 2. Related Work

Reasonability: UPnP does not provide any intelligence at the device side:
either the user or an external process must provide the required
intelligence for governing the devices. There are no native elements
in the UPnP architecture hosting any kind of reasoning processes or
capabilities. UPnP devices and control points are unable to understand
the information they use and, of course, no form of semantic discovery
or processing is performed [PB04]. None.

Context-awareness: UPnP does not include any kind of autonomous
reactivity mechanism at devices or control points. Reactive behaviour
must be programmed ad hoc using the platform facilities, although
UPnP messages can be used both for retrieving information or
invoking remote operation. None.

Technological Consistency: UPnP applies web technologies throughout
almost all the levels in the protocol stack, except for discovery and
eventing purposes, where HTTP-like protocols are provided. High.

Standards Adherence: UPnP is based on standard Internet communication
mechanisms, TCP/IP and HTTP, as well as non–standard ones such as
HTTP over UDP, SSDP and GENA. These last protocol specifications
have not been completed yet, and exhibit some inconsistencies not
resolved during the last years. Despite these drawbacks SSDP has
been used as a lightweight discovery protocol suitable for home and
office environments [FDW+04], being a well–positioned candidate for
this task in pervasive computing systems [LH02]. Medium.

Device Implementation Cost:
UPnP requires augmenting existing appliances with TCP/IP enabled
stacks, XML processing and internal web servers. Suitable platforms
are not very expensive and widely available. Low.

Environment Deployment Cost: from a networking point of view UPnP
deployment is not costly at all. But in order to provide environmental
intelligence, further work must be performed since UPnP does
not provide any mechanism to inject intelligence into the devices
populating the environment: ad hoc device and control points
programming must be performed for every particular scenario. Low.

Lightness: UPnP does not demand much CPU and memory resources at the
host machine, keeping its architecture simple and easy to deploy. The
unique requirements needed for UPnP devices are TCP/IP capabilities
and a limited form of XML processing, which can be performed
without remarkable CPU load. High.

Autonomy: since UPnP devices act as slaves of control points, they cannot
perform any autonomous high-level action within the UPnP model

37



A Reactive Behavioural Model for Context-Aware Semantic Devices

without being commanded by the latter. Moreover, users have a very
active role in UPnP environments, as the existence of the presentation
layer proves, making the whole model very user intrusive. Low.

Criterion Value
Decentralisation Medium
Reasonability None
Context-awareness None
Technological Consistency High
Standards Adherence Medium
Device Implementation Cost Low
Environment Deployment Cost Low
Lightness High
Autonomy Low

Table 2.2: Analysis of UPnP against the evaluation criteria.

2.3 Task Computing

Task Computing is an ongoing joint effort by Fujitsu Laboratories of America
and the MINDSWAP group, devoted to Semantic Web research, at the
University of Maryland Institute for Advanced Computer Studies.

The goal of Task Computing is to “fill the gap between the tasks that
users want to perform and the services that constitute available actionable
functionality” [MLPS03]. Task Computing presumes initially that users do
not know how to achieve their goals when using computing facilities due
to increased complexity at computing environments and tasks, and tries to
ease the process by providing the user with an intelligent aid that hides the
complexity of coordinating existing devices and services.

Task Computing provides dynamic service discovery, service publishing
and management, task creation and execution on the fly [SHP03]. It even
assists users in discovering what their goals are by suggesting possible tasks
that can be performed with available facilities.

All these features try to solve the frustration of users in application-
rich environments, where they have to orchestrate a variety of devices and
applications. Using Task Computing they can focus on their final goal and
accomplish it with a reduced number of simple interactions.

Service composition can be seen as the “process of creating customized
services from existing services by a process of dynamic discovery, integration

38



Juan Ignacio Vázquez Chapter 2. Related Work

and execution of those services in a planned order to satisfy a request from a
client” [CPJ+02].

Some examples of documented scenarios [MPL03] that can be
accomplished using Task Computing technology are: exchanging business
cards, showing and sharing a presentation, scheduling a future presentation
or checking and printing directions to the airport. All of them are
accomplished by sharing services on different devices and orchestrating
those services to create a workflow in order to carry out the desired task.

A prototype of Task Computing environment has been implemented
experimentally for Smart Conference Rooms and Home Multimedia
Environments [SMAL04] and the first public results date back to 2003,
where the group of researchers led by Dr. Ryusuke Masuoka at Fujitsu
Laboratories and Dr. James Hendler at the University of Maryland published
several papers [MPL03, MLPS03, MMS+05] explaining the basics of their
approach. It consisted in applying Semantic Web technologies to Pervasive
Computing scenarios for semi-automatic composition of tasks, based on
their previous research [SHP03].

The eBiquity research group has taken similar approaches, but trying
a more decentralised model [CPJ+02] to cope better with mobility issues.
Indeed, in wired systems, a centralised composition entity is assumed,
which is no longer valid for pervasive systems. Their approach was
based on a distributed broker that could be executed in any node of the
environment, using Bluetooth as communication mechanism and DAML-S
[DAM02](precursor of OWL-S) for describing services.

2.3.1 Task Computing architecture

The Task Computing architecture is composed of four different layers,
performing complementary activities:

• Realization layer: it is the bottommost layer, directly representing
available facilities. There are three different types of entities at this
layer: devices, applications and e-services over the Web.

• Service layer: available facilities from the Realization layer are
embodied into the form of service at this layer and services
interfaces are constructed. Semantic Service Descriptions (SSD)
comprising knowledge about these services are also created in order
to disseminate information.

• Middleware layer: this layer is in charge of service discovery, service
composition and execution, and other management activities such as

39



A Reactive Behavioural Model for Context-Aware Semantic Devices

Figure 2.8: Task Computing architecture. Source: [SLM04].

service publishing. In some way, it glues services created at the Service
layer with available underlaying technologies to support transport and
management functions over them.

• Presentation layer: it is considered the most important layer in
the architecture. It provides the user with an abstraction of
available tasks that can be performed in the environment, hiding
underneath complexity, and allowing the user to dynamically assemble
components to perform the desired task. A client implementing the
Presentation layer is usually referred to as Task Computing Client
(TCC) and makes use of well-defined interfaces to the Middleware
layer.

Task Computing is implemented in concrete TCEs (Task Computing
Environments), which are computational systems able to perform Task
Computing functionality and composed of Task Computing Clients,
Semantic Service Descriptions, Semantic Service Discovery Mechanisms and
Service Controls.

Task Computing Client (TCC)

Task Computing Clients are utilised by users to accomplish desired tasks.
STEER (Semantic Task Execution EditoR) is a prototype TCC developed

40



Juan Ignacio Vázquez Chapter 2. Related Work

for this goal. Depending on available discovered services, STEER creates
possible task compositions and suggestions for the user about the most
likely desired tasks. The user, generally via a graphical interface, creates
connections, orchestrating and composing the services to perform the task.

Semantically Described Services

Semantically Described Services are orchestrated to perform the desired task
in a coordinated manner. They are described through Semantic Service
Descriptions (SSD), a document type encoded using OWL-S [Wor04b],
the W3C standardized language for semantically annotating web services.
However, service invocation documentation is represented via WSDL, so
there is a need to bound semantic descriptions to WSDL invocation
parameters. WSDL is adequate for programmers, but OWL-S generated
descriptions are better for end users who do not know about the artifacts
to perform the actual invocation, but do understand the semantics of the
desired service.

SSDs are constituted of three parts that implement the separation
between semantic descriptions and actual implementation: profile (high
level descriptive information), process (semantic description of the
process and glue between profile and grounding) and grounding (service
implementation and mappings).

Semantic Service Discovery Mechanisms (SSDM)

Semantic Service Discovery Mechanisms are provided in a Task Computing
Environment to explore and search for new services to make them available
to the user. Task Computing typically uses UDDI, UPnP SSDP or Jini for this
purpose, but other discovery mechanisms could be applied as well.

Whatever the mechanism employed, Task Computing defines four
distinct discovery ranges:

• Empty: services located in the empty range cannot be discovered by
anyone. A user can decide whether to assign this range for a service
to make it unavailable for everyone, including him/herself.

• Private: services located in the private range are only available to the
owner

• Group by subnet: services in this range can be discovered by other
entities located within the same computing environment. This range is
typically associated with Ubiquitous Computing environments, where

41



A Reactive Behavioural Model for Context-Aware Semantic Devices

services are available to nearest clients. SSDP (Simple Service
Discovery Protocol) [GC+99] and Jini [Sun99] can be used as
discovery mechanisms here (and also for service advertisement, which
is complementary to discovery).

• Group by interest: services in this range can be located by other
people with similar interests or group membership as the owner.
Currently, there is no discovery mechanism specified for this range
by the authors.

• Public: services in this range can be discovered by anyone, whatever
the interest and the location. UDDI [OAS04] is an example of
discovery mechanism that can provide Semantic Service Descriptions
of public services.

Service Control (SC)

Service Controls allow management of services by dynamically customizing
some of their properties, such as discovery range, expiration time,
limiting the number of possible invocations and even the service name or
description. Service Controls are also able to hold temporarily, remove or
change how the services are provided.

2.3.2 Semantic-ization and Service-ization

Task Computing defines these two concepts in order to refer different steps
in the process of transforming existing services to shape them to Task
Computing Environments requirements.

Semantic-ization is the process of creating a semantic object from any
other application or OS object. Currently, Task Computing supports a dozen
of object types such as PIM contact, schedule entry, file from the OS, and so
forth.

White Hole is the component of the architecture in charge of creating a
OWL semantic description based on the object type.

Service-ization is the process of creating a service, with an associated
endpoint, based on the OWL semantic description generated in the previous
step, and prepare it for publication using the appropriate mechanism to
allow discovery (e.g.: UDDI or SSDP).

PIPE is the component in Task Computing in charge of service-ization.
PIPE creates a web service, a WSDL document describing the service
invocation mechanism, and an SSD document describing the service

42



Juan Ignacio Vázquez Chapter 2. Related Work

Figure 2.9: Semantic-ization and Service-ization in Task Computing.
Source: [SLM04].

semantically. PIPE also acts as a Service Control allowing management of
service provision.

Semantic-ization and Service-ization are not carried out if the source
object is already represented in a semantic way or if it is shaped as a web
service accompanied by all the required information. In that case, PIPE only
publishes the service without performing any transformation.

2.3.3 Conclusion

Task Computing is primarily a framework for services orchestration,
composition, and execution. All the mechanisms it features are aimed at this
goal: service publishing and discovery, semantic descriptions, service-ization
of resources to make them available to any requester, and so forth. These
features can be implemented in multiple environments, not being specially
addressed for Ubiquitous Computing scenarios. In fact, Task Computing

43



A Reactive Behavioural Model for Context-Aware Semantic Devices

applies well-known Internet-wide technologies such as UDDI for discovery
or traditional Web Services at external servers as endpoints.

In order to assume a more context-aware nature, Task Computing has
embraced some pervasive computing technologies to complement existing
ones, such as SSDP for discovery, so services can be found both at
a global level via UDDI and at a local level via the group by subnet
discovery range. This approach allows surrounding services discovery in
a physical environment and the possibility of making local resources such as
documents available as services to nearest parties, via semantic-ization and
service-ization.

As reported by the authors, after Task Computing evaluation and despite
automatic service composition, users feel more confident taking decisions
about suggestions based on natural language labels that accompany
service descriptions (“it is the human-centered descriptions that give the
user confidence to make the final selection” [MLPS03]). This aspect leads
to the conclusion that natural language annotation of services is more
appropriate when presented to users for selection and operation than
semantic descriptions, that can be processed automatically without user
intervention.

On the other hand, Task Computing seems to be more oriented to solve
usability problems when non-technical users have to select and orchestrate
devices and services, than to address Ubiquitous Computing problems. This
opinion is backed up by the fact that authors stress several times that the
most important layer or components in Task Computing are user interface
related ones (“the most important aspect of Task Computing is the presentation
layer” [SLM04], “what is unique about our Task Computing implementation
is [. . . ] driven by end-users, rather than by developers, via a user-interface”
[MPL03]).

An analysis of Task Computing against the evaluation criteria leads to
the following results:

Decentralisation: Task Computing is not aimed at creating a network of
interconnected devices. The TCEs are intended to run in desktop
computers or servers that can be connected to UPnP or Jini networks
if device control is required. Low.

Reasonability: Task Computing uses semantic information to annotate
service descriptions and perform service composition, but neither
reasoning nor domain ontologies are provided to understand context
information. TC only is aimed at matching required and offered
services. Low.

44



Juan Ignacio Vázquez Chapter 2. Related Work

Context-awareness: except for service discovery mechanisms (which
strictly is a technical issue, not related to context-awareness), no other
form of capturing context, sensing environmental conditions, and so
forth, are provided directly by Task Computing. No form of automatic
responsive behaviour is provided in the model, but user intervention
is required. Low.

Technological Consistency: Task Computing applies web services and
Semantic Web technologies in a coherent and synergistic manner.
High.

Standards Adherence: in general terms, Task Computing honours
standards and recommendations trying to reuse existing technologies.
Standards such as OWL-S, WSDL, HTTP, UDDI, and even industry de
facto standards such as SSDP are widely used. High.

Device Implementation Cost: the Task Computing Environment is not
expected to be implemented on devices due to the software size and
complexity as well as to requirements about user interaction that
cannot be accomplished by limited devices. High.

Environment Deployment Cost: Task Computing requires deployment of
at least one TCE in the environment as well as configuring the
discovery mechanisms and available services to provide intelligent
service composition. Medium.

Lightness: processes such as Semantic-ization and Service-ization as well
as the need of the Task Computing Client, result in complex and
heavy software components. Devices need an amount of computing
resources (processing power and screen size, among others) not
presently available in every embedded platform. Low.

Autonomy: Task Computing requires users to actively participate in the
process of adapting the environment for the desired task: the user
is continuously required to be in the loop. Services are discovered and
presented to the user which has the final decision over the process.
Low.

2.4 CoBrA and SOUPA

CoBrA (Context Broker Architecture) and SOUPA (Standard Ontology for
Ubiquitous and Pervasive Applications) are efforts from the eBiquity group

45



A Reactive Behavioural Model for Context-Aware Semantic Devices

Criterion Value
Decentralisation Low
Reasonability Low
Context-awareness Low
Technological Consistency High
Standards Adherence High
Device Implementation Cost High
Environment Deployment Cost Medium
Lightness Low
Autonomy Low

Table 2.3: Analysis of Task Computing against the evaluation criteria.

at the University of Maryland, Baltimore County, USA, to create a context-
aware pervasive system applying Semantic Web technologies. These projects
were primarily led by Dr. Harry Chen [Che04] during the years 2003-2005.

The eBiquity research group had already worked on some approaches
using ontologies for context-awareness in pervasive applications [CTS+01],
assuming Dey’s definition of context as the driving concept [Dey01]. Their
goal then was creating context-aware teamwork cooperative environments.
Within the scope of this work, they noticed how humans share some
attributes that enable them to understand situations, and these same
attributes should be migrated to machines in order to obtain similar results
(“sharing ontology, sensing context and reasoning are crucial to the realization
of context-aware software applications”) [CTS+01].

At the same time, they also noticed that much effort was put
on modelling generic context information as part of domain-specific
information. Thus, basic data such as time, location, identity, and so forth,
were once and again modelled for every ubiquitous application or service,
without reusing any previously developed structures. Representation of
these concepts using ontologies would allow reuse of information structures
and relationships, so the eBiquity research group adopted Semantic Web
technologies.

The first experiences were applied in the CoolAgent Recommedation
System using RDF and Pf c (Prolog Forward Chaining) at Hewlett-Packard
Laboratories. CoolAgent RS is a multi-agent system that can automatically
recommend different types of tailored information to users by reasoning
about the context without any explicit manual input (“Enabling context-
awareness is one step closer to the realisation of computing systems that can
act in advance and anticipate user’s needs”) [CTS+01].

The prototype for CoolAgent RS Document Recommendation Service is
configured to gather and reason upon some concrete context information

46



Juan Ignacio Vázquez Chapter 2. Related Work

such as presence information, user’s profile, meeting’s subject or schedule
and organisational information among participants, in order to select
the documents they need to attend the meeting. They also developed
other versions for different domains, such as the CoolAgent RS Food
Recommendation Service for finding the nearest restaurant that best
matches the user’s profile.

Again, through these experiences, it became clear the need for sharing
a common ontology to represent concepts such as places or people, and Dr.
Chen started modelling them using RDF and RDF Schema.

At the same time, while creating pervasive applications there were more
concerned about “Ubiquitous Computing systems based on the cooperation of
autonomous, self-describing, highly interactive and adaptive components that
are located in the vicinity of one another” [CFJ01].

All these experiences led to the conclusion that agents teamwork and
collaboration was a hot issue, specially interesting in Ubiquitous Computing
environments [CF02], since agents can act on behalf of devices and
cooperate for a common goal.

Some previous background existed about this: the Wooldridge-
Jennings CPS (Cooperative Problem Solving) Model [WJ99] structured the
collaboration process into several steps:

1. Recognition: in which an agent identifies the potential for cooperation

2. Team formation: in which the agent solicits assistance

3. Plan formation: in which the newly formed collective attempts to
construct an agreed joint plan

4. Execution: in which members of the collective play out the roles they
have negotiated

The Wooldridge-Jennings CPS model seemed valid for coordinating
agents in Ubiquitous Computing environments. In fact, it defined some
sort of choreographic model, before the Choreography Markup Language
[Wor05a] was designed.

For the resulting cooperative agent-based architecture they selected a
central broker-based approach [CFJ03b], and named it CoBrA (Context
Broker Architecture).

2.4.1 CoBrA: Context Broker Architecture

Figure 2.10 illustrates the CoBrA architecture. The central broker is in
charge of several responsibilities [CFJ03b, CFJ03c]:

47



A Reactive Behavioural Model for Context-Aware Semantic Devices

1. It provides a centralised model of context that can be shared by all
devices, services, and agents in the space

2. It acquires contextual information from heterogeneous information
sources, unreachable from resource-limited devices

3. It reasons about contextual information that cannot be directly
acquired from the sensors (e.g., intentions, roles, temporal and spatial
relations)

4. It detects and resolves inconsistent knowledge that is stored in the
shared model of context

5. It protects the privacy of users by enforcing user defined policies to
control the sharing and the use of their information

Figure 2.10: CoBrA Architecture. Source: [CFJ03b].

The broker communicates with the information sources using an agent-
based mechanism with JADE API (Java Agent DEvelopment Framework)
[BPR99], which in turn can apply different communication protocols such
as Java RMI, HTTP or IIOP. The payload is represented in FIPA ACL (Agent
Communication Language) [fIPA02] (see Figure 2.11).

When message size limitations apply, such in the case of Bluetooth
transport, the solution is to include a URL that points to the complete
resource description to download from some server. However, this approach

48



Juan Ignacio Vázquez Chapter 2. Related Work

shifts the problem to how and when must the information be published and
updated at that server.

Figure 2.11: The context acquisition process in CoBrA. Source: [CFJ04c].

CoBrA does not apply any pervasive discovery mechanism, so elements
in the environment must have a previous knowledge about the existence of
the context broker, or make use of JADE API provided mechanisms for agent
discovery.

The broker is composed of different elements that are combined to fulfil
the above responsibilities [CFJ04a, CFJ05]:

• CoBrA Ontology (COBRA-ONT): it is required to describe contextual
information. It declares classes and relationships for the specific
domain CoBrA is aimed at: smart meeting rooms (EasyMeeting
project). The CoBrA ontology defines people, agents, places and
presentation events for supporting an intelligent meeting room system
on a university campus, as well as its properties and relationships as
shown in Figure 2.12.

• Context-Knowledge Base: it is an RDF triples storage facility that
acts as a central repository of all the context information gathered
from different sources. Implemented through an SQL database, this
module offloads devices with the burden of maintaining the context
knowledge, while providing access to it.

• Context Acquisition Module: it is in charge of acquiring context
information from all the available sources. This is usually performed
by means of agents that can implement specific communication
mechanisms to obtain desired data from the original source (sensors,
devices, appliances, and so on).

49



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Context Reasoning Engine: it is a logic inference engine for reasoning
with ontologies and detecting inconsistencies. It is formed by two
different tiers: the first tier uses ontology-based reasoning, that is,
description logics, while the second tier uses domain-specific heuristics
in the form of rules. For the first tier CoBrA can use any of the available
ontology inference engines, such as TRIPLE [SD02], FACT [HST99] or
RACER [HM01].

• Policy Management Module: it checks the users’ policies before
sharing their information. The privacy language in CoBrA is based
upon the Rei policy language [KFJ03a], an ontology for mode-
lling “rights, prohibitions, obligations and dispensations (deferred
obligations)”.

Figure 2.12: CoBrA Ontology. Source: [CFJ03b].

CoBrA brokers do not need to be completely isolated. They can form
federations, in which an individual manages part of the context information
space (e.g. a room) while exchanging context information with others
periodically [CFJ03b].

Probably the main innovation of CoBrA is the application of Semantic
Web technologies, such as RDF and OWL for ontology modelling in
pervasive spaces [CFJ03a], instead of programming languages classes and
objects as previous systems did (Context Toolkit, Cooltown or Intelligent
Room).

50



Juan Ignacio Vázquez Chapter 2. Related Work

The CoBrA ontology, COBRA-ONT, embraced knowledge from different
subdomains, some of them very specific to the problem to solve (smart
meeting rooms), but others being clear candidates for reusability in other
scenarios, such as those related to people, time, space, events and so forth.

This situation prompted the recommendation of segregating common
concepts that could be applied in multiple scenarios, into one “standard”
ontology: SOUPA.

2.4.2 SOUPA: Standard Ontology for Ubiquitous and Pervasive
Applications

The application of ontologies in Ubiquitous Computing environments are
important due to diverse factors [CFJ03b] [CFJ03c]:

1. Ontologies expressed in Semantic Web languages provide a means
for independently developed context aware systems to share context
knowledge, minimizing the cost of and redundancy in sensing.

2. RDF and OWL are knowledge representation languages with rich
expressive power that are adequate for modelling various types of
contextual information, e.g. information associated with people,
events, devices, places, time, and space.

3. Because context ontologies provide an explicit representation of
semantics, they can be used by available logic inference engines.
Systems with the ability to reason about context can detect and resolve
inconsistent context knowledge that often result from imperfect
sensing.

4. The Semantic Web languages can be used as metalanguages to define
other special purpose languages such as communication languages
for knowledge sharing or policy languages for privacy and security.
A key advantage of this approach is improved interoperability: tools
for languages that share a common root of concepts can interoperate
better than tools for languages that have diverse roots of concepts.

The conclusion is that a set of common ontologies enable knowledge
sharing in an open and dynamic distributed system, provide a means for
intelligent agents to reason about contextual information, and allow devices
and agents to interoperate.

From this point of view, defining and reusing a common ontology for
pervasive applications could bring all these advantages to future projects.

51



A Reactive Behavioural Model for Context-Aware Semantic Devices

Taking COBRA-ONT as a starting point, Dr. Chen performed a selection
and grouping of reusable ontologies and created SOUPA (Standard Ontology
for Ubiquitous and Pervasive Applications) embracing what he thought
were the fundamental ontologies for any pervasive application [CFJ03d]
[CFJ04b] [CFJ04c] [CPC+04].

Moreover, OWL was used for ontology representation, which enabled
SOUPA to stay ahead with the latest standard of Semantic Web technologies.

SOUPA adopted a modular approach, reusing some previously created
ontologies [CPFJ04] such as FOAF [DZFJ05], DAML-Time (evolving later
into OWL-Time [PH05] [Wor06c]), spatial ontologies of OpenCyc, Regional
Connection Calculus (RCC), COBRA-ONT , MoGATU BDI [PJC05] and Rei
policy ontology [KFJ03b].

SOUPA was structured into two levels: SOUPA Core and SOUPA
Extension. SOUPA Core defines generic concepts for Ubiquitous Computing
applications and constitutes the primary source of reusability, while SOUPA
Extension defines additional concepts for supporting specific applications
and domains (meeting and scheduling, digital documents, and so forth),
and thus, it constitutes the basis for extensibility (see Figure 2.13).

Figure 2.13: SOUPA Ontology. Source: [CPFJ04].

SOUPA does not define an architecture or behavior, it is just a set of
ontologies, that can be used in any kind of pervasive application to support
knowledge sharing.

After the definition of SOUPA, COBRA-ONT was restructured to honour
SOUPA, becoming a SOUPA extension for smart meeting rooms [CFJ+04d].

52



Juan Ignacio Vázquez Chapter 2. Related Work

2.4.3 Conclusion

There are several drawbacks in the CoBrA model for the goals of our
research. Its centralised architecture unburden limited-devices from the
inconveniences of managing knowledge and information sources, but relies
in a core element, the broker, that is practically the sole responsible of
implementing the overall functionality.

It is necessary to place a broker in every scenario that needs to be
activated with CoBrA, increasing the cost, complexity and maintenance of
the deployment process. Moreover, no mechanism is proposed for devices
to discover the broker, which is at the core of any Ubiquitous Computing
architecture, but in turn, this task is delegated to the JADE API, and so, only
suitable for agent (not device) discovery.

CoBrA does not provide any implicit reactivity mechanism or
architecture; ad hoc agents must be created and connected to the broker
to perform reactive behaviour in every case, checking existing context
information and reacting as programmed. Thus, CoBrA is not self-
descriptive from this point of view and further programing efforts and
adaptations are required to have it configured and ready to run in a
particular scenario.

A remarkable feature in CoBrA is its support for security and user’s
privacy via a policy language such as Rei. Rei was not initially based on
OWL, which constituted an inconsistency within the CoBrA model and the
current trends in ontologies, but OWL Lite support was added shortly after.
However, the policy documents are cumbersome, since they need to be
edited manually.

On the other hand, SOUPA is a brilliant effort to create a modular
set of common ontologies to be applied in every pervasive computing
environment. The word “standard” is probably too ambitious, but the
reusability of other existing ontologies pushes SOUPA ahead towards this
goal.

An analysis of CoBrA/SOUPA against the evaluation criteria leads to the
following results:

Decentralisation: CoBrA’s core element is the Context Broker which
determines the centralised nature of the whole architecture. Low.

Reasonability: Semantic Web, agents, user policies and the reasoning
module make CoBrA a highly intelligent system, with enough potential
to deal with complex situations. High.

Context-awareness: agents and adapters provide and share context
information via the broker, but devices still remain outside this model;

53



A Reactive Behavioural Model for Context-Aware Semantic Devices

agents are always required to represent them. CoBrA performs
automatic adaptation of the environment via programming of specific
agents or adapters. Medium.

Technological Consistency: CoBrA mixes up the Semantic Web model with
smart agent platforms, thus creating interactions between unrelated
technologies such as RDF or OWL and FIPA ACL. HTTP could be used
instead of FIPA ACL resulting in a better integration with XML, RDF
and OWL. Low.

Standards Adherence: standards such as RDF, OWL, FIPA ACL and others
are used in CoBrA, as well as SOUPA reuses several existing ontologies.
High.

Device Implementation Cost: CoBrA defines a sole element, the broker,
that embraces all the functionality and responsibilities for the whole
architecture. The authors have not reported any experience involving
limited devices managing all the complexity attached to it. Moreover,
the CoBrA model bases its foundations on representing devices as
agents that can reside in other parts of the network, thus not being
intended for direct device development. High.

Environment Deployment Cost: the need to deploy a central broker at
every scenario, performing heavy agent programming, and adding
device discovery mechanisms before having it ready for use, makes
CoBrA a prohibitive solution for emergent pervasive deployment
everywhere. It is only recommended in concrete cases where high
deployment costs can be assumed in a predefined scenario, such as a
particular meeting room or a smart home. Every existing information
source must be adapted (via agents) to connect and feed the broker.
The broker has to be deployed and needs previous configuration to
discover existing agents. High.

Lightness: CoBrA is not intended to be implemented in limited devices.
Low.

Autonomy: once configured, CoBrA could operate without much user
intervention, being the agents responsible of operations execution.
High.

2.5 Gaia

Since 2001, the research group at the Department of Computer Science of
the University of Illinois at Urbana-Champaign, led by Dr. Roy H. Campbell

54



Juan Ignacio Vázquez Chapter 2. Related Work

Criterion Value
Decentralisation Low
Reasonability High
Context-awareness Medium
Technological Consistency Low
Standards Adherence High
Device Implementation Cost High
Environment Deployment Cost High
Lightness Low
Autonomy High

Table 2.4: Analysis of CoBrA/SOUPA against the evaluation criteria.

has been working on the design of an infrastructure to support intelligent
Ubiquitous Computing environments.

The Gaia project is the result of these efforts, constituting a software
infrastructure to support Active Spaces. An active space is a “model that
maps the abstract perception of a physical space as a computing system, into a
first class software entity” [RC00].

Thus, the active space acts as a mapping between the real and virtual
space, connecting both in such a way that real world actions affect virtual
world objects and vice versa. The active space hides the complexity of
the real world elements into one unique entity that provides functions for
manipulating the space, discovering and locating internal entities, storing
and retrieving information from the space and so forth.

In this way, Gaia relieves the burden of manipulating highly object-
populated environments by providing a single consistent interface instead
of a bulk of multiple ones [RHC+02a], simplifying application programming
and user interaction.

The name Gaia was adopted from the Gaia theory by James Lovelock
that advocated for the earth as a self-regulated superorganism, who in
turn borrowed it from the Greek Earth Goddess. The Gaia project tried to
replicate the same global awareness and self-regulated behaviour for smart
environments and their constituent elements.

2.5.1 Gaia architecture

The Gaia Operating System (Gaia OS) is the core element of the whole
architecture. It is defined as a meta-operating system, running at the top
of others, providing a distributed communication model for coordinating
active spaces [RHC+02b].

55



A Reactive Behavioural Model for Context-Aware Semantic Devices

Gaia is composed of three main components as shown in Figure 2.14:

• Gaia kernel: provides basic services such as component life-cycle
management or remote component execution and management. Gaia
relies on CORBA as underlying distributed component model, and
extends some CORBA services to provide the so-called Gaia services,
such as Event service, Context service, Presence Service, Space
repository and Context file system.

• Application framework: consists of a distributed component-based
infrastructure following the MVC model, including new functionality
to manipulate component bindings, a mapping mechanism and
policies/rules for application customisation.

• Active Space Applications: implement the desired functional
behaviour in the active space, such as the Presentation manager
application, that lets users present slides in multiple displays
simultaneously, move slides from one display to another, as well as
move the input device functionality.

Figure 2.14: Gaia architecture. Source: [RHC+02b].

The mapping mechanism of the Application framework offers the
possibility of describing requirements to find the suitable real device to
assign a functional behaviour (for example, audio output) so that matching
devices can be found within the active space to perform that function during
a task.

Specially interesting is how Gaia represented context in the form of
a 4-components structure: Context(<ContextType>, <Subject>, <Relater>,

<Object>) that in many ways resembles that of the Semantic Web, for
example: Context(temperature, roomlab21, is, 24 C) .

56



Juan Ignacio Vázquez Chapter 2. Related Work

Later, this model evolved into a predicate-based representation of
context information:

• Location(inaki, entering, roomlab21)

• Temperature(roomlab21, ‘‘=’’, 24 C)

• TVStatus(smallTV, is, off)

During 2003, Gaia was extended with a semantic middleware layer for
context awareness endorsing existing Semantic Web technologies in order to
model and annotate context information, perform reasoning and carry out
reactive behaviour in response to context changes [RC03b]. DAML+OIL
(later OWL) was selected to represent the context information following a
predicate model [MRCM03b] [MRMC03].

In order to map the predicates onto the ontology, an ontology class is
created for each predicate structure [RC03a]. So, the Location predicate
becomes a Location ontology class with three possible relationships to
denote the information that was previously enclosed in the predicate
parameters [MRCM03b].

Representing the context in this way, operations such as search,
querying, fusion and so forth, become possible.

There are several different entities involved in Gaia’s context information
infrastructure depicted in Figure 2.15:

• Context Providers: they are sources of context information, probably
obtained by sensors.

• Context Synthesisers: they retrieve context information from different
providers and perform some form of reasoning to elicit new
information making it available to other agents. Both static rules and
machine learning techniques (such as Näıve Bayes) can be applied to
obtain new information.

• Context Consumers: they gather context information from providers
and synthesisers, reason about it and perform reactive behaviour
accordingly.

• Context Provider Lookup Service: one per environment, it is used
by context providers to publish the kind of context information they
provide in order to be found by context consumers.

• Context History Service: one per environment, it contains database
records of past context information to make them available to
requesting parties.

57



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Ontology Server: one per environment, stores ontologies for the
different information types.

Figure 2.15: Gaia Context Infrastructure. Source: [RAMC04].

It is noteworthy how this architecture requires three elements to be
provided by the environment such as the Context Provider Lookup Service,
the Context History Service and the Ontology Server. These requirements
make harder and more cumbersome the deployment process.

2.5.2 Semantic Knowledge in Gaia

Basically, Gaia uses Semantic Web technologies to address three different
issues [RMCM03] [MRCM03b]:

• Discovery and Matchmaking: the process of discovering suitable
entities that provide the requested service in the environment meeting
some previously defined requirements. When applying Semantic Web
technologies during the discovery phase the authors use the terms
“semantic discovery” and “semantic queries” [MRCM03a].

• Inter-operability between different entities: the problem of creating a
shared model of concepts, interfaces, commands, relationships, and
so forth, in order to achieve a common interaction framework by the
environmental entities.

• Context-awareness: the need for entities in a Ubiquitous Computing
environment to share a common knowledge model of the environment

58



Juan Ignacio Vázquez Chapter 2. Related Work

in order to characterise the situations and react rapidly. The reactive
behaviour can be programmed by means of rules on existing context
information.

Basically, ontologies are used in Gaia to create a taxonomy of the
different entity types available in the system, so that they can be managed
in a formal way.

Although the issue is not further explored, the term “bridge concept”
defines the use of dynamic relationships to characterise new device types
that appear in the environment, in relation with concepts and definitions
already present.

For instance, a “fingerprint recogniser” could be identified as a subclass
of “authentication device” via a bridge concept, without providing the
relationship explicitly. However, this possibility was not implemented in
Gaia as the problem of dynamically creating bridge concepts was not
addressed.

Gaia divides the types of context into several groups:

• Physical contexts, such as location and time.

• Environmental contexts, such as weather, light or sound level.

• Informational contexts, such as stock quotes or sports score.

• Personal contexts, such as health, mood, schedule or activity.

• Social contexts, such as group activity or social relationships (the
FOAF ontology [DZFJ05] can be categorised here).

• Application contexts, such as email or web boomarks.

• System contexts, such as network traffic or printer status.

The role of this classification in the architecture is not clear, and it seems
to be used purely for reader-understanding purposes.

A later introduction in the Gaia model was attaching confidence values
to context information in order to perform reasoning with a certain degree
of uncertainty [RAMC04], which is required in many situations.

The confidence values are expressed using the same predicate
constructions applied in the model, for example the following expression
prob ( location ( inaki, in, lab21 ) ) = 0.5 means that the probability
that Inaki is in Lab21 is 0.5. Probabilistic logic, fuzzy logic and Bayesian
networks can be applied in this way to generate confidence values.

59



A Reactive Behavioural Model for Context-Aware Semantic Devices

Context producers and synthesisers are in charge of associating
probabilities to the generated context information, using any or a
combination of the above mechanisms.

The model has proven validity at determining the location of people
wearing RFID badges based on disperse probabilistic measures, which has a
lot to do with the concept of sensor fusion.

Another interesting application is the detection of system failures with a
certain confidence value. For instance, if a Context Provider does not send
any message over one hour, maybe is due to a communications failure.

Other additions such as the creation of a specific Ubiquitous Computing
oriented programming language called Olympus [RCAM+05] and the shift
towards autonomic computing [Ran05] were finally added to the Gaia
architecture.

2.5.3 Conclusion

Gaia fulfils many of the requirements established for a smart Ubiquitous
Computing architecture, mainly those related to intelligence support. Gaia
makes use of context predicates for representing context information and
OWL ontologies for taxonomical purposes.

A rule-based reactivity model is provided and the latest efforts on adding
probabilistic measures and confidence values to context predicates boost up
the built-in intelligent capabilities of the system to even higher degrees.

However, Gaia has two important drawbacks and several inconsistencies.

The first main drawback is that Gaia requires three different elements
in the architecture to be previously deployed and properly configured
in the environment: the Context Provider Lookup Service, the Context
History Service and the Ontology Server. This constraint prevents Gaia
from creating spontaneous emergent pervasive computing environments
anywhere, since a deployment phase must me performed beforehand,
enforcing an undesirable centralisation.

The second main disadvantage arises from the fact that core elements in
the architecture, such as those three mentioned above, seem to be suitable
for installation in desktop computers or servers, but not in embedded
computers. Since true Ambient Intelligence invisibility can only be achieved
by embedding computers everywhere, it is difficult that Gaia could be
considered appropriate to fulfil these requirements.

The main inconsistencies with Gaia are originated from the initial
selection of technologies and the subsequent integration of newer ones, that
result in a strange mixture.

60



Juan Ignacio Vázquez Chapter 2. Related Work

For instance, representation of context information through predicates
was present at the very initial stages. When OWL ontologies were integrated
in Gaia, context predicates remained as knowledge representation
mechanisms instead of shifting to RDF, which would have sound more
sensible.

Another strange mixture is related to the communication model. Gaia
uses CORBA as distributed computing architecture, instead of the web
model. This would not have constituted a problem per se, if no web
technologies were used at all. However, OWL is applied and DQL (DAML
Query Language) [FHH03] is reported to be used in the future [MRCM03a]
(moreover, since DQL works on RDF graphs that are not used in Gaia, its
application becomes controversial). A web-based communication model
would enforce integration between these technologies.

An analysis of Gaia against the evaluation criteria leads to the following
results:

Decentralisation: the requirement about a previous three-elements
deployment in the environment contributes to a centralised
architecture in Gaia. Low.

Reasonability: the application of ontologies, rules, probabilistic logic,
fuzzy logic and Bayesian networks in order to perform all sorts of
reasoning about context information, promotes a very high degree of
intelligence in Gaia. Very High.

Context-awareness: the integration of rules and confidence values
contribute to situation identification and subsequent adaptation.
High.

Technological Consistency: technological evolution during the Gaia
project, resulting in changes as new technologies were adopted, has
created a strange mixture in the final outcome. OWL is combined
with predicate logics, instead of shifting to RDF. CORBA is applied as
distributed computing architecture instead of newer more lightweight
web-based communication models that would make the Semantic Web
fit better. While the result undoubtedly works, lots of different APIs
and different technologies are used. Low.

Standards Adherence: standards and recommendations such as CORBA
and OWL are honoured. High.

Device Implementation Cost: Gaia is not intended for being implemented
on resource-limited devices, but for integrating exiting appliances by
means of adapters. While Context Providers could be implemented

61



A Reactive Behavioural Model for Context-Aware Semantic Devices

in resource-limited devices, nothing is reported concerning Context
Synthesisers or Consumers. High.

Environment Deployment Cost: the need to deploy the above mentioned
three elements in every scenario makes Gaia a prohibitive solution
for pervasive deployment everywhere. It is only recommended in
concrete cases where high deployment costs can be assumed in a
concrete scenario. There is a need for a previous development phase
for integrating context providers and consumers with the real devices,
sensors and effectors. Moreover, the other elements in the architecture
need also to be properly configured for the environment. High.

Lightness: some elements in the architecture are difficult to migrate to
resource-constrained devices, such as the Context History Service or
the Ontology Server. The Gaia architecture does not seem to be
intended for deployment in embedded devices, but in full computers.
Low.

Autonomy: once configured, Gaia’s reasoning and context-awareness
mechanisms can contribute to a user-free operation, taking decisions
autonomously. High.

Criterion Value
Decentralisation Low
Reasonability Very High
Context-awareness High
Technological Consistency Low
Standards Adherence High
Device Implementation Cost High
Environment Deployment Cost High
Lightness Low
Autonomy High

Table 2.5: Analysis of Gaia against the evaluation criteria.

2.6 Semantic Spaces, SOCAM and CONON

The initiative Semantic Space, SOCAM (Service Oriented Context-Aware
Middleware) and CONON (CONtext ONtology) are all efforts to create
a smart environment infrastructure using Semantic Web technologies,
developed by the National University of Singapore and the Institute for
Infocomm Research, Singapore.

62



Juan Ignacio Vázquez Chapter 2. Related Work

These projects share many similarities both in goals and architectural
styles with CoBrA and SOUPA. In fact, SOCAM and CoBrA are very similar,
as well as CONON and SOUPA are both alternative ontologies for pervasive
environments.

The Semantic Space [WDC+04] [TZWC05] seems to be the precursor
of SOCAM, since certain details are not deeply analysed and only two
papers have been published. It introduces a context architecture, very
similar to CoBrA, where UPnP is used for device interoperability and an
ontology called ULCO (Upper Level Context Ontology) is designed in order
to represent smart spaces context information.

The SOCAM architecture seems to be a fork of the Semantic Space but
is more thoroughly described. It is divided into five different components
[GPZ04b] [GPZ04c] [GPZ05], as illustrated in Figure 2.16:

• Context Providers: provide context information from different
sources.

• Context Interpreter: consists on a reasoning engine and a knowledge
base.

• Context Database: stores context ontologies and past contexts for a
concrete scenario.

• Context-aware Applications/Services: adapt the way they behave
depending on the current context.

• Service Locating Service: provides a mechanism for the Context
Providers and Interpreter advertise their presence. The locating
architecture is formed by a hierarchical tree of servers.

In SOCAM, context is categorised into direct or indirect context,
depending whether was directly obtained from context providers by sensors
or was obtained from a reasoning process. These characterisation of
context enables SOCAM to assign confidence levels to context information
[GWPZ04]. An extension was proposed to deal with uncertainty using
Bayesian networks, and assigning probability values [GPZ04a], but the
mechanism proposed, creating two new ontology classes, does not allow
to naturally annotate already existent context information in the form of
RDF triples, requiring explicit generation of probabilistic structures. The
mechanism was not further explored in subsequent papers.

In SOCAM, Semantic Space’s ULCO seems to have evolved into
CONON (CONtext ONtology), which defines the abstract ontology class
ContextEntity from which all others, such as Location, Person or Activity

63



A Reactive Behavioural Model for Context-Aware Semantic Devices

Figure 2.16: SOCAM architecture. Source: [GPZ04c].

derive. The use of such wide concepts can probably enter into conflict
with other with existing ontologies (such as SOUPA or FOAF). Moreover,
in CONON, these concepts cannot be used directly, but they need to be
parametrised and extended for every concrete environment, thus leading to
the creation of specific ontologies [WZGP04] as illustrated in Figure 2.17.

Figure 2.17: CONON ontology. Source: [GPZ04c].

As a differentiation factor, SOCAM uses OSGi and not UPnP directly
as distributed computing architecture for devices [GPZ04c]. This
decision seems appropriate for dealing with platform interoperability
issues. SOCAM software is implemented in Java and uses JavaRMI for
communication among components, including the trasport of RDF context
information, which seems somehow inappropriate having other suitable
web technologies such as HTTP or SOAP.

64



Juan Ignacio Vázquez Chapter 2. Related Work

Currently, the authors’ interest has shifted to the possibility of using P2P
overlay networks for searching context information [GTPZ05a] [GTPZ05b].

2.6.1 Conclusion

Again, Semantic Space and SOCAM are centralised Ubiquitous Computing
architectures accompanied with an upper level ontology for description
of abstract concepts, that needs to be extended and completed for every
specific scenario. This latter requirement imposes an additional design time
during the environment preparation process.

Their centralised nature is clearly illustrated by the deployment
requirements of the constituent components: the Context Interpreter, the
Context Database and the Service Location Service need to be deployed
previously for any particular scenario.

SOCAM exhibits a clear service-oriented reactivity regarding its reactive
behaviour, and it is based on JavaRMI, which is not an appropriate choice
for transporting RDF information.

An analysis of SOCAM/CONON against the evaluation criteria leads to
the following results:

Decentralisation: SOCAM features a centralised architecture derived from
the requirement about the Context Interpreter, Context Database and
Service Location Service. Low.

Reasonability: the application of ontologies and rules leverages SOCAM to
an average degree of reasonability. High.

Context-awareness: SOCAM features a high degree of context-awareness
promoting reactivity in the form of JavaRMI invocations to Context-
aware Applications/Services. High.

Technological Consistency: the transport of RDF over JavaRMI packets
instead of applying HTTP-based communication is not very natural
and does not provide any advantage over the latter. It is probably
reminiscent of a former JavaRMI oriented design decision. Integration
with OSGi is an advantage. Medium.

Standards Adherence: although communication standards are widely
used, ontology reusing is not promoted. Medium.

Device Implementation Cost: centralised components are not intended
to be implemented on limited devices. Context Providers and
Context-aware Applications/Services could be hosted in appliances

65



A Reactive Behavioural Model for Context-Aware Semantic Devices

but JavaRMI support must be provided, which narrows the possible
platform choices. High.

Environment Deployment Cost: the need to deploy the centralised
elements in every scenario makes SOCAM a prohibitive solution for
pervasive deployment everywhere. As other alternatives, it is only
recommended in concrete cases where high deployment costs can
be assumed. Specific scenario ontologies must be created and OSGi
integration must be carried out. High.

Lightness: the central elements in the architecture seem difficult to migrate
to resource-constrained devices, such as the Context Database or the
Service Location Service. Only Context Providers seem suitable and
enought lightweight for embedding purposes. Low.

Autonomy: once properly configured for the particular scenario, SOCAM
could operate without much user intervention. High.

Criterion Value
Decentralisation Low
Reasonability High
Context-awareness High
Technological Consistency Medium
Standards Adherence Medium
Device Implementation Cost High
Environment Deployment Cost High
Lightness Low
Autonomy High

Table 2.6: Analysis of SOCAM against the evaluation criteria.

2.7 Other related work

2.7.1 Triple Spaces

DERI (Digital Enterprise Research Institute) is one of the leading
organizations researching in the Semantic Web field. Their WSMO (Web
Service Modeling Ontology) [FRP+05] architecture is an alternative to
OWL-S for Semantic Web Services [SKB06]. The application of DERI’s
Semantic Web background into the Ubiquitous Computing arena has led
to the concept of Triple Spaces [Fen04].

Triple-space computing is based on the previous concept of tuple-space
computing: a shared information repository where processes can read or

66



Juan Ignacio Vázquez Chapter 2. Related Work

write data upon in the form of tuples (ordered collection of typed fields
with values).

The authors argue that applying RDF triples instead of tuples would
create a shared semantic information space referenced by a URI, suitable
for web services decoupled communication. Exchanged messages could
be referenced via URIs, becoming full resources naturally, which is not
currently supported by existing web services technologies such as SOAP.
This mechanism would bring the web services closer to the web model
[Fen04] [BKK+05]. Other authors have also explored the convergence of
Semantic Web technologies and tuple spaces in initiatives such as sTuples -
Semantic Tuple Spaces [KLF04]

Triple based computing de-couples different orthogonal dimensions
involved in information exchange:

• Reference: objects involved in the communication process do not need
to know each other, since they exchange messages via the tuple space.

• Time: communication among participants can be asynchronous, since
the tuple space acts as a persistent data repository.

• Space: processes can run anywhere and exchange information as long
as they have access to the tuple space.

• Flow: an asynchronous publish/subscribe communication model can
be applied [BKK+05], so that a participant does not need to block
waiting for a response, but it is notified through a callback when the
response is available.

• Vocabulary: the use of RDF and ontologies promotes mapping
between vocabularies as well as reuse and common understanding of
concepts [KKS05].

The publish/subscribe model closely resembles the way the Web works
in the sense that publications can be later accessed by interested parties,
again achieving decoupling [Bus05].

The possible approach for the implementation of the Triple Spaces
architecture consists in a number of clients and servers, the latter acting
as information repositories, and using the TSTP (Triple Space Transport
Protocol) for communication.

Triple Space Computing is a very recent initiative and no much work has
been carried out. There are no designs or further information about how
discovery should be performed or how the TSTP looks like.

67



A Reactive Behavioural Model for Context-Aware Semantic Devices

Figure 2.18: Triple Space example with publish/subscribe interaction.
Source: [KMRMR06].

DERI envisions Ubiquitous Computing as one of the major application
fields for Triple Space Computing [KS05] to create a shared information
space populated with RDF triples that can be accessed by existing devices.
Future evolution is intended to spread over the fields of Semantic Grid
[STK+06] and semantic P2P networks [KSF06].

2.7.2 The Context Toolkit

One of the main contributions that the authors of the Context Toolkit,
Anind K. Dey, Gregory D. Abowd and Daniel Salber, provided to the world
of Ubiquitous Computing and context-awareness was precisely a uniform
definition of context and context-awareness that has been widely used since
then [ADB+99] [Dey01].

Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends
on the users task.

The Context Toolkit [DAS99] [Dey00] is a software package that
provides mediation capabilities between the application and its operating
environment by using “context widgets” in a very similar way as GUI widgets
are used. The widget abstraction features several advantages when dealing
with context such as hiding complexity and specifics of the low level sensing
mechanisms to the application; they abstract context information in such

68



Juan Ignacio Vázquez Chapter 2. Related Work

a way that only relevant knowledge is passed back to the application; and
they provide reusable and customizable building blocks for context sensing.

The Context Toolkit architecture was later complemented with several
other components, such as Interpreters, Aggregators, Services and
Discoverers [DAS01], some of which were imported by other projects (e.g.
Gaia or SOCAM).

The Context Toolkit was designed with a distributed nature in
mind, using coherently HTTP and XML for transport and information
representation purposes respectively, in order to facilitate communication
between the context widgets and the applications [SDA99].

The discovery mechanism provided by the Context Toolkit is a
centralised one, which is obviously perceived as a disadvantage by the
authors [DAS01], but justified for simplicity purposes.

The Context Toolkit is not intended to and does not provide any form
of built-in reasoning mechanism, but a uniform way of communication and
distributed architecture to easily deploy context-aware applications.

2.7.3 Oxygen

Oxygen [Den02] was probably the largest multi-technological effort about
creating smart spaces. Started by Dr. Michael L. Dertouzos in 1999 at the
Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT,
its lemma “doing more by doing less” [Der99] represents the core of their
approach: to enhance machine and software intelligence in order to improve
user interaction and goals achievement.

Oxygen led to the design of various interrelated technologies, among
them:

• Handy 21 (H21): a handheld computer that connects the user with
his environment.

• Enviro 21 (E21): embedded engine suitable to be plugged to everyday
devices, such as cameras, heating systems, refrigerators, and so forth,
in order to perform intelligent control.

• Net 21 (N21): an innovative network design to create a collaborative
space between H21s and E21s.

• Cricket: is a low cost indoor location system that uses beacons and
listeners to determine user’s position [PCB00] [PMBT01].

69



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Haystack: a context-aware Semantic Web browser aimed at organising
and presenting user’s most important information in every moment
[QK04] [KQ04].

All these activities and a remarkable number of others related to Oxygen
are still pushing Ambient Intelligence technologies forward in different
fields.

2.7.4 Other relevant activities

There are some other efforts and technologies related to our research to a
much lesser extent, whose contribution has been also analysed. Special
mention deserve the GAS ontology [CGK05] [CGZK04] [CK05] [CK04]
developed within the eGadgets European IST Project, the work of Strang
et al. on context modelling [SLP04] and the CoOl ontology [SLPF03b]
[SLPF03a] [SLPF03c], Carnegie Mellon University’s Aura [GSSS02] [SG02]
[SG03], the work of Kindberg at al. in HP’s Cooltown [KB01] [KBM+02]
[BK01], the work of Issarny et al. in WSAMI [IST+05], Microsoft’s
EasyLiving initiative [SBM00] [BMK+00] and the already mentioned visions
of Lassila at al. [LA03] [Las06].

2.8 Comparative analysis

The Table 2.7 shows the comparative values obtained by the different
analysed technologies. The weighted final value for each criteria has been
obtained by multiplying criterion value× criterion weight.

The criterion value is assigned in the following way: None = 0, Low =
1, Medium = 2, High = 3, Very High = 4. Note that the two economical
criteria are interpreted as negative figures, thus promoting low values.

In general terms, all the architectures feature a correlation among
intelligence and centralisation. That is, the higher level of intelligence in
the system, the more centralised it is.

A single element must be previously deployed in the environment,
sometimes concentrating the majority or all of the reasoning processes,
sometimes providing supporting services: the Context Broker in CoBrA;
the Context Provider Lookup Service, the Context History Service and the
Ontology Server in Gaia; and, the Context Interpreter, the Context Database
and the Service Location Service in SOCAM. UPnP sacrifices intelligence
for decentralissation, while Task Computing is not suitable for embedded
computing.

70



Juan Ignacio Vázquez Chapter 2. Related Work

In terms of intelligence, Gaia ranks better than any other alternative
due to the provision of complementary reasoning technologies such as
ontologies and fuzzy logic.

It is surprising and remarkable how UPnP ranks better than Task
Computing. This can be explained through the fact that the decentralised
nature of UPnP supports Ubiquitous Computing better that the intrinsic
intelligence of Task Computing, according to our criteria.

In fact, this is the main drawback of existing experiences: with the aim
of providing more intelligence, the basic nature of Ubiquitous Computing
has been abandoned.

Thus, the experimental initiatives lack of the spontaneous and
serendipitous collaboration required in Ambient Intelligence scenarios.
Moreover, they are not even suitable for embedded computing platforms,
and they also lack of an appropriate advanced discovery mechanism that can
provide an appropriate means for creating a dynamic network of cooperative
devices.

Guided by the criteria, we faced the challenge of creating a system
that maximised the values for each one: a system featuring an
appropriate balance between decentralisation, reasonability and feasibility
of implementation in embedded platforms, while being powered by an
intelligent discovery mechanism.

71



A Reactive Behavioural Model for Context-Aware Semantic Devices

C
ri

te
ri

on
U

Pn
P

Ta
sk

C
om

pu
ti

n
g

C
oB

rA
SO

U
PA

G
ai

a
Se

m
an

ti
c

Sp
ac

es
SO

C
A

M
D

ec
en

tr
al

is
at

io
n

M
ed

iu
m

(8
)

Lo
w

(4
)

Lo
w

(4
)

Lo
w

(4
)

Lo
w

(4
)

R
ea

so
n

ab
il

it
y

N
on

e(
0)

Lo
w

(4
)

H
ig

h(
12

)
Ve

ry
H

ig
h(

16
)

H
ig

h(
12

)
C

on
te

xt
-a

w
ar

en
es

s
N

on
e(

0)
Lo

w
(4

)
M

ed
iu

m
(8

)
H

ig
h(

12
)

H
ig

h(
12

)
Te

ch
n

ol
og

ic
al

C
on

si
st

en
cy

H
ig

h(
9)

H
ig

h(
9)

Lo
w

(3
)

Lo
w

(3
)

M
ed

iu
m

(6
)

St
an

da
rd

s
A

dh
er

en
ce

M
ed

iu
m

(4
)

H
ig

h(
6)

H
ig

h(
6)

H
ig

h(
6)

M
ed

iu
m

(4
)

D
ev

ic
e

Im
pl

em
en

ta
ti

on
C

os
t

Lo
w

(-
2)

H
ig

h(
-6

)
H

ig
h(

-6
)

H
ig

h(
-6

)
H

ig
h(

-6
)

En
vi

ro
n

m
en

t
D

ep
lo

ym
en

t
C

os
t

Lo
w

(-
2)

M
ed

iu
m

(-
4)

H
ig

h(
-6

)
H

ig
h(

-6
)

H
ig

h(
-6

)

Li
gh

tn
es

s
H

ig
h(

3)
Lo

w
(1

)
Lo

w
(1

)
Lo

w
(1

)
Lo

w
(1

)
A

u
to

n
om

y
Lo

w
(1

)
Lo

w
(1

)
H

ig
h(

3)
H

ig
h(

3)
H

ig
h(

3)
TO

TA
L

21
19

25
33

30

Ta
bl

e
2.

7:
A

na
ly

si
s

of
ar

ch
it

ec
tu

re
s

ag
ai

ns
t

th
e

ev
al

ua
ti

on
cr

it
er

ia
.

72



Chapter

3
mRDP: A Semantic Discovery

Protocol

“The only real voyage of discovery consists not in
seeing new landscapes, but in having new eyes.”

Marcel Proust
French novelist

DISCOVERY is one of the most important activities in ubiquitous and
distributed computing; we have already mentioned some discovery
mechanisms that previous initiatives apply. However, we early

noticed that we needed a different approach, a lightweight protocol able
to cope with semantic requests in a spontaneous network of devices.

In this chapter, we explain the basics for a novel semantic discovery
mechanism called mRDP (Multicast Resource Discovery Protocol) and
compare it to other existing approaches.

3.1 Previous approaches

Discovery has always been a hot topic in Ubiquitous Computing and it will
probably keep on being such in the future. Although several different
discovery protocols have been proposed and used over the last years in
concrete architectures, mainly for device and service discovery, there is no
common agreement about a unified discovery protocol.

73



A Reactive Behavioural Model for Context-Aware Semantic Devices

Edwards [Edw06] defines discovery in Ubiquitous Computing systems as
“a mechanism for dynamically referencing a resource on the network”. Since
devices and resources in Ubiquitous Computing networks come and go in
a highly dynamical basis, spontaneity is one of the major features to be
supported during the discovery process.

Continuing this line of thought, McGrath [McG00] describe the most
important features of a discovery protocol as:

• “Spontaneous” discovery and configuration of network devices and
services.

• Selection of specific types of service.

• Low (preferably no) human administrative requirements.

• Automatically adaptation to mobile and sporadic availability.

• Interoperability across manufacturers and platforms.

The architectures analysed in chapter 2 were all concerned about
discovery and included some mechanism for this purpose.

For example, during the development of CoBrA (see section 2.4)
different protocols such as SLP [GPVD99], Jini [Sun99], UPnP SSDP
[GC+99] and Salutation were analysed for discovery purposes [CFJ01] and
found unsuitable due to:

• Lack of rich representation: the existing architectures lack of
expressive languages, representation and tools for the broad range
of service descriptions.

• Lack of constraint specification and inexact matching: most protocols
require exact matching, with a simplistic notion of constraints. Lack
of semantic matching.

• Lack of ontology support: for representing service descriptions and
capabilities.

Finally Jini was selected as the best choice, despite being very platform
specific (Java), thus limiting the flexibility and wide deployment of the
whole system. Moreover, Jini matching is performed by comparing interface
names not functionality, there is no reasoning mechanism and it uses
absolute matching (e.g.: printer name and model, instead of “the nearest
printer”).

74



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

In order to improve Jini’s performance, CoBrA used the Ronin Agent
Framework featuring additional mechanisms to augment its discovery
capabilities.

Gaia also addressed the importance of discovery and the suitability
of Semantic Web technologies to help here [MRCM03a] [RCAM+05].
Gaia employed a first approach to use Semantic Web technologies during
discovery, by using class types that drive the search process, since classes
represent service types from the authors’ point of view.

There have been also novel approaches, such as Cooltown [KB01] which
used “URL sensing” for discovery, based on IR/RF, barcodes, electronic tags
or optical recognition. López de Ipiña carried out a similar approach in
EMI2 [LVG+06] by encoding tiny URLs in TRIP tags [LMH02] for device
identification. Other Ubiquitous Computing projects have traditionally used
protocols such as Multicast DNS (mDNS) [CK06b], DNS Service Discovery
(DNS-SD) [CK06a] and UPnP SSDP [GC+99].

In all the cases, the activity that embodies the essence of the discovery
process is matchmaking: how the query is resolved to identify suitable
candidates.

Virtually all existing discovery protocols base the matchmaking in the
device or service type, the ID or some concrete attribute values. This
approach performs relatively well for simple systems, but as McGrath points
out [McG05] “keyword or string matching is relatively easy and efficient to
implement [. . . ]. String matching performs well in limited cases: essentially
when the vocabulary is controlled”.

Simple discovery protocols provide basic attribute-value matching
mechanisms, where service type or ID can be also considered attributes.
The expressive capability of such systems is thus restricted at a syntactic
level.

The need for more intelligent discovery capabilities is again stressed in
[ZMN05]: “service discovery protocols must work in unfamiliar computing
environments to achieve the goal of computing anytime and anywhere. Service
discovery design for such environments is more challenging [...]. This means
that service discovery protocols and the underlying computing infrastructure
must have more intelligence”.

As described in subsection 1.3.1, Semantic Web technologies overcome
the above limitations by describing information at a higher level, and it is
specially suitable for unknown problems [Las06]. Since no Semantic Web
-based discovery mechanisms for Ubiquitous Computing exist so far (see
references in subsection 1.3.1), we assumed the task of designing a basic
semantic discovery protocol suitable for our model.

75



A Reactive Behavioural Model for Context-Aware Semantic Devices

3.2 Introduction to mRDP – Multicast Resource
Discovery Protocol

Both as an important part of the SoaM architecture and as a broader goal
itself we accomplished the design of a semantic-powered discovery protocol
with the following requirements:

• In order to achieve spontaneity, no central registration server must be
used. Thus, multicast communication will be applied.

• Since some devices can feature limited processing capabilities,
two modes of operation must be provided: full semantic-powered
operation, and basic operation.

• It must feature a highly expressive language for the queries.

• It should be able not only to provide searching capabilities about
resources, but also to obtain URLs where more information about
them can be downloaded.

• It must be based on the TCP/IP stack with the highest possible
integration with HTTP (thus, taking advantage of HTTP security
mechanisms).

The resulting design is mRDP – Multicast Resource Discovery Protocol,
a UDP/HTTP based protocol for semantic powered searches in Ubiquitous
Computing scenarios.

mRDP provides two different functions:

• Resource identification: search the network for resources meeting
particular conditions. For example, “find all the devices located in
urn:uuid:room21”.

• Resource description location: search the network for sources of
information about a particular resource. For example, “where can I
obtain information about urn:uuid:tv1?”.

While resource identification has already been explained, description
location is a new feature that enables an mRDP client to locate information
providers about a particular resource, given its URI.

For example, an mRDP client may want to know all the information
related to http://people.com/bobby in the network, or maybe all the data
related to urn:uuid:tv1 stored by any entity. The mRDP client would issue

76



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

a location request about the URI, and every mRDP server containing some
piece of information about that resource would reply with a URL where that
information can be downloaded.

Attaching just the URL is more efficient than directly sending the whole
volume of data in the reply for several reasons:

• It generates less traffic, since packets are significantly smaller than
conveying all the information.

• The decision about eventually download the data is left to the
client, which carries out the download if needed (maybe the required
information has already been downloaded from other source, so there
is not need to retrieve it again).

• The URL can be reused several times if the client needs to poll
periodically the data about the resource, without searching the
network again.

The two functions of mRDP, despite independent, can be coordinated
in a complementary process: the mRDP client obtains the identification of
resources meeting some conditions, and afterwards locates the information
sources where more data about those resources can be downloaded.

3.2.1 Operation

The mRDP architecture declares two types of agents: mRDP clients and
mRDP servers. Generally, both agents coexist within the same entity,
querying and providing information, promoting a P2P architecture in the
network.

During resource identification, (1) an mRDP client disseminates the
query through the network about a particular resource matching some
concrete conditions. Every mRDP server receives the query, processes it
against its information model, that is, the RDF graph, and (2) returns the
results with the URIs of the resources matching the query back to the client.

During resource description location, (3) an mRDP client disseminates
a request about the resource throughout the network. Every mRDP server
checks whether there is information available about that resource in its RDF
graph and, if so, (4) it returns one or more URLs to the client, where data
about the resource can be downloaded.

The interactions illustrating both functions are depicted in Figure 3.1.
The client disseminates a query q about a resource to the network, where
four mRDP servers are available, each one with an RDF graph representing

77



A Reactive Behavioural Model for Context-Aware Semantic Devices

&OLHQW

6HUYHU�%

6HUYHU�&

6HUYHU�'

6HUYHU�$

��,'(17,)<�UHT�T

��,'(17,)<�UHV�U�

��,'(17,)<�UHV�U�

��/2&$7(�UHT�U�

��/2&$7(�UHV�U�

��/2&$7(�UHV�U�

0XOWLFDVW

8QLFDVW

��/2&$7(�UHV�U�

id221787546 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.1: Example of mRDP operation.

the managed information. Two of them, B and C, can resolve the query
successfully and provide the identification of two resources satisfying the
query: B provides r1 and C provides r2. Next, the client disseminates a
request to retrieve all the available information about r1 in the network.
Not only B and C reply providing at least one URL where all their stored
information about r1 and r2 can be downloaded respectively, but D also
replies, since it stores some pieces of information concerning r1 (although
those data were not enough to match the query q).

In order to save traffic and time, mRDP servers can also provide resource
description location URLs in the response to the identification message (2),
so the client does not need to perform a second interaction except in the
case more information from other sources is required.

While client queries are always multicast, so they can use UDP as the
transport protocol, the server replies are always unicast. These replies are
not limited in size, and in fact, they can be very large, for example in a
scenario where an mRDP server stores information about dozens of users,
and the mRDP client disseminates a request to identify resources of type
“user”.

78



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

Queries can be conveyed in UDP messages since they are small, but
replies could be larger and require fragmentation or “chunking” if embodied
in UDP datagrams. Moreover, in order to cope with network reliability, the
client can issue several copies of the query, but if servers have to deal with
UDP unreliability in every response, the complexity of the protocol increases
unnecessarily.

Moreover, while queries must be readable for any server in order to
check whether they can provide the desired information, responses could
require a higher level of privacy and security. Attaching the appropriate
security mechanisms to the resulting protocol would even create a more
cumbersome communication scheme.

Fortunately there is another solution to the problem, backed up by
existing and well-proven techniques and better integrated into our model:
the client could attach a callback HTTP URI to the request, so that every
mRDP server can send the response to that endpoint, using traditional
HTTP communication, augmented with authentication mechanisms (basic
or digest), or even HTTPS.

Some advantages of sending the response via HTTP back to the client
are:

• Since HTTP is intended to be used in other parts of the SoaM
architecture, reuse of libraries and minimisation of platform size is
achieved by this strategy.

• HTTP Basic or Digest Authentication as well as HTTPS can be easily
reused and implemented, thus taking advantage of existing standards.

• Since HTTP uses TCP as transport layer, reliability is intrinsically
provided and messages are not limited in size.

Therefore, the mRDP communication architecture will use UDP
multicast messages for sending the requests and HTTP callbacks for
receiving the responses as illustrated in Figure 3.2.

An UML sequence diagram of the communication process is depicted in
Figure 3.3. The steps involved are:

1. A client application requests the mRDP client module to issue a request
to the network conveying a certain query to find matching resources.
The mRDP server module on the server side receives the query and
processes it against the internal information model. The response is
generated and sent back to the client in an HTTP POST request, where
the HTTP server module extracts the data and passes them to the client
application.

79



A Reactive Behavioural Model for Context-Aware Semantic Devices

P5'3F

,3

7&38'3

+773V +773F

,3

8'37&3

P5'3V

1HWZRUN�LQWHUIDFH 1HWZRUN�LQWHUIDFH

P5'3�UHT

+773�UHT�UHV

8'3�0XOWLFDVW

7&3�8QLFDVW

&OLHQW 6HUYHU

id616890828 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.2: mRDP over the TCP/IP protocol stack.

2. If the client needs to find more information for a concrete resource,
it requests the mRDP client module to issue a description location
request to the network. Receiving servers managing information about
the queried resource generate an HTTP POST callback targeted at the
client HTTP server, containing their references for accessing resource
data. The client HTTP server, in turn, passes the data to the client
application.

3. Finally, the client application may use the references to retrieve the
desired resource information from the HTTP server at the server, via a
simple HTTP GET operation.

The step 2 can be avoided if the response to the identification request
in step 1 already contains references provided by the server to download
resource information, thus generating the sequence depicted in Figure 3.4.

Both mechanisms are complementary, since the server can include its
references for retrieving resource information, while the client can issue
an mRDP description location request to the network for obtaining more
references from other servers that also manage information about the
queried resource.

80



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

&OLHQW�DSS P5'3F P5'3V +773F+773V

LGHQWLI\5HVRXUFH��

P5'3�,'(17,)<�UHT

+773�3267�UHT

ORFDWH5HVRXUFH��

P5'3�/2&$7(�UHT

+773�3267�UHT

+773�3267�UHV

+773�3267�UHV

,QIR0DQDJHU

QRWLI\,GHQWLILFDWLRQ��

ORFDWH5HVRXUFH��

QRWLI\/RFDWLRQ��

LGHQWLI\5HVRXUFH��

&OLHQW 6HUYHU

+773V

+773�*(7�UHT

+773�*(7�UHV

QRWLI\,GHQWLILFDWLRQ��

QRWLI\/RFDWLRQ��

�

REWDLQ,QIR��

LQIR

�

�

id196895859 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.3: mRDP UML sequence diagram with all the interactions.

3.2.2 Resource identification

The purposes of resource identification request messages is to convey some
kind of query, so that resources matching the query are identified. Different
query languages can be used for this purpose, but SPARQL [Wor06b] is
probably the best positioned candidate: SPARQL syntax provides rich levels
of expressiveness for constructing conditions about resources in a RDF
graph.

81



A Reactive Behavioural Model for Context-Aware Semantic Devices

&OLHQW�DSS P5'3F P5'3V +773F+773V

LGHQWLI\5HVRXUFH��

P5'3�,'(17,)<�UHT

+773�3267�UHT

+773�3267�UHV

,QIR0DQDJHU

QRWLI\,GHQWLILFDWLRQ��

LGHQWLI\5HVRXUFH��

&OLHQW 6HUYHU

+773V

+773�*(7�UHT

+773�*(7�UHV

QRWLI\,GHQWLILFDWLRQ��

REWDLQ,QIR��

LQIR�

�

id196870562 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.4: Optimised mRDP UML sequence diagram.

Obviously the main problem with SPARQL is that it requires a SPARQL
engine in every mRDP server, which is clearly not possible in limited devices.
Moreover, SPARQL provides a lot of additional constructions and keywords
that are neither required nor useful for resource identification.

A simpler alternative to SPARQL must be provided, such that limited
devices, maybe storing the information using an attribute-value scheme
instead of an RDF graph, can interpret and process the queries, and generate
replies when acting as mRDP servers.

3.3 Plant: Pattern Language for N-Triples

The most basic standardised RDF notation available is N-Triples [Wor04g].
N-Triples features a line-based, plain-text format and very simple grammar,
a subset of Notation 3 [Ber06], for encoding an RDF graph.

82



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

An example document representing RDF information in N-Triples format
is1:

<urn:uuid:tv1> <http://www.awareit.com/onto/2005/12/tv#channel> <http

://www.bbc.co.uk/bbctwo> .

<urn:uuid:light1> <http://www.awareit.com/onto/2005/12/light#luminance

> "4" .

No prefixes but absolute URIs must be used in N-Triples for identifying
resources. Basically the N-Triples notation is the direct serialisation of every
triple in the RDF graph. N-Triples allows typed literals and blank nodes.

N-Triples’s simplicity makes it the best candidate for limited devices
when dealing with RDF information.

However, there is an important drawback in N-Triples notation for our
purpose: it can only express concrete RDF triples, neither patterns nor
conditions. In order to support these kind of constructions, the N-Triples
syntax must be extended to be able to produce expressions such as:

Listing 3.1: Example of triple patterns based on N-Triples.
1 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.

awareit.com/onto/2005/12/tv#TV>.
2 ?r <http://www.awareit.com/onto/2005/12/tv#channel> <http://www.bbc.co

.uk/bbctwo>.

The above expression can be now considered a query to identify a
resource ?r meeting two statement patterns (conditions): ?r’s type is TV
and its current configured channel is BBC2.

In order to be able to construct this kind of expressions with variables,
representing RDF triple patterns, N-Triples grammar must be extended.
Therefore, we modified the subject and object productions that were
originally defined in the N-Triples specification [Wor04g] as:

subject ::= uriref | nodeID

object ::= uriref | nodeID | literal

To support variable constructs via a new variable production.

subject ::= uriref | nodeID | variable

object ::= uriref | nodeID | literal | variable

variable ::= ’?’ name

1Apparent line breaks in the code are due to limitations in page width.

83



A Reactive Behavioural Model for Context-Aware Semantic Devices

Now, triple patterns such as those illustrated in Listing 3.1 can be
supported by this simple extension we called Plant (Pattern Language for
N-Triples).

Very much as N-Triples represents a subset of Notation 3 expressiveness,
Plant represents a subset of SPARQL expressiveness. If fact, the example of
Listing 3.1 can be translated into SPARQL as:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX tv: <http://www.awareit.com/onto/2005/12/tv#>

SELECT ?r

WHERE { ?r rdf:type tv:TV .

?r tv:channel <http://www.bbc.co.uk/bbctwo> .

}

However, Plant’s simplicity makes it suitable for being processed by
resource-limited devices without much computing requirements. In fact
even simple devices, not using RDF graphs for knowledge information
representation but attribute-value collections with URI namespaces for
naming the attributes, can easily process Plant queries.

If the receiving server is able to process SPARQL queries, it can transform
the Plant query into a SPARQL representation as illustrated above. If the
server does not feature a SPARQL engine or lacks semantic processing
capabilities, the following Plant Query Resolution Algorithm can be applied.

3.3.1 The Plant Query Resolution Algorithm

The Plant Query Resolution Algorithm is a very simple and straightforward
variables unification algorithm optimised for dealing with RDF information
and resolve Plant queries, although other query syntax could be used.

The algorithm is structured in the following steps:

1. Optionally, map the attribute-value pairs into RDF triples (if the
information is not already in RDF form).

2. Identify all the variables in the whole set of Plant patterns.

3. For every Plant pattern, select the triples in the information model
that meet such pattern and annotate the combination of valid values
for the variables provided by the triple (∗ for any value).

4. Substitute ∗ by the available values of the involved variable in
combinations present in other Plant patterns.

84



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

5. Identify the combinations of values that match all the patterns:
these combinations represent the solutions for the variables. If no
combination is identified, the query cannot be resolved.

For example, the query “identify all the devices whose user is a woman”
can be translated into Plant as three patterns:

Listing 3.2: An example Plant query.
1 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://pervasive

.semanticweb.org/ont/2004/06/device#Device> .
2 ?r <http://pervasive.semanticweb.org/ont/2004/06/device#hasUser> ?u .
3 ?u <http://pervasive.semanticweb.org/ont/2004/06/person#gender> <http

://pervasive.semanticweb.org/ont/2004/06/person#Female> .

The resolution process is straightforward:

1. Map the attribute-value pairs into RDF triples. . Appropriate
domain ontologies must be selected. Generally the attribute maps onto the
predicate, the value onto the object, and the subject is the device itself. For
example, the following attribute-value pairs in urn:uuid:tv1:

1 state = on
2 volume = 5

Can be mapped in RDF triples as:

1 <urn:uuid:tv1> tv:state <http://www.awareit.com/onto/2005/12/devices#
stateOn> .

2 <urn:uuid:tv1> tv:volume "5" .

The current example is more complex since the device manages
information about other entities. This information can be finally mapped
onto RDF as:

<urn:uuid:hifi1> rdf:type dev:Device .

<urn:uuid:tv1> rdf:type dev:Device .

<urn:uuid:light1> rdf:type dev:Device .

<urn:uuid:hifi1> dev:hasUser <http://people.com/alice> .

<urn:uuid:tv1> dev:hasUser <http://people.com/bobby> .

<urn:uuid:tv1> dev:hasUser <http://people.com/chris> .

<http://people.com/alice> per:gender per:Female .

<http://people.com/bobby> per:gender per:Male .

<http://people.com/chris> per:gender per:Female .

85



A Reactive Behavioural Model for Context-Aware Semantic Devices

2. Identify all the variables in the whole set of Plant patterns. The
variables are ?r and ?u.

?r ?u

3. For every Plant pattern, select the triples in the information model
that meet such pattern and annotate the combination of valid values
for the variables provided by the triple (∗ for any value). If patterns
are referred to as Pattern 1, Pattern 2 and Pattern 3:

Pattern 1:

<urn:uuid:hifi1> rdf:type dev:Device .

<urn:uuid:tv1> rdf:type dev:Device .

<urn:uuid:light1> rdf:type dev:Device .

?r ?u

<urn:uuid:hifi1> *
<urn:uuid:tv1> *
<urn:uuid:light1> *

Pattern 2:

<urn:uuid:hifi1> dev:hasUser <http://people.com/alice> .

<urn:uuid:tv1> dev:hasUser <http://people.com/bobby> .

<urn:uuid:tv1> dev:hasUser <http://people.com/chris> .

?r ?u

<urn:uuid:hifi1> <http://people.com/alice>

<urn:uuid:tv1> <http://people.com/bobby>

<urn:uuid:tv1> <http://people.com/chris>

Pattern 3:

<http://people.com/alice> per:gender per:Female

<http://people.com/chris> per:gender per:Female

?r ?u

* <http://people.com/alice>

* <http://people.com/chris>

86



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

4. Substitute ∗ by the available values of the involved variable in
combinations present in other Plant patterns. The ∗ is unwrapped and
the whole set of possible combinations is obtained:

Pattern 1:

?r ?u

<urn:uuid:hifi1> <http://people.com/alice>

<urn:uuid:hifi1> <http://people.com/bobby>

<urn:uuid:hifi1> <http://people.com/chris>

<urn:uuid:tv1> <http://people.com/alice>

<urn:uuid:tv1> <http://people.com/bobby>

<urn:uuid:tv1> <http://people.com/chris>

<urn:uuid:light1> <http://people.com/alice>

<urn:uuid:light1> <http://people.com/bobby>

<urn:uuid:light1> <http://people.com/chris>

Pattern 2:

?r ?u

<urn:uuid:hifi1> <http://people.com/alice>

<urn:uuid:tv1> <http://people.com/bobby>

<urn:uuid:tv1> <http://people.com/chris>

Pattern 3:

?r ?u

<urn:uuid:hifi1> <http://people.com/alice>

<urn:uuid:tv1> <http://people.com/alice>

<urn:uuid:light1> <http://people.com/alice>

<urn:uuid:hifi1> <http://people.com/chris>

<urn:uuid:tv1> <http://people.com/chris>

<urn:uuid:light1> <http://people.com/chris>

5. Identify the combinations of values that match all the patterns:
these combinations represent the solutions for the variables. If no
combination is identified, the query cannot be resolved. There are two
combinations that appear in every pattern: these are the solutions.

?r ?u

<urn:uuid:hifi1> <http://people.com/alice>

<urn:uuid:tv1> <http://people.com/chris>

Therefore, the values of ?r are the actual resources that meet the query
“devices whose user is a woman”.

Some optimisations can be implemented during step 4, avoiding the
substitution of all the possible values in the patterns and using the minimum
possible subset (provided by Pattern 2 in the example).

87



A Reactive Behavioural Model for Context-Aware Semantic Devices

This algorithm is straightforward to implement in limited devices and
provides the required compatibility with our semantic-powered discovery
mechanism2.

3.3.2 mRDP SPARQL queries

In addition to Plant, SPARQL queries are supported in mRDP as illustrated
further in Listing 3.5. Only SELECT constructions are allowed in mRDP
SPARQL queries since they are the only ones that can produce bounded
variables with values (CONSTRUCT and DESCRIBE return a graph, and ASK

returns a boolean).

Since a SPARQL SELECT query can include a number of variables, the one
involved in the mRDP resolution is that referred in the request line of the
protocol (see subsection 3.4).

SPARQL queries are much more powerful than Plant queries. They can
express conditions and filters with logical connectives and a broad range
of operators. The main drawback of using SPARQL is that resource-limited
devices will not be able to process SPARQL queries, therefore it is always
recommendable to use Plant queries whenever possible and SPARQL queries
more sparingly.

3.4 mRDP message format

mRDP request messages tipically convey a Plant query over UDP and are
multicasted to the address 224.0.24.13 and UDP port 2773. The MIME type
[FK05] for Plant queries is application/com.awareit.plant.

mRDP request messages follow an multi-line syntax, being extensible
through new headers to provide additional semantics. As most of Internet
protocols, ASCII characters 13 and 10 (CR LF) are used to separate lines
which constitute the major divisions in the message format.

The Augmented BNF grammar [CO05] for mRDP messages is:

Listing 3.3: Augmented BNF grammar for mRDP messages.
1 request-message = request-line *(header CRLF) CRLF [body]
2 request-line = (c-identify / c-locate) SP version CRLF
3 c-identify = "IDENTIFY" SP variable

2Other alternative algorithms such as Rete were considered, but they generally require
more time and memory to create the temporal structures for efficient matching.

3Not assigned by IANA as of November 2006.

88



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

4 c-locate = "LOCATE" SP absoluteURI
5 variable = "?" token
6 version = "mRDP/" number "." number
7 header = h-NSeq / h-Content-Type / h-Content-Length / h-Callback-URI
8 h-NSeq = "NSeq" ":" number
9 h-Content-Type = "Content-Type" ":" media-type

10 h-Content-Length = "Content-Lengh" ":" number
11 h-Callback-URI = "Callback-URI" ":" i-Callback 0*("," i-Callback)
12 i-Callback = absoluteURI [";" p-Callback-Type]
13 p-Callback-Type = "type" "=" absoluteURI
14 body = 1*OCTET
15

16 number = 1*DIGIT
17 media-type = type "/" subtype
18 type = token
19 subtype = token

Some of the above productions are widely used in Internet protocols. SP,
CRLF, OCTET, DIGIT can be found in [CO05], as well as token and absoluteURI

can be found in [FGM+99].

An mRDP request message is composed of a request line, zero or more
headers and an optional body section. The request line’s main element is the
command, either an IDENTIFY command followed by the variable to resolve
in the query or a LOCATE command with a resource URI. The request line
ends with a protocol version number.

Headers follow the same format as traditional headers in protocols such
as HTTP [FGM+99], also used in RTSP [SRL98] or SIP [RSCl+02]. There
are four headers defined in mRDP:

• NSeq: request sequence number for detecting duplicate request
messages from clients and matching requests and responses.

• Content-Type: MIME type of the message body section. Currently,
mRDP supports two MIME types: application/com.awareit.plant for
Plant queries, and application/sparql-query for SPARQL queries. This
header must not appear if the message does not contain a body section
(such as LOCATE messages).

• Content-Length: length in bytes of the message body section. This
header must not appear if the message does not contain a body section
(LOCATE messages).

• Callback-URI: the endpoint where the server must send the response
back to the client. The type parameter can inform about the
interface type used by this endpoint in the form of a namespace

89



A Reactive Behavioural Model for Context-Aware Semantic Devices

URI. Several callback URIs can be provided by the client in
this header, with the same or different interface types, in order
to allow the server to build the response message in the most
suitable format. If no interface type is provided, the default is
http://www.awareit.com/soam/2006/04/redelws#httpPost, which is the
only interface type for mRDP callbacks defined at the moment (see
appendix C).

IDENTIFY messages must contain a body section where the query, either
in Plant or SPARQL is conveyed, while LOCATE messages must not contain a
body.

For example, a message conveying the Plant query in Listing 3.2 could
be4:

Listing 3.4: An example mRDP resource identification message.
1 IDENTIFY ?r mRDP/1.0
2 NSeq: 23
3 Content-Type: application/com.awareit.plant
4 Content-Length: 314
5 Callback-URI: http://169.254.0.3/mrdpendpoint
6

7 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://pervasive
.semanticweb.org/ont/2004/06/device#Device> .

8 ?r <http://pervasive.semanticweb.org/ont/2004/06/device#hasUser> ?u .
9 ?u <http://pervasive.semanticweb.org/ont/2004/06/person#gender> <http

://pervasive.semanticweb.org/ont/2004/06/person#Female> .

The same message using SPARQL for the query:

Listing 3.5: An example mRDP resource identification message with
SPARQL.

1 IDENTIFY ?r mRDP/1.0
2 NSeq: 23
3 Content-Type: application/sparql-query
4 Content-Length: 327
5 Callback-URI: http://169.254.0.3/mrdpendpoint
6

7 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
8 PREFIX dev: <http://pervasive.semanticweb.org/ont/2004/06/device#>
9 PREFIX per: <http://pervasive.semanticweb.org/ont/2004/06/person#>

10 SELECT ?r
11 WHERE { ?r rdf:type dev:Device .

4Note that the IP address 169.254.0.3 belongs to the link-local range 169.254.0.0–
169.254.255.255, reserved by IANA for IP auto-configuration [IAN02].

90



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

12 ?r dev:hasUser ?u .
13 ?u per:gender per:Female .
14 }

Listing 3.6 is an example of a LOCATE message broadcasted to the
network in order to obtain information sources where more data about
urn:uuid:phone1 can be downloaded. Two possible callback endpoints are
provided, one of them with the default interface explicitly declared (though
this is not required):

Listing 3.6: An example mRDP resource description location message.
1 LOCATE urn:uuid:phone1 mRDP/1.0
2 NSeq: 57
3 Callback-URI: http://169.254.0.3/mrdpendpoint, http

://169.254.0.3:8081/altmrdpep;type=http://www.awareit.com/soam
/2006/04/redelws#httpPost

Due to the unreliable nature of UDP, mRDP request messages must be
sent three times on order to increase the probability of reaching the possible
destinations in the case some UDP packet is lost. Three times for every
message is a good balance between increasing reliability without generating
much network traffic (other discovery protocols such as UPnP SSDP also
send the messages three times).

3.5 ReDEL: Resource Description Endpoints
Language

After resolving the variables in the resource identification message or
locating the information sources in the resource description location
message, the mRDP server constructs the reply, which is an HTTP request to
the callback URI provided by the client and conveying the required data in
a suitable format.

The client receives the replies via the provided Callback-URI, processing
them afterwards. The replies themselves are very simple, they just need
to express the resources matching the query and how to access available
descriptions. The format should be straightforward, so that limited devices
can process it without much overload.

We have designed a simple mark-up language called ReDEL – Resource
Description Endpoints Language, for annotating the information contained
in the replies to IDENTIFY and LOCATE mRDP messages.

A possible HTTP callback conveying a ReDEL response to the query
shown in Listing 3.4 is the following:

91



A Reactive Behavioural Model for Context-Aware Semantic Devices

Listing 3.7: An example of HTTP callback conveying ReDEL payload.
1 POST /mrdpendpoint HTTP/1.0
2 Host: 169.254.0.3
3 NSeq: 23
4 Content-Type: application/com.awareit.redel+xml
5 Content-Length: 589
6

7 <?xml version="1.0" encoding="UTF-8"?>
8 <redel xmlns="http://www.awareit.com/soam/2006/04/redel"
9 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

10 xsi:schemaLocation="http://www.awareit.com/soam/2006/04/redel
11 http://www.awareit.com/soam/2006/04/redel.xsd">
12

13 <resource uri="urn:uuid:tv1">
14 <location url="http://169.254.0.12/description" type="http://www

.awareit.com/soam/2006/04/srdfws#httpGet"/>
15 <location url="http://169.254.0.12/sparql" type="http://www.w3.

org/2005/08/sparql-protocol-query/#queryHttpPost"/>
16 </resource>
17

18 </redel>

Lines 13–16 embody the information related to the resource that
matched the query. For example, urn:uuid:tv1 received the request message
and identified itself as a possible solution to the query, thus generating the
above response for the client and including two URLs in lines 14 and 15
where the client can retrieve extended information about urn:uuid:tv1 itself.

The first URL provides information about urn:uuid:tv1 when requested
through a simple HTTP GET message, while the second URL implements
the SPARQL protocol HTTP POST binding as described in [Wor06a]. The
default in case no interface is specified is the basic HTTP GET represented
by http://www.awareit.com/soam/2006/04/srdfws#httpGet.

The mRDP client provides an HTTP interface for receiving this kind of
callbacks. Besides simple ReDEL payload over HTTP POST messages as
in the previous example, a SOAP interface can be provided by the client.
Both the complete ReDEL XML Schema and ReDEL WSDL can be found in
appendix C.

The minimum requirements any implementation must support at the
client side are:

• Creating application/com.awareit.plant queries.

• Disseminating the queries to the multicast IP address 224.0.24.1 and
multicast UDP port 2773.

92



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

• Reserving an HTTP callback URI for receiving HTTP POST messages
with ReDEL payload.

• Processing ReDEL documents with the solution.

And at the server side:

• Joining the multicast IP address 224.0.24.1 and listening to the
multicast UDP port 2773.

• Processing application/com.awareit.plant queries.

• Generating ReDEL documents with the solution.

• Issuing HTTP POST callbacks for conveying the ReDEL payload.

3.6 Example of advanced uses of semantic queries

As commented earlier, a major advantage of using RDF/OWL support
instead of basic attribute-value matching is that semantic processing can be
performed to resolve the query. For instance, revisiting a slightly modified
version of the previous example in this section:

<urn:uuid:hifi1> rdf:type dev:Device .

<urn:uuid:tv1> rdf:type tv:TV .

<urn:uuid:light1> rdf:type light:Light .

<urn:uuid:hifi1> dev:hasUser <http://people.com/alice> .

<urn:uuid:tv1> dev:hasUser <http://people.com/bobby> .

<urn:uuid:tv1> dev:hasUser <http://people.com/chris> .

<http://people.com/alice> rdf:type rel:Mother .

<http://people.com/bobby> per:gender per:Male .

<http://people.com/chris> per:gender per:Female .

If a client issues the query “identify all the devices whose user is
a woman”, a strict matching would not yield any result, since only
<urn:uuid:hifi1>’s type is considered a dev:Device, and there is not any
evidence that its user’s genre (<http://people.com/alice>) is per:Female.

There are two mechanisms to support intelligent reasoning in mRDP
servers when resolving the queries:

1. Ontologies, based on description logics.

2. Domain inference rules, based on forward chaining.

93



A Reactive Behavioural Model for Context-Aware Semantic Devices

In order to illustrate the first mechanism, let us suppose that an ontology
is available declaring that:

tv:TV rdfs:subClassOf dev:Device .

In order to illustrate the second mechanism, let us suppose that the
following inference rule is known by the server:

(x rdf:type rel:Mother) ⇒ (x per:gender per:Female)

Therefore, the processing of both existing ontologies and knowledge
domain rules, prior to query evaluation would produce the following
statements that would be added to the knowledge base:

<urn:uuid:tv1> rdf:type dev:Device .

<http://people.com/alice> per:gender per:Female .

The first statement is produced by the ontological reasoning mechanism,
while the second one is produced by applying the domain inference rule.
Once reasoning is performed in this way, the query would be successfully
resolved to <http://people.com/alice> and <http://people.com/chris>.

3.7 Performance evaluation of lexical and semantic
discovery with mRDP

The benefits of semantic discovery compared to traditional text-based
matching are clear: more refined results are obtained by interpreting the
information relationships. Only a subset of those results, or even none,
could be obtained using non-semantic mechanisms. However, what is the
impact in performance for semantic queries?

In order to test the performance of the matchmaking mechanism in
mRDP with and without reasoning, we executed the above search against
10 mRDP servers (Pentium 1.86 GHz) powered with a Java implementation
of the Plant Query Resolution Algorithm. During the first round, the servers
were configured to apply both ontology and domain rules reasoning. During
the second round, no form of semantic reasoning was performed.

Every test was executed 8 consecutive times. The first execution
provokes the initialisation of internal structures and, thus, takes more
time, so we isolated it. Second and subsequent executions produce more
stabilised measures.

Absolute values are not representative since they depend on system
configuration, so we analysed relative measures. In this scenario with few
rules and basic ontological relationships, lexical matchmaking is about 2.82

94



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

times faster than semantic matchmaking in the first execution, when the
initialisation takes place (see Figure 3.5).

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Server #

T
im

e 
(m

s)

Semantic#1
Lexical#1

id272342468 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.5: Matchmaking performance during the first execution in mRDP
discovery.

Subsequent executions are much more efficient, since internal structures
have been already generated. In this case, lexical matchmaking performs
even better, around 5.55 times faster than semantic matchmaking after
stabilisation (see Figure 3.6). As more complex ontologies and domain rules
are provided, the time devoted to reasoning increases exponentially.

As expected, semantic matchmaking is more time-consuming than the
simple lexical version. However, it is much more powerful than the
traditional approach in order to find resources that meet some concrete
criteria. Semantic discovery is able to browse the roots of the information
to unleash the real meaning, create relationships and produce the right
answers.

Semantic matchmaking can be activated in computer platforms that
are capable of producing results without a significant delay, while lexical
matchmaking can be performed in more resource-limited devices. Moreover,
we consider that the performance of our implementation of the Plant Query
Resolution Algorithm can be greatly improved.

95



A Reactive Behavioural Model for Context-Aware Semantic Devices

0

20

40

60

80

100

120

140

#2 #3 #4 #5 #6 #7 #8

Test

A
ve

ra
g

e 
ti

m
e 

(m
s)

Semantic
Lexical

id272263078 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 3.6: Stabilised matchmaking performance in mRDP discovery.

Despite demanding more time and higher computing requirements, we
deem semantic discovery mechanisms to provide the degree of intelligence
expected in Ambient Intelligence scenarios.

mRDP is able to provide this functionality while also supporting
traditional lexical matchmaking, thus integrating limited and advanced
platforms within one unique discovery model.

3.8 Comparative analysis

mRDP provides a simple and powerful way for performing semantic
queries in Ubiquitous Computing environments, taking advantage and
reusing HTTP infrastructure. Several discovery mechanisms for Ubiquitous
Computing have been proposed in the past, none of them widely accepted.
Edwards published a comparative [Edw06] about SSDP, Jini, Bluetooth SDP,
SLP, Bonjour, Salutation, INS and Ninja SSDS, including also infrared and
RFID mechanisms. The comparison was based on the criteria of topology,
transport, scope, search and security.

96



Juan Ignacio Vázquez Chapter 3. mRDP: A Semantic Discovery Protocol

We reproduce in Table 3.1 the comparison table with an additional row
for mRDP5.

mRDP exhibits some distinct factors from other alternatives, such as
its powerful semantic search capabilities, and the use of well-proven and
reliable HTTP-based security infrastructure.

We deem mRDP to be the best candidate for intelligent discovery
in pervasive computing scenarios, and also a valuable and promising
alternative in other networking environments.

5The rows for eSquirt (infrared) and RFID are not included, since they are not relevant
for the current research.

97



A Reactive Behavioural Model for Context-Aware Semantic Devices

Sy
st

em
To

po
lo

gy
Tr

an
sp

or
t

Sc
op

e
Se

ar
ch

Se
cu

ri
ty

Si
m

pl
e

Se
rv

ic
e

D
is

co
ve

ry
Pr

ot
oc

ol
(S

SD
P)

Pe
er

-t
o-

pe
er

(P
2P

)
U

ni
ca

st
H

T
TP

,m
ul

ti
ca

st
H

T
TP

Su
bn

et
Ty

pe
or

ID
A

ut
he

nt
ic

at
io

n,
ac

ce
ss

co
nt

ro
l

Ji
ni

H
yb

ri
d

U
ni

ca
st

TC
P,

m
ul

ti
ca

st
U

D
P

Su
bn

et
,b

ri
dg

ea
bl

e
Ty

pe
,I

D
or

at
tr

ib
ut

e
Ji

ni
/J

av
a

se
cu

ri
ty

m
ec

ha
ni

sm
s

B
lu

et
oo

th
Se

rv
ic

e
D

is
co

ve
ry

Pr
ot

oc
ol

(S
D

P)

Pe
er

-t
o-

pe
er

(P
2P

)
Li

nk
m

an
ag

er
Pr

ot
oc

ol
(L

M
P)

an
d

Lo
gi

ca
l

Li
nk

C
on

tr
ol

an
d

A
da

pt
at

io
n

Pr
ot

oc
ol

(L
2C

A
P)

Pr
ox

im
it

y
(–

10
m

et
er

s)
Ty

pe
or

at
tr

ib
ut

e
(u

ni
ve

rs
al

ly
un

iq
ue

id
en

ti
fie

r
[U

U
ID

]
on

ly
)

Li
nk

-l
ev

el
or

se
rv

ic
e-

le
ve

l
en

cr
yp

ti
on

,
au

th
en

ti
ca

ti
on

Se
rv

ic
e

Lo
ca

ti
on

Pr
ot

oc
ol

Pe
er

-
to

-p
ee

r
(P

2P
)

or
di

re
ct

or
y

U
ni

ca
st

TC
P,

m
ul

ti
ca

st
U

D
P

Su
bn

et
,b

ri
dg

ea
bl

e
Ty

pe
or

at
tr

ib
ut

e
(L

ig
ht

w
ei

gh
t

D
ir

ec
to

ry
A

cc
es

s
Pr

ot
oc

ol
v.

3
se

ar
ch

pr
ed

ic
at

es
)

O
pt

io
na

l
se

rv
ic

e
au

th
en

ti
ca

ti
on

B
on

jo
ur

Pe
er

-t
o-

pe
er

(P
2P

)
M

ul
ti

ca
st

D
N

S
(m

D
N

S)
,

D
N

S
se

rv
ic

e
di

sc
ov

er
y

(D
N

S-
SD

)

Su
bn

et
Ty

pe
O

pt
io

na
l

IP
se

cu
ri

ty
(I

Ps
ec

),
D

N
S

se
cu

ri
ty

ex
te

ns
io

ns
(D

N
Ss

ec
)

Sa
lu

ta
ti

on
Pe

er
-

to
-p

ee
r

(P
2P

)
or

di
re

ct
or

y

O
pe

n
N

et
w

or
k

C
om

pu
ti

ng
re

m
ot

e
pr

oc
ed

ur
e

ca
ll

(O
N

C
R

PC
)

ov
er

ar
bi

tr
ar

y
tr

an
sp

or
ts

D
ep

en
ds

on
tr

an
sp

or
t

Ty
pe

or
at

tr
ib

ut
e

R
PV

au
th

en
ti

ca
ti

on

In
te

nt
io

na
l

N
am

in
g

Se
rv

ic
e

(I
N

S)
D

ec
en

tr
al

iz
ed

,
w

ea
kl

y
co

ns
is

te
nt

di
re

ct
or

ie
s

U
ni

ca
st

U
D

P
A

dm
in

is
tr

at
iv

e
A

tt
ri

bu
te

do
m

ai
n

N
on

e

N
in

ja
Se

cu
re

Se
rv

ic
e

D
is

co
ve

ry
Se

rv
ic

e
(S

SD
S)

D
ir

ec
to

ry
A

ut
he

nt
ic

at
ed

R
em

ot
e

M
et

ho
d

In
vo

ca
ti

on
(R

M
I)

W
id

e
ar

ea
(t

hr
ou

gh
hi

er
ar

ch
ic

al
di

re
ct

or
ie

s)

X
M

L-
ba

se
d

de
sc

ri
pt

io
ns

C
ap

ab
ili

ty
-b

as
ed

ac
ce

ss
co

nt
ro

l

M
ul

ti
ca

st
R

es
ou

rc
e

D
is

co
ve

ry
Pr

ot
oc

ol
(m

R
D

P)

Pe
er

-t
o-

pe
er

(P
2P

)
U

ni
ca

st
H

TT
P,

m
ul

ti
ca

st
U

D
P

Su
bn

et
,b

ri
dg

ea
bl

e
Se

m
an

ti
c

qu
er

ie
s,

at
tr

ib
ut

e-
ba

se
d

qu
er

ie
s

H
TT

P-
ba

se
d

se
cu

ri
ty

(H
TT

PS
an

d
H

TT
P

A
ut

he
nt

ic
at

io
n)

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

cu
rr

en
t

di
sc

ov
er

y
sy

st
em

s
an

d
m

R
D

P.

98



Chapter

4
A Theoretical Model for

Context-Aware Reactivity

“The Power of Context is an environmental argument.
It says that behavior is a function of social context.”

Malcolm Gladwell
The Tipping Point, 2000

CONSIDERING the research goals established in chapter 1 and the
analysis of related initiatives, we have designed a theoretical and
architectural model called SoaM (Smart Objects Awareness and

Adaptation Model). The SoaM architecture is intended to meet the proposed
criteria better than any of the analysed architectures, and accomplish our
general research goal.

But SoaM is not just an architecture. We have tried to identify
the theoretical basis underlying the context-awareness process under our
premises. In this chapter we present this theoretical basis that will shape
the foundations of the architecture.

4.1 Passively influencing the environment

The vision of Ubiquitous Computing and Ambient Intelligence, as referred
in chapter 1, promotes proactive environments that perceive users’
surrounding information, often referred to as context, and react in the
appropriate way to facilitate users’ activities. As stated before, the

99



A Reactive Behavioural Model for Context-Aware Semantic Devices

most valuable resource in such environments is not computing power,
communication or storage capabilities, but user attention [GSSS02] [SG02]
[SG03].

From our point of view, environment adaptation to user needs can be
achieved from two different perspectives:

1. Active influence: any mechanism in which the agent explicitly
commands other agents or objects to change their state or perform
an action. Examples of active mechanisms are configuration processes
and operation invocation techniques such as CORBA, RMI or SOAP.

2. Passive influence: any mechanism in which an agent disseminates
certain information, expecting that other agents perceive that
information and change their state or perform an action at their
discretion in order to create a more adapted environment [VL04].

While active influence represents traditional “command and control”
mechanisms, agents applying passive influence do not command the target
agents or objects to do anything concrete; they simply modify the context
expecting the others to react, changing their state in a positive (expected or
maybe surprisingly unexpected) way [VL05] (see Figure 4.1).

(QYLURQPHQW

(QYLURQPHQW

(QWLW\&RPPDQG 2SHUDWLRQ

$FWLYH�LQIOXHQFH

(QWLW\

3HUFHSWLRQ

2SHUDWLRQ

3DVVLYH�LQIOXHQFH

,QIRUPDWLRQ

id18324250 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.1: Active and passive infuence.

For instance, by exhibiting our presence in front of an automatic door,
we influence the door behaviour, which opens immediately. Maybe when

100



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

watching a concrete TV show the ambient lights of the living-room adjust
themselves automatically to fit the intensity and colours of the screen,
eliminating reflections and creating a more comfortable environment.

Passive influence works at the periphery of user attention, without
disturbing the user, without being explicitly commanded, silently working
in the background, non-intrusively, but probably their effects are less
predictable. Passive influence is at the core of context-awareness by
promoting autonomous behaviour on devices.

Passive mechanisms are also complementary to active ones and can serve
to automatically adapt the environment in a initial phase, while allowing
users to customise it later via explicit interaction. For instance, when a
user enters a car, the temperature, radio station and driving settings, could
be automatically configured to his preferences/characteristics without any
explicit command, being the user free to change them explicitly afterwards.

These passive influence strategies have not been very much explored
in pervasive computing scenarios; most of existing systems use several
forms of active mechanisms, such as WebServices/SOAP (UPnP [UPn03],
Task Computing [MLPS03] [MPL03] [SHP03], WSAMI [IST+05]), Jini,
CORBA, and so forth. But as such, they require explicit user intervention
continuously to control the environment.

For example, if a user wants to open a door using an active influence
model, he can look up for the “door device” in the PDA and invoke the
“open” service.

In order to obtain the same results using a passive influence model, there
are two techniques available:

• Context modification: if devices are context aware, it is possible to
influence their behaviour by modifying the context information (see
Figure 4.2). For example, if a door opens automatically when a
person is situated less than 1 meter away, just getting into these limits
couses the door to open. The user does not command anything, but
the door reacts autonomously. Probably, this door features a built-in
internal rule relating the “open” operation to the data provided by a
presence sensor. But generally it is not possible to dynamically change
this behaviour in order to, for example, opening only during working
hours, or depending on the weather. The door is context-aware but
features static behavioural rules.

• Behavioural profiles dissemination: the behaviour of context-aware
devices can be dynamically altered and modified by other entities in
such a way that the device can be influenced to react to any concrete
stimulum in the desired way. For example, the door’s continuous

101



A Reactive Behavioural Model for Context-Aware Semantic Devices

behaviour can be altered by the rule “if the weather is sunny the
door should remain open during daylight hours”. This technique
modifies the entities’ internal behaviour and prepares them to react
appropriately to context modification, thus working at a higher level
(see Figure 4.3). Existing entities in the environment can influence
each other by disseminating behavioural profiles, achieving a greater
degree of context-awareness and reactivity than applying context
modification alone.

During our research we also use the term “adaptation profiles” for
“behavioural profiles” interchangeably, since they enable an entity to adapt
dynamically to environmental changes.

(QYLURQPHQW

&RQWH[W�DZDUH�HQWLW\

3HUFHSWRU

(IIHFWRU

6WDWLF�

EHKDYLRXUDO�

SURILOH

3HUFHSWRU
6HQVRUV

(IIHFWRU
(IIHFWRUV

3HUFHLYH

2SHUDWH

id11068546 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.2: A context-aware entity featuring static behavioural reactivity to
context modification.

Some of the architectures analysed such as CoBrA [CFJ03a], Gaia
[RC03b] or Semantic Spaces [GPZ04b] only provide the traditional context
modification based reactivity. They do not provide any form of “behaviour
dissemination”, nor any means for existing agents in the environment
to dynamically change others’ behaviour. In case that mechanism was
provided, it could not be placed in the involved devices, but in the central
component of the architecture that accumulates all the information. This
limitation is again originated from their centralised nature.

The dissemination technique is complementary to traditional context
modification based reactivity: it is a preliminary preparation step for

102



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

(QYLURQPHQW

,QIOXHQFHDEOH�FRQWH[W�

DZDUH�HQWLW\

3HUFHSWRU

(IIHFWRU

3HUFHSWRU
6HQVRUV

(IIHFWRU
(IIHFWRUV

3HUFHLYH

2SHUDWH

,QIOXHQFLQJ�

HQWLW\

'\QDPLF�

EHKDYLRXUDO�

SURILOHV

,QIOXHQFLQJ�

HQWLW\

%HKDYLRXUDO�SURILOH�

GLVVHPLQDWLRQ

%HKDYLRXUDO�SURILOH�

GLVVHPLQDWLRQ

id23848750 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.3: A context-aware entity featuring influenceable behavioural
reactivity to context modification.

configuring a context-aware device with a required particular behaviour for
a period of time, in order to react appropriately when the context changes.

A context-aware door featuring context modification reactivity is good,
but if the door’s behaviour can be dynamically augmented to address
specific behavioural requirements, its context-aware reactivity improves
dramatically.

Thus, the ability of passively influencing other entities not only via
context modification but also through “behavioural profiles” dissemination
will become a differentiation factor and a vehicle in our model to achieve a
higher degree of context-awareness.

4.2 A set-theory based approach for context-aware
reactivity

A very large number of Ubiquitous Computing systems, as well as non-
ubiquitous ones, lack from a theoretical background that supports the
decisions taken during the design phase. Although defining theoretical
foundations is not the main concern of our research, we deem it important
to support the resulting design.

103



A Reactive Behavioural Model for Context-Aware Semantic Devices

Therefore, we have tried to identify the factors that take part in
how an entity can perceive context information and adapt dynamically to
environmental changes.

Undoubtedly, context awareness is the key concept that embraces
both perceiving context information and reacting to it accordingly, maybe
generating new context information that will originate further reactions in
other entities.

During our research, we found that set theory was a suitable formalism
to explain and illustrate the major concepts related to context identification
and reactivity from our point of view, and thus, we built our theoretical
framework around this mathematical area.

4.2.1 Environment-oriented approach

Context information can be classified into knowledge domains, which are in
turn formed by individual knowledge domain items that represent particular
properties or attributes within that domain.

The following are some examples of knowledge domains and constituent
knowledge domain items:

• Light domain: light state (on / off), luminance level, light color, . . .

• TV domain: state (on / off), current channel, current volume, current
mode (teletext, TV), . . .

• Door domain: locked (true / false), opening degree, . . .

• User activities: current activity code, current activity starting time, . . .

In the following formula, IE represents the whole set of context
knowledge domain items i1, i2, . . . , available in the environment E, as
indicated above.

IE = {i1, i2, i3, . . . , in} (4.1)

Of course, not every item in a concrete context domain is required to be
available in the environment E: for a particular space the “luminance level”
may be part of the context information, while “light colour” may not.

At a particular moment of time t, these items adopt concrete values (or
sets of values if the items are multi-valued):

104



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

i1(t) = v1
i2(t) = v2
i3(t) = v3
. . .
in(t) = vn

(4.2)

At that moment of time t, the whole environment can be characterised
by the concrete values adopted by the constituent knowledge domain items.
We represent this set of values as IE(t).

IE(t) = {i1(t), i2(t), i3(t), . . . , in(t)}= {v1,v2,v3, . . . ,vn} (4.3)

The evolution of one particular knowledge domain item in the
environment depends on its current value, and the influences (constraints)
exerted on it by existing entities at the concrete moment of time t. The
constraints exerted over the item i at the moment of time t are represented
as the set C(i, t).

i(t +1) = f (i(t),C(i, t)) = f (v,C(i, t)) (4.4)

For example, the next value of “temperature” depends on the current
value and the existing influences applied by heating and cooling systems,
human activity and so on. Those influences or constraints can be
represented as desired conditions:

C(temperature,now) = {> 23◦C,< 27◦C,= 25◦C} (4.5)

Integrating formulas 4.3 and 4.4, the state of the environment at time
t +1 can be expressed as:

IE(t +1) = {i1(t +1), i2(t +1), i3(t +1), . . . , in(t +1)}
= { f (v1,C(i1, t)), f (v2,C(i2, t)), . . . , f (vn,C(in, t))}
= F(IE(t),C(IE , t))

(4.6)

The formula 4.6 comprehends a fundamental point in our model:
the future state of the environment depends on the current state of the
environment and all the influences exerted on it at a concrete moment of
time, which leads to the following proposition:

Proposition 1. Influencing constraints are the driving factor of
environmental change.

105



A Reactive Behavioural Model for Context-Aware Semantic Devices

4.2.2 Entity-oriented approach

A concrete environment is context-aware if it is, in turn, composed by
individual entities, which are context-aware and, thus, can drive the
adaptation process.

Any context-aware entity pursues a major goal: to adapt its behaviour
accordingly to changes in the environment, that is, to changes in perceived
context information. The adaptation behaviour can be represented in
different forms, such as a program or a rule-based conditional action [LK01]
[BEP06] [SRC05].

In order to perform this task, a context-aware entity must be able
to perceive some context information, but also to alter other context
information, which is the basis for reactivity.

For instance, a temperature control system features a temperature sensor
and an internal clock for perceiving the current temperature and time, but
it features also some effectors that operate over the heating system to set
the appropriate temperature value.

Therefore, a context-aware entity can perceive information on some
knowledge domain items of IE and operate over the same or other
knowledge domain items. In the previous example, the temperature control
system perceives the current temperature and the time, but operates only
on the temperature item.

An intelligent TV system can turn itself off automatically if nobody is
located in the room. In this case the perception domain is “presence” and
the operation domain is “TV state”.

A context-aware entity can perceive context information directly using
built-in sensors or indirectly via communication channels with other entities
that provide that information. For instance, a mobile phone can detect
directly whether the user is engaged in a conversation using the phone,
and perceive user’s location indirectly by receiving positioning data from
the mobile operator systems.

Similarly, the current context information can be changed directly via
built-in effectors or indirectly via invocation of remote services on other
entities that perform the required operation.

Thus, the capabilities of every context-aware entity can be characterised
by four sets of knowledge domain items:

• Pd: direct perception capabilities. The set of knowledge domain items
the entity is able to perceive directly.

106



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

• Pi: indirect perception capabilities. The set of knowledge domain
items the entity is able to perceive indirectly.

• Od: direct operation capabilities. The set of knowledge domain items
the entity is able to operate directly.

• Oi: indirect operation capabilities. The set of knowledge domain items
the entity is able to operate indirectly.

A context-aware entity’s capabilities can be expressed as:

ec = (Pd ,Pi,Od ,Oi) (4.7)

If direct or indirect perception / operation capabilities were not relevant
in a particular model, the sets could be reduced to two:

P = Pd ∪Pi

O = Od ∪Oi
(4.8)

As well as the entity’s capabilities characterisation is simplified:

ec = (P,O) (4.9)

If the environment is populated by a number of entities a, b, c, . . . :

E = {a,b,c, . . .} (4.10)

And these entities exhibit perception capabilities Pa, Pb, Pc, . . . , the
whole set of environment perception capabilities is:

PE = Pa∪Pb∪Pc∪ . . . = IE (4.11)

Which is the context information types populating the environment E,
and it is the same set of knowledge domains represented in formula 4.1 as
IE .

But now there is also another set OE , which embraces all the knowledge
domains items that can be operated in the environment:

OE = Oa∪Ob∪Oc∪ . . . (4.12)

OE represents the set of environmental information that can be altered,
changed, adapted, which is the focus of the reactive behaviour. This set is

107



A Reactive Behavioural Model for Context-Aware Semantic Devices

identical or a subset of the environmental information that can be perceived
(maybe some context information can be perceived but not altered such as
“weather forecast” or “presence of people”):

OE ⊆ IE = PE (4.13)

Inferred from the previous formulas is the notion that an environment E
populated by individual entities inherits their intrinsic capabilities.

Ec = (PE ,OE) (4.14)

Proposition 2. The set of perception and operation capabilities
exhibited by any environment is composed by the aggregation of
perception and operation capabilities, respectively, provided by
its constituent entities.

4.2.3 Managed constraints

We have already presented informally the term constraint but for the
purposes of the following descriptions, a more formal definition is provided.

Constraint : the state of being restricted or confined within prescribed
bounds1.

For the purposes of our research we provide a working definition, more
related to the other concepts presented above:

Proposition 3. A constraint is a particular restriction over the
set of possible values a concrete knowledge domain item is able
to acquire.

For instance, some constraints on the “temperature” might be [> 23◦C],
[< 27◦C], [= 19◦C] or [= 25◦C], illustrated in Figure 4.4.

Constraints can be represented as sets containing a concrete subset of
all possible values the knowledge domain items can take. Of course, one-
element sets such as [= 19◦C] are possible.

During a reactive response, a particular context-aware entity e performs
control on some knowledge domain items (which are declared in the entity’s

1Source: The American Heritage Dictionary of the English Language, Fourth Edition.

108



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

WHPSHUDWXUH

YDOXH�VSDFH

!���&

���&

����&

���&

id130738093 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.4: Constraints as subsets and elements.

operation capabilities, as explained above). In our model, this control
process of the entity e is completely driven by the constraints managed by e.

For instance, a temperature control system may perform control on the
“temperature” item, driven by the constraints [> 23◦C] and [< 27◦C], thus
trying to keep the current temperature within this threshold all the time.
From the set theory point of view the goal is to find a value contained both
in the [> 23◦C] and [< 27◦C] sets, that is, the intersection of both sets.

A problem arises when constraints, represented as sets, are disjoint, as
the case of [= 19◦C] (a one-element set) in Figure 4.4. In the presence
of conflicting constraints it is up to the entity to decide which conflict
resolution strategy to apply (see subsection 5.1.3).

We use the term Ce(i, t) to represent the set of constraints managed by
the entity e over the knowledge domain item i at a concrete moment of time
t.

Ce(i, t) = {co| co is a constraint of the entity e on the
knowledge domain item i at the moment of time t} (4.15)

And Ce(t) is the whole set of constraints managed by the entity e on all
its operation domains.

Ce(t) = Ce(i1, t)∪Ce(i2, t)∪Ce(i3, t)∪ . . .∪Ce(in, t) (4.16)

Thus, the term C(IE , t) in formula 4.6, which represented the whole set of
constraints driving the adaptation in environment E, is ultimately generated
by the constraints managed by every entity e in such environment E.

109



A Reactive Behavioural Model for Context-Aware Semantic Devices

C(IE , t) = {co|co ∈Ce(t)∀e ∈ E} (4.17)

Which is the logical inference: since constraints are managed by context-
aware entities in the environment, these entities are in charge of adapting
the whole environment. Thus, proposition 1 can be further refined as:

Proposition 4. Context-aware entities in the environment
manage the constraints that drive environmental change.

4.2.4 The context-awareness process

For the purposes of our research, the whole process of context-awareness
is composed of five different activities any context-aware entity e must
perform:

1. Context discovery: involves the discovery of sources of context
information that are relevant for the entity. At this point, the set of
perception capabilities for the entity e is created: direct perception
capabilities (sources are built-in sensors) and indirect perception
capabilities (sources are other entities).

2. Context retrieval: involves the retrieval of actual context information
from the sources discovered in the previous step.

3. Reasoning: involves generation of new context information from the
existing one, by applying several strategies such as description logics
or rules.

4. Analysis: involves the interpretation of the whole set of context
information, both obtained by external sources and inferred through
reasoning in the previous phase, to determine the appropriate reactive
behaviour. Constraints representing that behaviour are generated at
this point.

5. Operation: involves the execution of the constraints determined in
the previous phase. These constraints are matched against operation
capabilities to determine whether the entity e is able to perform the
operations (directly through built-in effectors or indirectly through
other entities).

The following example is intended to clarify how the whole context-
awareness process in our model works.

110



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

Example 4.1. Room21 is populated by a light control system
(light1), a TV set (tv1) and a Hi-Fi music system (hifi1). All
these devices are context-aware entities whose capabilities are
expressed as follows:

Plight1
d = {luminance, colour}

Olight1
d = {luminance, colour}

Ptv1
d = {tvstate (on / off), channel, user activity}

Otv1
d = {tvstate (on / off), channel}

Phi f i1
d = {hifistate (on / off), volume, station, time}

Ohi f i1
d = {hifistate (on / off), volume, station}

(4.18)

The activities are carried out in this way:

1. Context discovery: devices discover each other and
exchange capabilities information, so every one knows
what knowledge domain items other objects are able to
perceive, as well as what knowledge domain items can be
altered by everyone. The sets Pi and Oi are created by every
device:

Plight1
i = {tvstate, channel, user activity, hifistate, volume,

station, time}
Olight1

i = {tvstate, channel, hifistate, volume, station}
Ptv1

i = {luminance, colour, hifistate, volume, station, time}
Otv1

i = {luminance, colour, hifistate, volume, station}
Phi f i1

i = {luminance, colour, tvstate, channel, user activity}
Ohi f i1

i = {luminance, colour, tvstate, channel}
(4.19)

2. Context retrieval: devices retrieve context information
directly as stated by Pd and indirectly from other devices
as stated by Pi.

3. Reasoning: the TV set is able to determine “user activity”
information using predetermined built-in inference rules
(via forward-chaining). If the TV state is “on” and Hi-
Fi state is “off” the TV can generate the new context
information “the user is watching TV” that can be made
available to other devices during the next context retrieval
cycle.

4. Analysis: the light system is configured to generate the
constraint “light state must be off” whenever “the user is

111



A Reactive Behavioural Model for Context-Aware Semantic Devices

watching TV” and “it is later than 10:00 pm” to facilitate
the activity.

5. Operation: since the light system exhibits a direct capability
operation on the “light state” knowledge domain item, it
takes the responsibility of executing the constraint directly
through its built-in effector and the light is turned off.

The Example 4.1 involves several devices providing different kinds
of context information and discovering every other’s perception and
operation capabilities, retrieving and generating new context information
through reasoning, analysing the context information against a programmed
behavioural rule and generating the adaptation constraints that must be
honoured.

During the last phase, was not the light control system able to execute
the constraint it would have sent it to the appropriate device if possible, or
it would have ignored it if cannot be honoured by any of them.

This example illustrates how context-aware entities can share
information and coordinate changes in the environment. But still there
is one point left: how to represent the behavioural rules that generate
constraints from the context information during the analysis activity.

4.2.5 Behavioural profiles

The reactive behaviour of context-aware entities can be represented using
simple rules with preconditions and postconditions. We refer to these rules
as “behavioural” or “adaptation profiles”, since they embody a facet of
adaptive behaviour in the system. Behavioural profiles conform the basis
for the dynamic context-aware reactivity discussed in section 4.1.

An example of behavioural profile could be “if temperature > 25◦C then
window state = open”. This rule provokes an environmental adaptation,
embodied in the postcondition, whenever the precondition is met.

Preconditions are evaluated against the current context information,
and if matched, the behavioural profiles are activated and context-aware
entities should perform the required operations for the postconditions to be
honoured.

Since those operations are represented via constraints in our model, a
mechanism is needed to resolve postconditions into a set of constraints that
represent such postconditions.

112



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

Continuing the previous example, a constraint must be generated
representing “window state = open” as the desired possible value of the
knowledge domain item “window state”.

A behavioural profile is represented as:

bp = (DPRE ,DPOST )
DPRE = {GPRE |GPRE is a condition on current context information}
DPOST = {GPOST |GPOST is a condition desired for future context information}

(4.20)

The point to note here is that both GPRE and GPOST are sets themselves,
since they represent possible values of the information (very much as
constraints do). For example,

27◦C ∈ G>25◦C
24◦C /∈ G>25◦C

(4.21)

We define the function active() to evaluate all the preconditions in
a behavioural profile against current context information in order to
determine if the behavioural profile must be activated.

active(IE(t),bp) =

{
true if ∀GPRE ∈ Dbp

PRE∃v ∈ IE(t),v ∈ GPRE

f alse otherwise
(4.22)

That is, for every precondition GPRE in the behavioural profile bp there
is a piece of context information v such that v adopts one of the possible
values defined by the precondition GPRE , thus meeting it.

Once a behavioural profile has been activated, a set of constraints
associated to the postconditions must be generated.

The G1 ⊆ G2 relation represents the situation when a condition G1 is
subsumed by other condition G2, that is, all the values contained in G1 are
also contained in G2. For example:

G>27◦C ⊆ G>25◦C
G>25◦C * G>27◦C

(4.23)

If the temperature value is greater than 27◦C, it is also surely greater
than 25◦C: all the values in the first set are also in the second. But the
opposite is not true, since there are some values greater than 25◦C that are
not greater than 27◦C.

113



A Reactive Behavioural Model for Context-Aware Semantic Devices

The constraints obtained when the behavioural profile bp is activated
under the context information IE(t) can be expressed as:

C(IE(t),bp) = {co|∀GPOST ∈ Dbp
POST∃co,co⊆ GPOST} (4.24)

Every constraint in this set meets a postcondition, being a subset of that
postcondition since all the elements in the constraint are also elements in
the postcondition.

For example, if the postcondition states that temperature > 25◦C, the
constraint temperature > 27◦C honours the postcondition, being a subset of
it as shown in Figure 4.5.

WHPSHUDWXUH

YDOXH�VSDFH

!���&

!���&

9DOXHV�PHHWLQJ�

WKH�SRVWFRQGLWLRQ

&RQVWUDLQW

id14886796 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.5: Valid values for a postcondition and one constraint representing
a subset of it.

However, this set of constraints C(IE(t),bp) is not useful in practice,
since it has an infinite number of elements. Again, if the postcondition
states that temperature > 25◦C, there are infinite constraints that match this
postcondition (see Figure 4.6):

> 25◦C
= 25.1◦C
= 25.2◦C
> 26◦C
> 27◦C
> 28◦C
. . .

(4.25)

114



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

WHPSHUDWXUH

YDOXH�VSDFH
!���&

!���&

9DOXHV�PHHWLQJ�

WKH�SRVWFRQGLWLRQ

!���&

!���&

���� ����

id14858671 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.6: An infinite number of constraints as subsets of the postcondition.

For practical purposes, this problem can be solved by identifying the
most broad constraint that meets the postcondition. That is,

co|co⊆ GPOST ∧ (@co′|co′ ⊆ GPOST ∧ co⊆ co′) (4.26)

That is, to find a subset co of the postcondition such as no other subset
in the postcondition contains co.

In fact, there is only one possibility in the previous example:

co = [> 25◦C] (4.27)

The most broad constraint that embraces a particular postcondition is
the postcondition itself. So finally, the formula 4.24 becomes

C(IE(t),bp) = {co|co = GPOST ∧GPOST ∈ Dbp
POST} (4.28)

Which means that the set of constraints generated when the behavioural
profile bp is activated under the context information IE(t) is formed by
the postconditions of bp. Our model generates constraints directly from
postconditions whenever a behavioural profile is activated.

115



A Reactive Behavioural Model for Context-Aware Semantic Devices

4.3 Semantic Web mapping

Once the theoretical basis is established, the following step is to map
the described concepts onto an architectural solution. Since we selected
the Semantic Web as the technological foundation for dealing with all
the context-aware related requirements, it becomes necessary to identify
Semantic Web -based techniques to represent the ideas presented in the
previous section.

Particularly, the terms described above that need to find such a suitable
representation are:

• Environment

• Entity

• Context information

• Knowledge domain

• Knowledge domain item

• Knowledge domain item value

• Perception capability

• Operation capability

• Constraint

• Adaptation profile

• Precondition

• Postcondition

4.3.1 Environment and Entity

Environment and Entity do not have a particular representation using
Semantic Web. Both are architectural concepts that can be directly assumed
in our architecture. A context-aware entity can refer to a device, a process,
an agent, and so forth, whatever is called the element that takes part in
the context-awareness process and exhibits the features described in the
theoretical model.

The only point noteworthy is that, following the Web architectural model
[Wor04a] in which every resource must be referenced through a URI, the

116



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

context-aware entity must be identified unambiguously using a URI. Again,
an entity can be a device or a built-in agent in the device, but if they need
to be distinctly identified, two different URIs will be used for that purpose.

Some examples of valid URIs for entities are:

http://acme.com/products/tv/TVH23/8293984

http://www.nokia.com/phones/9890/SN0670334635

urn:uuid:9f22d136-deb4-4385-886c-47e7b3b60620

http://www.places.com/ivazquez-home/pda23

http://www.books.com/ISBN/1-58113-992-6/83930498

The main condition to assign a URI to a context-aware entity is that
such assignment must be unique: there must not be another entity in the
world with the same URI. This requirement makes the UUID (Universal
Unique IDentifiers) URN namespace [LMS05] the most suitable alternative
for assigning such sort of “unique serial numbers” to every device or process.
Moreover, UUIDs can be allocated and set by the manufacturer of the entity
during production, so the final user does not need to assign them (and even
this may not be permitted).

4.3.2 Context information

This major concept is easily mapped onto an RDF graph representing the
existing available information in the environment. This information is
provided and RDF-annotated by contributing context-aware entities, crea-
ting a graph that represents the situation of the environment at a particular
moment of time, associating knowledge domain items and their values.

For instance, continuing the Example 4.1, the light control system
(light1), the TV set (tv1) and the Hi-Fi music system (hifi1), as stated
by their perception capabilities, could provide the following information to
the environment (in RDF/XML) [Wor04i] 2:

Listing 4.1: RDF/XML representation of context information from the
Example 4.1.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns="http://www.awareit.com/onto/examples/example2#">
5

6 <rdf:Description rdf:about="urn:uuid:light1"

2For the sake of clarity we use non-standard UUID URIs like urn:uuid:light1 instead
of standard ones such as urn:uuid:a83b0f9d-3999-4cf2-993d-c40054602ec3.

117



A Reactive Behavioural Model for Context-Aware Semantic Devices

7 xmlns:lit="http://www.awareit.com/onto/2005/12/light#">
8 <lit:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
9 30

10 </lit:luminance>
11 <lit:color rdf:resource="http://www.awareit.com/onto/2005/12/light#

White"/>
12 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/light#

Light"/>
13 </rdf:Description>
14

15 <rdf:Description rdf:about="urn:uuid:tv1"
16 xmlns:tv="http://www.awareit.com/onto/2005/12/tv#">
17 <tv:state
18 rdf:resource="http://www.awareit.com/onto/2005/12/devices#stateOn

"/>
19 <tv:channel rdf:resource="http://www.bbc.co.uk/bbctwo"/>
20 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/tv#TV"/>
21 </rdf:Description>
22

23 <rdf:Description rdf:about="urn:uuid:hifi1"
24 xmlns:sound="http://www.awareit.com/onto/2005/12/sound#">
25 <sound:state
26 rdf:resource="http://www.awareit.com/onto/2005/12/devices#stateOn

"/>
27 <rdf:type
28 rdf:resource="http://www.awareit.com/onto/2005/12/sound#

SoundSystem"/>
29 <sound:hasSound>
30 <sound:Sound rdf:about="urn:uuid:hifi1_sound">
31 <sound:volume rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
32 8
33 </sound:volume>
34 <sound:station rdf:resource="http://www.bbc.co.uk/radio1"/>
35 </sound:Sound>
36 </sound:hasSound>
37 <device:hasTime
38 xmlns:device="http://www.awareit.com/onto/2005/12/devices#"
39 xmlns:time-entry=
40 "http://www.isi.edu/˜pan/damltime/time-entry.owl#">
41 <time-entry:Instant>
42 <time-entry:inCalendarClockDataType
43 rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
44 2003-11-05T14:00:00-8:00
45 </time-entry:inCalendarClockDataType>
46 </time-entry:Instant>
47 </device:hasTime>
48 </rdf:Description>
49

50 </rdf:RDF>

118



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

Lines 6–13 comprise the context information provided by light1, lines
15–21 those provided by tv1 and lines 23–48 those by hifi1. In this case,
the Hi-Fi system has been modelled as a device that generates an internal
resource (lines 30–35, hifi1 sound) composed of the current station and
volume.

For the sake of clarity, an RDF graph representing the knowledge
conveyed in the Listing 4.1 is depicted in Figure 4.7. Note the unlabelled
node near the bottom at the end of the edge device:hasTime from hifi1

representing an instance of time-entry:Instant. Line 41 in the listing
declaring this resource has no rdf:ID or rdf:about tags labelling the node,
so it remains blank (anonymous).

The listing is an aggregation of different context informations provided
by the environmental entities referred above. Each of these contributions
could have been sent in different documents having every entity aggregated
them in the form of Listing 4.1, in order to build a model of the context.

4.3.3 Knowledge domain

The idea of “ontology” in artificial intelligence fits perfectly to represent the
“knowledge domain” concept. An ontology is a data model that represents
a domain and the relationships among the objects in order to perform
reasoning. A formal definition for ontologies is provided in appendix A.

In order to work with ontologies an ontology language is needed, and
the obvious choice, based on Semantic Web technologies, is OWL (Ontology
Web Language) [Wor04d] (see subsection A.2).

An ontology language enables engineers and developers to create
domain vocabularies in order to represent the elements, classes of elements,
properties and relationships among them for a particular knowledge
domain.

While other architectures such as CoBrA or Semantic Spaces/SOCAM
defined their own ontology vocabulary for the pervasive computing
knowledge domain and based their operation primarily on that ontology
(SOUPA and CONON respectively) in our model the reuse of existing ones is
promoted. For example, if SOUPA, which in turn is an aggregation of newer
and existing ontologies, is considered suitable for one concrete application,
it may be seamlessly used in SoaM.

One of the major problems with ontologies, as with XML-based
languages, is that engineers are reinventing them once and again instead of
reusing and extending existing ones in order to create standard or accepted
ontologies for concrete knowledge domains [Bon05].

119



A Reactive Behavioural Model for Context-Aware Semantic Devices

XUQ�XXLG�KLIL�

UGI�W\SH

OLJKW�:KLWH

XUQ�XXLG�WY�

OLJKW�/LJKW

XUQ�XXLG�KLIL�BVRXQG

XUQ�XXLG�OLJKW�

KWWS���ZZZ�EEF�FR�XN�UDGLR�

VRXQG�6RXQG6\VWHP

WY�79

KWWS���ZZZ�EEF�FR�XN�EEFWZR

GHYLFHV�VWDWH2Q

��

�

����������7�������������

WLPH�HQWU\�LQ&DOHQGDU&ORFN'DWD7\SH

GHYLFH�KDV7LPH

VRXQG�VWDWLRQ

VRXQG�YROXPH

VRXQG�KDV6RXQG

UGI�W\SH

VRXQG�VWDWH

UGI�W\SH

WY�FKDQQHO

WY�VWDWH

UGI�W\SH

OLW�FRORU

OLW�OXPLQDQFH

KWWS���ZZZ�LVL�HGX�aSDQ�GDPOWLPH�WLPH�

HQWU\�RZO�,QVWDQW

VRXQG�6RXQG

UGI�W\SH

id30670984 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 4.7: RDF graph representing the Listing 4.1.

SoaM will encourage the reuse of existing ontologies for every
knowledge domain that partakes in the context-awareness process, and only
in the case no ontology is provided, a developer would be required to create
one explicitly. Ontology reuse is becoming a hot topic in the Semantic Web
arena, and concepts successfully applied in HTML such as modularisation
can also play a major role here [GBPK06].

120



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

In Listing 4.1 lines 41–46 comprise the representation of the time
using an existing ontology called OWL-Time [HP04] [PH05] [Wor06c], thus
demonstrating via an example how ontology reuse can be accomplished.

Ontologies, as any other kind of resource, are represented by their
unique URIs, from where they can be usually downloaded.

4.3.4 Knowledge domain item

While “knowledge domain” and “ontology” are easily mapped onto each
other, “knowledge domain item” does not have an obvious mapping in
the Semantic Web. A knowledge domain item is a particular type of
information in the domain, for instance in the “TV” knowledge domain,
“current channel” will be a “knowledge domain item”.

The problem is that RDF as mechanism for representing context
information follows a structure based on (subject, predicate, object).
Considering that “object” is a good candidate for mapping the “knowledge
domain item value”, the item itself must be characterised via the “subject”,
the “predicate”, or the combination of both. And this characterisation must
be related to the knowledge domain in some way.

Let us suppose some examples of context knowledge items:

• Current temperature

• hifi1’s volume

• tv1’s channel

• Current time

• light1’s colour

• . . .

It is noticeable how context knowledge items refer to properties or
attributes. Those attributes can exhibit a well-defined subject (such as hifi1,
tv1 or light1) or an undetermined subject such as “current temperature”
and “current time”. However, in these last cases the subjects exists, although
no explicitly stated. In “current temperature” we really mean the “current
temperature of a particular (probably the current) location or room”, thus
maybe being “my location” the subject of the property. In the second case,
we may mean “current time of the present location”, as provided by any
entity located nearby.

121



A Reactive Behavioural Model for Context-Aware Semantic Devices

Therefore, in our model, the knowledge domain items are represented
by the combination of a subject and a predicate from the RDF point of view,
being this subject more or less explicit, but existent anyway.

Some examples of context knowledge items are3:

<urn:uuid:light1> lit:luminance

<urn:uuid:light1> lit:color

<urn:uuid:tv1> tv:state

<urn:uuid:tv1> tv:channel

<http://people.com/bobby> task:isDoing

4.3.5 Knowledge domain item value

As commented above the object part of an RDF triple is able to map the
present value of the knowledge domain item perfectly. This object / value
can be either a literal value or another resource represented by its URI, as
in:

<urn:uuid:light1> location:isLocatedIn <urn:uuid:room21>

Literal values in RDF are normally represented using XML Schema built-
in datatypes [Wor04k] as in lines 8–10 or 31–33 of Listing 4.1 to represent
an integer value, as well as in lines 42–45 to represent a date/time value:

<urn:uuid:instant1> time-entry:inCalendarClockDataType "2003-11-05T14

:00:00-8:00"ˆˆ<http://www.w3.org/2001/XMLSchema#dateTime>

4.3.6 Perception capability

Perception capabilities were defined in subsection 4.2.2 as the set of
knowledge domain items the entity is able to perceive, either directly or
indirectly to refer the direct or indirect perception capabilities respectively.

Since knowledge domain items where mapped onto RDF as the
combination of a subject and a predicate, an initial approach yields
combinations of subjects and predicates, whatever the object is, as the way
of representing perception capabilities.

3From now on we will use a Notation 3 (N3) -like syntax [Ber06]. For the sake of clarity,
we will also use intuitive prefixes for ontology namespaces such as lit:, tv:, sound: and
so forth.

122



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

For instance, to declare that light1 is able to perceive its own luminance
and colour, whatever their values are, we can use the following RDF triple
template:

<urn:uuid:light1> lit:luminance *

<urn:uuid:light1> lit:color *

This template represents the RDF triples of context information the
entity is able to provide: it can generate RDF triples with urn:uuid:light1

as subject, lit:luminance as predicate and any value (the actually measured
one) as object.

If tv1 was able to provide information about its own state, channel and
Bob’s activity:

<urn:uuid:tv1> tv:state *

<urn:uuid:tv1> tv:channel *

<http://people.com/bobby> task:isDoing *

It is noteworthy how a context-aware entity is not only able to provide
information about itself, but also about other entities, objects or resources,
as long as it features the mechanisms to perceive that information.

Thus, every context-aware entity could declare in this way its perception
capabilities about context information (knowledge domain items).

However, this approach lacks the required flexibility in the cases where
the subject of the RDF triple is unknown. Some examples are:

• “able to perceive any user’s presence”: the property / predicate is
“presence”, but the subject, user, is presently unknown.

• “able to perceive current location’s temperature”: the location is
undetermined, it will depend on where the thermometer is.

• “able to perceive any user’s activity”: can perceive whether the user is
watching the TV or not, but once the user has been identified.

In this cases, the wildcard can be used in the “subject” part, therefore
representing perception capabilities in the following way:

* location:isLocatedIn *

* temp:hasTemperature *

* task:isDoing *

If room21 is able to determine whether a currently unknown user is in or
not, being room21 the only possibility for the “object” part of the RDF triple,
this may be represented this way:

123



A Reactive Behavioural Model for Context-Aware Semantic Devices

* location:isLocatedIn <urn:uuid:room21>

Meaning that this entity is able to provide perceived context information
following the template “x is located in room21”.

However, in most cases the “object” part, representing the value, is the
unknown factor and the one required to finally characterise the measure.

By applying the wildcard to the “predicate” part of the RDF triple, an
entity can declare that is able to provide any kind of information about a
concrete resource. For example:

<urn:uuid:hifi1> * *

But this kind of template is too loose and provides almost no hints about
what the entity is actually able to perceive. If the entity is able to perceive
any predicate of the “sound” knowledge domain related to hifi1, it may be
better to use this representation:

<urn:uuid:hifi1> sound:* *

Thus limiting the number of predicates perceivable to those belonging to
the sound domain. If state and hasSound were the only predicates for that
domain, the last representation would be equivalent to:

<urn:uuid:hifi1> sound:state *

<urn:uuid:hifi1> sound:hasSound *

In this example hifi1 is also able to provide the volume and station of its
internally generated sound hifi1 sound, the current time and its own type,
so the complete set of direct perception capabilities could be:

<urn:uuid:hifi1> rdf:type *

<urn:uuid:hifi1> sound:state *

<urn:uuid:hifi1> sound:hasSound *

<urn:uuid:hifi1> device:hasTime *

<urn:uuid:hifi1_sound> sound:volume *

<urn:uuid:hifi1_sound> sound:station *

Therefore, wildcards, when used in the appropriate places, create a
template that represents the RDF triples an entity is able to generate out
of environmental perceptions: its perception capabilities.

4.3.7 Operation capability

The representation of operation capabilities using Semantic Web
technologies is analogous to the perception capabilities strategy. RDF triple

124



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

templates can be used to represent which context information an entity is
able to alter through operations, either direct or indirectly.

For instance, following the previous example, tv1 could declare its direct
operation capabilities as:

<urn:uuid:tv1> tv:state *

<urn:uuid:tv1> tv:channel *

That is, tv1 is able to adjust its state and channel as requested by other
entities.

A more complex example involving hifi1 operation capabilities:

<urn:uuid:hifi1> sound:state *

<urn:uuid:hifi1_sound> sound:volume *

<urn:uuid:hifi1_sound> sound:station *

hifi1 declares that is able to modify its own state, as well as the volume
and station of the generated sound hifi1 sound, but it is not able to change
any of the other context information that were perceived, such as its type or
current time.

4.3.8 Constraint

A constraint was defined as a particular restriction over the set of possible
values a concrete knowledge domain item is able to acquire, and we went
through several examples such as temperature [> 23◦C], [< 27◦C], [= 19◦C]
or [= 25◦C].

Constraints, as explained, represent subsets of possible values adopted
by a knowledge domain item, which we have modelled using Semantic
Web technologies as the combination of “subject” and “predicate”. Thus,
the constraint “the luminance of light1 must be greater than 5” can be
represented as:

<urn:uuid:light1> light:luminance ">" "5"

Or “the volume of the generated sound hifi1 sound from hifi1 must be
greater or equal than 5”:

<urn:uuid:hifi1_sound> sound:volume "≥" "5"

And “the channel of tv1 must be CNN and the volume less than 7”:

<urn:uuid:tv1> tv:channel "=" <http://www.cnn.com/CNN>

<urn:uuid:tv1> sound:volume "<" "7"

125



A Reactive Behavioural Model for Context-Aware Semantic Devices

As it can be noticed, in order to represent constraints we add a fourth
element to the RDF triple: a comparison operator. In order to simplify the
notation the operator equals is considered as the default when no other
is provided. So the previous example about the TV channel could also be
represented as:

<urn:uuid:tv1> tv:channel <http://www.cnn.com/CNN>

4.3.9 Behavioural profile, precondition and postcondition

Behavioural profiles represent a facet of adaptive behaviour in the system
formed by preconditions and postconditions in such a way that precondi-
tions are evaluated against the current context information, and if matched,
the behavioural profiles are activated and context-aware entities should
perform the required operations for the postconditions to be honoured.

As seen above in our Semantic Web mapping, we represent conditions as
RDF triples with an extra comparison operator. Thus, behavioural profiles’
preconditions and postconditions are represented in this way.

For example, the profile “if tv1 is on and light1’s luminance is less than
4, the sound volume of hifi1 must be 0” can be represented as:

[

<urn:uuid:tv1> tv:state <http://www.awareit.com/onto/2005/12/devices#

stateOn>

<urn:uuid:light1> light:luminance "<" "4"

]

⇒
[

<urn:uuid:hifi1_sound> sound:volume "0"

]

In order to carry out more complex behaviours, variables are needed.
For instance, “if tv1’s volume is x then the volume of the sound generated
by hifi must be the same”:

[

<urn:uuid:tv1> sound:volume ?x

]

⇒
[

<urn:uuid:hifi1_sound> sound:volume ?x

]

126



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

Variables actually generate RDF triple templates where the variable is
the unknown part. In the last example, the context information is checked
against the precondition, maybe an RDF triple honouring the template
exists, such as:

<urn:uuid:tv1> sound:volume "4"

So, the variable x can be resolved and assigned that value.

At this time constraints are generated by performing the substitution on
the postconditions:

<urn:uuid:hifi1_sound> sound:volume "4"

Checking the operation capabilities of existing devices, hifi1 declared
itself as able to change this context information directly:

<urn:uuid:hifi1_sound> sound:volume *

So finally, hifi1 is assigned this constraint and operates the built-in
effectors adjusting the volume at the desired level: the environment has
changed according to the behavioural profile in a Semantic Web-based
scenario.

4.4 Serialisation

Context information can be exchanged directly using RDF/XML as
illustrated in Listing 4.1. However, the other structures (perception and
operation capabilities, constraints and behavioural profiles with pre- and
postconditions) require a suitable and structured representation so that
entities can easily exchange this information.

For this purpose we have designed two XML-based languages:

• SoaM XML Datatypes: XML datatypes to represent the internal
structure of capabilities, constraints and behavioural profiles.

• SoaM XML Exchange Messages: XML wrappers for conveying SoaM
XML Datatypes over transport mechanisms such as HTTP.

We have designed these XML-based grammars in such a way that they
are simple enough even for resource limited devices to be able to use them
without much processor load.

The complete XML Schema definitions for these languages can be found
in appendix D, but some paradigmatic examples are included in this section
for the sake of understanding the flow of messages.

127



A Reactive Behavioural Model for Context-Aware Semantic Devices

4.4.1 Capabilities

As previously explained, capabilities are represented using the URIs for the
concrete resources and predicates required, forming a template. In order to
represent the wildcard value * we have created a special URI:

http://www.awareit.com/soam/2005/12/soamonto#Any

For instance, a location system can declare the capability to provide the
location of any entity:

Listing 4.2: Example of a capability using the any wildcard.
1 <perceptionCapability id="urn:uuid:loc_pcap">
2 <subject resource="http://www.awareit.com/soam/2005/12/soamonto#Any

"/>
3 <predicate
4 resource="http://www.awareit.com/onto/2005/12/location#isLocatedIn

"/>
5 </perceptionCapability>

The “object” part is optional, usually absent and so being equivalent to
any or * (e.g. in the previous case, any place).

The same example but involving a concrete object:

Listing 4.3: Fragment of a capability involving a concrete object.
1 <perceptionCapability id="urn:uuid:loc_cap">
2 <subject resource="http://www.awareit.com/soam/2005/12/soamonto#Any

"/>
3 <predicate
4 resource="http://www.awareit.com/onto/2005/12/location#isLocatedIn

"/>
5 <objectResource resource="urn:uuid:room21"/>
6 </perceptionCapability>

Which represents the case analysed in 4.3.6, where a location system
can provide location information of any entity located in room21:

* location:isLocatedIn <urn:uuid:room21>

A more complex and complete example about hifi1’s capabilities is:

Listing 4.4: Example capabilities in SoaM XML Datatypes.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <capabilitiesCollection owner="urn:uuid:hifi1"
3 xmlns="http://www.awareit.com/soam/2006/02/soamdt"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.awareit.com/soam/2006/02/soamdt http

://www.awareit.com/soam/2006/02/soamdt">

128



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

6

7 <perceptionCapability id="urn:uuid:hifi1_pcap1">
8 <subject resource="urn:uuid:hifi1"/>
9 <predicate resource="http://www.awareit.com/onto/2005/12/sound#

hasSound"/>
10 </perceptionCapability>
11

12 <perceptionCapability id="urn:uuid:hifi1_pcap2">
13 <subject resource="urn:uuid:hifi1"/>
14 <predicate
15 resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
16 </perceptionCapability>
17

18 <perceptionCapability id="urn:uuid:hifi1_pcap3">
19 <subject resource="urn:uuid:hifi1_sound"/>
20 <predicate resource="http://www.awareit.com/onto/2005/12/sound#

volume"/>
21 <predicate resource="http://www.awareit.com/onto/2005/12/sound#

station"/>
22 </perceptionCapability>
23

24 <operationCapability id="urn:uuid:hifi1_ocap1">
25 <subject resource="urn:uuid:hifi1"/>
26 <predicate resource="http://www.awareit.com/onto/2005/12/sound#

hasSound"/>
27 </operationCapability>
28

29 <operationCapability id="urn:uuid:hifi1_ocap2">
30 <subject resource="urn:uuid:hifi1_sound"/>
31 <predicate resource="http://www.awareit.com/onto/2005/12/sound#

volume"/>
32 <predicate resource="http://www.awareit.com/onto/2005/12/sound#style

"/>
33 </operationCapability>
34

35 </capabilitiesCollection>

The element capabilitiesCollection comprises all the capabilities, both
perception and operation related ones. Each of these capabilities is in
turn composed of an undetermined number of elements subject, predicate,
ontology or object (objectLiteral as well as objectResource).

The actual individual capabilities are obtained by “unwrapping” a
concrete SoaM XML Datatypes capability element, thus generating all the
possible combinations of the three groups: subject, predicate or ontology,
and objectLiteral or objectResource.

129



A Reactive Behavioural Model for Context-Aware Semantic Devices

For instance, the perception capability in lines 18–22 comprising one
subject and two predicates is unwrapped as two capabilities, combining that
subject with each of the predicates:

<urn:uuid:hifi1_sound> sound:volume *

<urn:uuid:hifi1_sound> sound:station *

If two subjects and two predicates were declared in this capability, the
unwrapped number of actual capabilities would be 4; if two subjects and
three predicates, the unwrapped number would be 6, and so forth.

This compressed form of representing capabilities in SoaM XML
Datatypes saves space while retaining the same expressive power.

It is also noteworthy how each capability is assigned an unique id

generated by the issuer in order to unambiguously identify the capability
later if needed (e.g. managing, debugging, or logging)4.

Listing 4.5 represents a perception capability comprising all the
predicates in a ontology (knowledge domain):

Listing 4.5: Fragment of a capability involving all the predicates in an
ontology.

1 <perceptionCapability id="urn:uuid:hifi1_pcap">
2 <subject resource="urn:uuid:hifi1"/>
3 <ontology resource="http://www.awareit.com/onto/2005/12/sound"/>
4 </perceptionCapability>

Which in turn represents the notation in subsection 4.3.6:

<urn:uuid:hifi1> sound:* *

The ontology element is an abbreviation for all the predicates included
in the referred ontology. It can be used in the cases where all the predicates
are supported in the capability, in order to save space and enforce clarity.
This notation can also benefit from ontology modularisation strategies
[GBPK06], since embracing all the predicates in one concrete ontology is
more feasible if the latter has a limited size (such as ontologies that are split
up in different modules).

4 The use of xml:id [Wor05c] here was proposed and rejected since it does not permit
full URIs, just fragment identifiers relative to the base URI of the document. Then, the
combination of xml:id and xml:base [Wor01b] to build full URIs was explored. Since the
capability must have a unique identifier, thus using UUID in the xml:base, the resulting
capability URI would be, for example:
urn:uuid:b9351a93-a08e-4588-b3e1-9b0058d62522#hifi1 pcap1
Which violates the UUID construction rules, where a fragment part is nor permitted.

Therefore, we finally opted for creating our own id attribute for every structure.

130



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

4.4.2 Constraints

The following example illustrates a message conveying two constraints, the
first one can be read as “hifi1 sound must have a volume level less than 7”,
while the second can be read as “its station must be set to BBC Radio 4”:

Listing 4.6: An example of constraints usage.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <constraintsCollection xmlns="http://www.awareit.com/soam/2006/02/

soamdt"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.awareit.com/soam/2006/02/soamdt
5 http://www.awareit.com/soam/2006/02/soamdt"
6 owner="urn:uuid:hifi1">
7

8 <constraint id="urn:uuid:hifi1_con1"
9 requester="http://people.com/bobby"

10 subject="urn:uuid:hifi1_sound"
11 predicate="http://www.awareit.com/onto/2005/12/sound#volume"
12 operator="http://www.awareit.com/soam/2005/12/soamonto#LessThan"
13 expires="PT5M">
14 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
15 7
16 </objectLiteral>
17 </constraint>
18

19 <constraint id="urn:uuid:hifi1_con2"
20 requester="http://people.com/bobby"
21 subject="urn:uuid:hifi1_sound"
22 predicate="http://www.awareit.com/onto/2005/12/sound#station"
23 expires="PT10M">
24 <objectResource resource="http://www.bbc.co.uk/radio4"/>
25 </constraint>
26

27 </constraintsCollection>

The first noticeable aspect is the owner attribute in the root element
(line 6), indicating the entity whose behaviour is being driven by these
constraints. Every constraint has a requester attribute (lines 9 and 20)
referencing the resource (device, person, process) who actually asked for
that constraint to be honoured.

The constraint itself is represented via the subject, predicate, operator
(optional) and object (objectLiteral or objectResource) parts. The first
constraint features a typed literal as object, while the second features a
resource.

131



A Reactive Behavioural Model for Context-Aware Semantic Devices

The expires attribute informs about the time left for this constraint to
expire (five minutes in the first case and 10 in the second), according to the
xs:duration XML data type [Wor04k] whose lexical form is described in the
standard ISO 8601 [Int04].

4.4.3 Behavioural profiles

Since behavioural profiles represent behaviour in the form of pseudo-rules,
different existing XML-based languages could have been adopted, being the
most suitable RuleML [BTW01] and SWRL (Semantic Web Rules Language)
[HPSB+04].

However, we decided not to take these ongoing efforts as a basis and
to design a particular representation for the behavioural profiles. The main
reasons for this decission were:

• SWRL seemed more suitable for dealing with semantic information
and resources, so RuleML was a weak candidate from the beginning.

• Neither SWRL nor RuleML are presently considered standards. The
World Wide Web Consortium has recently appointed a new working
group5, the Rule Interchange Format (RIF) Working Group, for
designing a standardised web rules interchange language6.

• These languages consider rules as axioms. For instance, in the rule
“if the light is on, then the TV is off”, whenever the precondition is
met, the information generated from the postcondition is added to the
knowledge base as a true fact. Behavioural profiles do not behave
in this way: if the preconditions are met, entities must do the best
effort for the postconditions to be met, but they may actually never
be honoured under certain situations (e.g. no entity features such
operation capability, no permissions, the TV is locked, and so forth).
Therefore, behavioural profiles, despite featuring a rule-like syntax,
cannot be conceptually considered traditional inference rules. While
preconditions can be evaluated, postconditions generate constraints
that are intended to be honoured, but cannot be acknowledged as
current facts: they are potential future facts.

However, RuleML, SWRL and the new language resulting from the W3C
RIF WG are suitable candidates for representing domain-related rules during

5November 2005.
6The RIF WG will develop the recommendation in three phases with expected outcomes

in May 2007, June 2008 and June 2009 [Wor05b].

132



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

the reasoning phase of the context awareness process (see subsection 4.2.4),
inferring new data from existing data and, thus, augmenting the context
information prior to the analysis phase.

In order to illustrate our syntax, let us suppose a behavioural profile
stating “if Bob is in room21 then the temperature must be set at 24◦C”. This
profile can be represented in SoaM XML Datatypes as:

Listing 4.7: A simple behavioural profile.
1 <behavioralProfile id="urn:uuid:prof1" expires="PT2M"
2 requester="http://people.com/bobby">
3

4 <precondition id="urn:uuid:prof1_prec1"
5 subject="http://people.com/bobby"
6 predicate="http://www.awareit.com/onto/2005/12/location#isLocatedIn

">
7 <objectResource resource="urn:uuid:room21"/>
8 </precondition>
9

10 <postcondition id="urn:uuid:prof1_postc1"
11 subject="urn:uuid:room1"
12 predicate="http://www.awareit.com/onto/2005/12/temperature#

hasTemperature">
13 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
14 24
15 </objectLiteral>
16 </postcondition>
17

18 </behavioralProfile>

It is important to remark how the behavioural profile itself, its
preconditions and postconditions are each uniquely identified through the
id attribute for future reference. The expires attribute attached to the
profile informs about its validity period (2 minutes in the above example,
line 1).

For information about how the postcondition in lines 10–16 can be
transformed into a constraint, please refer to subsection 5.1.6.

The possibilities of behavioural profiles are dramatically increased by
applying variables, improving the level of expressiveness and allowing
complex behaviour to be articulated.

For example, the behaviour “if Bob is working with the laptop in a room
with ambient sound, then the sound volume must be set at 3 and the radio
station to BBC Radio 4”, can be represented as:

133



A Reactive Behavioural Model for Context-Aware Semantic Devices

Listing 4.8: A more complex behavioural profile with variables.
1 <behavioralProfile id="urn:uuid:prof2" expires="PT2M"
2 requester="http://people.com/bobby">
3

4 <variable xml:id="x"/>
5 <variable xml:id="y"/>
6

7 <precondition id="urn:uuid:prof2_prec1"
8 subject="http://people.com/bobby"
9 predicate="http://www.awareit.com/onto/2005/12/task#isDoing">

10 <objectResource
11 resource="http://www.awareit.com/onto/2005/12/task#

WorkingWithLaptop"/>
12 </precondition>
13

14 <precondition id="urn:uuid:prof2_prec2"
15 subject="http://people.com/bobby"
16 predicate="http://www.awareit.com/onto/2005/12/location#isLocatedIn

">
17 <objectVariable ref="x"/>
18 </precondition>
19

20 <precondition id="urn:uuid:prof2_prec3"
21 subject="#x"
22 predicate="http://www.awareit.com/onto/2005/12/sound#hasSound">
23 <objectVariable ref="y"/>
24 </precondition>
25

26 <postcondition id="urn:uuid:prof2_postc1"
27 subject="#y"
28 predicate="http://www.awareit.com/onto/2005/12/sound#volume">
29 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
30 3
31 </objectLiteral>
32 </postcondition>
33

34 <postcondition id="urn:uuid:prof2_postc2"
35 subject="#y"
36 predicate="http://www.awareit.com/onto/2005/12/sound#station">
37 <objectResource resource="http://www.bbc.co.uk/radio4"/>
38 </postcondition>
39

40 </behavioralProfile>

This behavioural profile declares two variables, x and y, that will be used
in its scope. It is noteworthy how xml:id can be now applied to identify the
variables, since they are always used within the document scope and do not

134



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

require to be uniquely identified from external sources (so, UUIDs are not
required to name them).

The variables are resolved against existing context information adopting
concrete values. These values are exported onto the postconditions which
are, by this operation, “transmuted” into constraints and can be sent to the
appropriate entities.

For example, let us suppose a small excerpt of the context information
at a particular moment of time to be:

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:dc="http://purl.org/dc/elements/1.1/"
4 xmlns:task="http://www.awareit.com/onto/2005/12/task#"
5 xmlns:loc="http://www.awareit.com/onto/2005/12/location#"
6 xmlns:sound="http://www.awareit.com/onto/2005/12/sound#">
7

8 <rdf:Description rdf:about="http://people.com/bobby">
9 <task:isDoing

10 rdf:resource="http://www.awareit.com/onto/2005/12/task#
WorkingWithLaptop"/>

11 <loc:isLocatedIn rdf:resource="urn:uuid:room21" />
12 </rdf:Description>
13

14 <rdf:Description rdf:about="urn:uuid:room21">
15 <sound:hasSound>
16 <sound:Sound rdf:about="urn:uuid:hifi1_sound">
17 <sound:volume rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
18 7
19 </sound:volume>
20 <sound:station rdf:resource="http://www.eitb.com/ei"/>
21 </sound:Sound>
22 </sound:hasSound>
23 </rdf:Description>
24

25 </rdf:RDF>

Lines 8–10 can be provided by the user’s laptop, which disseminates
information about whether the user is working with it or not. Location
information is provided by a location system, while sound information is
provided by a Hi-Fi system.

If the behavioural profile is evaluated against this context information,
the variables would be resolved as:

x = <urn:uuid:room21>

y = <urn:uuid:hifi1_sound>

And the generated constraints would be:

135



A Reactive Behavioural Model for Context-Aware Semantic Devices

Listing 4.9: Generated constraints from the behavioural profile of Listing
4.8.

1 <constraint id="urn:uuid:con1"
2 requester="http://people.com/bobby"
3 subject="urn:uuid:hifi1_sound"
4 predicate="http://www.awareit.com/onto/2005/12/sound#volume"
5 expires="PT2M">
6 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
7 3
8 </objectLiteral>
9 </constraint>

10

11 <constraint id="urn:uuid:cond2"
12 requester="http://people.com/bobby"
13 subject="urn:uuid:hifi1_sound"
14 predicate="http://www.awareit.com/onto/2005/12/sound#station"
15 expires="PT2M">
16 <objectResource resource="http://www.bbc.co.uk/radio4"/>
17 </constraint>

And, hopefully, the context information would change eventually to fulfil
the constraints.

Listing 4.8 illustrates how a relative complex context-aware behaviour
can be embodied into a behavioural profile using SoaM XML Datatypes,
in such a way that enables very rich expressions and, thus, smart
environmental behaviour.

4.5 Summary

We consider the design of a theoretical framework as a basis for
the subsequent architectural design to be a remarkable outcome that
distinguishes our work from other initiatives.

We identified passive influence as a non-intrusive model to provide
reactivity in embedded platforms attached to everyday objects. Context
modification and behavioural profiles dissemination were also identified as
practical mechanisms to implement the passive influence model.

We consider passive influence to be an interesting and novel concept to
approach how devices and environments may react to different stimuli.

We proposed a set-theory based approach for representing the context-
awareness process, providing some definitions, and identifying the main
entities and concepts as well as their relationships via a number of
propositions and formulas.

136



Juan Ignacio VázquezChapter 4. A Theoretical Model for Context-Aware Reactivity

We designed a mapping in order to represent these relationships among
concepts and influences in an environment from a Semantic Web point of
view that would enable the integration of the theoretical model with a
concrete implementation technology. It is noteworthy how the mapping
process produces similar structures based on RDF triples, using templates
and variable substitution.

Especially remarkable is the possibility of describing a whole knowledge
domain as a capability via the construction ontology:*, as in sound:* to
represent the ability of describing a resource using all the terms in a
concrete domain. Finally, we designed an XML-based serialisation model for
exchanging basic structures such as capabilities, constraints and behavioural
profiles.

We consider our theoretical model to be highly consistent and
appropriate to represent the context-awareness process, seamlessly
integrated with the technologies we wanted to apply and a convenient
foundation for the subsequent architectural design.

137





Chapter

5
SoaM Architecture

“If you wish to make an apple pie from scratch,
you must first invent the universe.”

Carl Sagan
Cosmos, 1980

FOLLOWING the theoretical principles depicted in the previous chapter,
we have designed a distributed architecture that fulfills the main
requirements and evaluation criteria established in section 2.1.

Part of the architectural design of SoaM, tightly related to the Semantic
Web mapping of the theoretical concepts as well as the XML serialisation of
the required structures, has already been introduced in section 4.4.

In this chapter we will focus on the features of SoaM that constitute the
core of the architecture and the basis of its innovation compared to previous
initiatives:

• Semantic Web technologies, mainly ontologies and vocabularies, for
representing not only context information but also devices’ behaviour.

• A completely decentralised communication model where intelligent
semantic devices share a common knowledge of the environment, and
react accordingly.

• A novel mechanism and protocol for semantic discovery in Ubiquitous
Computing environments: mRDP.

• A unique, comprehensive and integrated communication model based
on web technologies.

139



A Reactive Behavioural Model for Context-Aware Semantic Devices

• A flexible mechanism to influence devices’s behaviour by users and
other devices.

• Feasible for implementation in embedded platforms.

• Extensible through additional elements to take advantage of available
computing facilities in the environment.

These innovations materialise through the different outcomes of the
architecture:

• Architectural elements: smobjects, orchestrators and BPinjectors.

• SoaM phases specification: the context-awareness process and
reactivity in the SoaM architecture.

• SoaM Entity Management API – HTTP Binding: HTTP extensions for
communication among architectural elements.

• SoaM topologies: the different deployment strategies for SoaM
elements.

• SoaMonto: the SoaM support ontology.

The design process has been carried out using an iterative model, highly
linked with the implementation activity, during which increasingly more
complete versions of the prototype were implemented and tested, thus
validating both the theoretical model and the architecture.

Using SoaM, devices are able to discover each other and their capabilities
via mRDP; they are also able to share their perceptions in order to create a
common semantic space of knowledge about what is happening in their
environment. By interpreting and contextualising this shared information
via Semantic Web technologies they can behave accordingly and react to the
different situations and events. Moreover, their behaviour is not statically
programmed, but users or other devices can inject new “behaviours” into
them to augment their sensitivity to new stimuli and modify their reactivity
mechanism at a higher level.

The following sections illustrate different aspects of the SoaM
architecture.

5.1 Smobject

Semantic devices in SoaM should be able to perceive and share information
in order to create a common knowledge space; they should analyse and
interpret this context information, and carry out the appropriate behaviour.

140



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

These contex-aware devices must feature semantic
processing capabilities as well as decentralised peer-to-peer discovery and
communication mechanisms, while still being feasible for implementation
in embedded platforms with limited resources.

A smobject (a portmanteau for “smart semantic object”) is the software
agent we have designed for representing this context-aware device in the
SoaM architecture. A sole smobject can act on behalf of a physical device,
several devices or even part of a device.

Smobjects are able to perceive external stimuli, according to their
perception capabilities, semantically annotate and share this context
information with other smobjects in the environment, augmenting and
interpreting this common knowledge through reasoning, and finally perform
accordingly to their behavioural rules, thus carrying out a context-aware
reactivity.

We have designed the internal architecture of the smobject as a
composition of different functional components. These components can be
grouped into two major sets:

• Base components: they provide the very basic operation for perceiving
and sharing information with fellow smobjects and are always active.

• Awareness components: they provide context-aware and reasoning
capabilities, becoming active only when autonomous intelligent
reactivity from the smobject is required.

That is, base components contribute to the creation of a semantic context
information space among smobjects in the environment, while awareness
components embody the intelligent reactivity that emerges when smobjects
reason and interpret this information space.

Regarding the awareness components activation, smobjects are
intrinsically powered with reasoning capabilities but, since they are hosted
in resource-constrained devices, their reasoning power must be economised
and used only when required. For example, if other external entities are
present in the environment, e.g. full computers, able to provide a higher
degree of reasoning power without such resource limitations (memory,
processor and battery), smobjects can transfer the reasoning responsibility
to them (see 5.2).

If the awareness components are active, smobjects are able to perform
the reasoning processes themselves, with no need from external elements,
reasoning and interpreting the information to react accordingly.

This flexible scheme makes smobjects able to cope and adapt
dynamically to a broad range of variable scenarios, trying always to obtain

141



A Reactive Behavioural Model for Context-Aware Semantic Devices

the most from existing facilities in order to develop their context-aware
behaviour.

The awareness-based operation mode contributes to the creation of
intelligent environments populated by autonomous devices that collaborate
spontaneously, and embraces the more important challenges of our research.

5.1.1 Base components

The goal of base components is to contribute to the creation of a common
semantic information space among existing smobjects. They can also
provide the means for the smobject to be controlled by a more intelligent
external entity if required. In order to do so, they expose several services
through their communication interfaces to other entities (see Figure 5.1):

• Discovery: the smobject replies to discovery requests issued by other
entities.

• Capabilities retrieval: it provides descriptions about smobject
perception and operation capabilities to requesting parties.

• Context information retrieval: it provides the context information
captured by the smobject, as stated in its perception capabilities, to
requesting parties.

• Constraints management: it provides management operations over
the constraints that drive the smobject’s behaviour as declared in its
operation capabilities.

Smobjects can also access built-in sensors, actuators, communication
ports and maybe storage facilities if available in the host device to carry
out the required processes.

In some way, the smobject is designed as a “black box”, transforming a
host device into a SoaM-compatible context-aware entity: a semantic device.
Device sensors are declared via the perception capabilities, while actuators
are represented by the smobject’s operation capabilities, in both cases using
the appropriate domain ontologies.

Context information provided by the smobject is a semantic
representation of the actual information captured through the sensors,
augmented with other relevant data such as device ID, type, manufacturer
and so forth.

The constraints management interface is aimed at influencing the
behaviour of the smobject by sending or removing relevant constraints

142



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

(QYLURQPHQW

'HYLFH

6PREMHFW

3HUF
HSWL

RQ

2SHUDWLRQ

 

&DSDELOLWLHV

 

&RQVWUDLQWV

 

&RQWH[W�

,QIRUPDWLRQ

'
LV
F
R
Y
H
U\

id3297906 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.1: Smobject base components communication interfaces.

by external entities, ultimately affecting the actuators and eventually
performing a change in the state of the device or environment.

The internal structure of the smobject base components is formed
by several functional elements that carry out the required processes and
ultimately connect device sensors and actuators to the communication
interfaces as depicted in Figure 5.2.

We have classified the base components into three different groups:

• Base core components: the components that implement the main
management functionality and its communication interfaces. These
components use a discovery protocol (mRDP) and an HTTP interface
for communicating with other smobjects and external entities.

• Platform interfaces: these components act as intermediaries between
the base core components and the device specific hardware. They
form the glue that sticks together and integrates base core components
with the actual built-in platform components, such as sensors and
actuators.

• Built-in platform components: the built-in low level specific elements
that embody device’s capabilities, generally formed by sensors and
actuators.

This classification helps to understand the different layers for perceiving
data through sensors and performing operations under request using the
available actuators. This separation also simplifies the development and
integration of different sensors and actuators into a device, and their
connections with the base components, without affecting other elements.

143



A Reactive Behavioural Model for Context-Aware Semantic Devices

(QYLURQPHQW

6PREMHFW
�%DVH�FRPSRQHQWV�

+773�

LQWHUIDFH

3HUFHSWRU
3HUFHSWRU�

0DQDJHU

(IIHFWRU�

0DQDJHU

(IIHFWRU

6HPDQWLF

WULSOHV
&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

&RQVWUDLQWV

6PREMHFW�

&RQILJXUDWLRQ

3HUFHSWRU
3HUFHSWRU

(IIHFWRU
(IIHFWRU

6HPDQWLF

WULSOHV

&DSDELOLWLHV

&DSDELOLWLHV

'LVFRYHU\�

0RGXOH

'LVFRYHU\

&RQIOLFW�

5HVROYHU

3�6HQVRU3�6HQVRU6HQVRU

3�6HQVRU3�6HQVRU$FWXDWRU

%DVH�FRUH�

FRPSRQHQW

3ODWIRUP�

LQWHUIDFH

%XLOW�LQ�

FRPSRQHQW

&RQIOLFW�

5HVROXWLRQ�

6WUDWHJLHV

$SSOLHG�

&RQVWUDLQWV

$FWLYH�

&RQVWUDLQWV

id2597500 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.2: Smobject internal structure with base components.

5.1.2 Base core components

There are four base core components in a smobject:

• Discovery Module: is the component in charge of receiving search
requests from other entities and replying accordingly. It implements
the discovery mechanisms explained in chapter 3 and section 5.7.

• Perceptor Manager: is the component in charge of managing the
perceptor interfaces, gathering all the semantic information from
them, ultimately obtained via built-in device sensors, in order to make
it available to requesting parties via the HTTP interface.

• Effector Manager: is the component in charge of managing the
effector interfaces, which ultimately operate the built-in device
actuators. The Effector Manager receives the constraints that drive
smobject’s behaviour (active constraints), resolves conflicts among
them if required using the Conflict Resolver, to finally generate the
applied constraints for the effector interfaces. This component also
manages the constraints life-cycle, removing periodically those that
expire. A discussion about active and applied constraints, and how
they are related can be found in subsection 5.1.3.

144



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

• Conflict Resolver: is the component that performs conflict resolution
among the set of received active constraints to generate the final set
of applied constraints that will be effectively applied.

These components, performing the high-level management functions,
are identical for every smobject whatever its purpose. Smobjects can
behave very differently and be applied for a broad range of solutions by
creating environment specific platform interfaces, as explained in the next
subsection, however, the base core components (as well as the awareness
components, explained in 5.1.5) remain immutable, providing management
functions and platform-agnostic functionality.

5.1.3 Platform interfaces

We have designed two categories of platform interfaces for smobjects:

• Perceptors: they act as interfaces between the Perceptor Manager and
the built-in device sensors. Perceptors are connected to device sensors
using platform-specific libraries, APIs or system calls. Every perceptor
implements at least one of the declared perception capabilities of the
smobject. They collect the information read by the local-level sensor,
annotate it semantically using the appropriate knowledge domain
vocabulary (or ontology) depending on the information nature, and
make that information available to the Perceptor Manager under
request.

• Effectors: they act as interfaces between the Effector Manager and
the built-in device actuators. Very much as perceptors, effectors are
connected to device actuators using platform-specific libraries, APIs,
system calls or any other mechanism. Every effector is responsible
for at least one declared operation capability at the smobject. The
Effector Manager provides the effectors with the constraints they are
able to process depending on their operation capabilities. Afterwards,
these logical effectors act upon the built-in device actuators in order
to carry out the desired behaviour.

As it can be noticed, in order to avoid confusion we will use the following
terminology from this point on:

• Sensor: the low-level, probably physical element, that captures the
data from the source.

• Actuator: the low-level, probably physical element, that performs a
concrete action or operation at the very end.

145



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Perceptor: the logical element in the smobject that provides a semantic
interface to access a sensor.

• Effector: the logical element in the smobject that provides a semantic
interface to operate an actuator.

It is noteworthy how the whole set of perception and operation
capabilities of the smobject are functionally implemented by these logical
perceptors and effectors, which are connected to the actual physical device
sensors and actuators. Symmetrically, capabilities in a concrete smobject are
defined by its attached perceptors and effectors. Therefore, perceptors and
effectors act as semantic gateways to the physical components.

In order to make a concrete device capability available in the smobject,
the perceptor and/or effector must be developed, deployed and registered
in the smobject (via the “smobject configuration file”), no modification is
needed in any of the other smobject components.

According to our design, all the perceptors implement a common
interface called IPerceptor which is accessed by the Perceptor Manager. This
interface provides a unique method:

triple[] perceive()

This method returns the whole set of triples representing an RDF graph
that describe the semantic information captured by the perceptor via the
built-in sensors. Typically, every perceptor is specialised in a concrete
knowledge domain, attached to the sensors that capture information about
that domain, and annotates semantically the captured information using
the appropriate configured domain vocabularies. Therefore, a perceptor
transforms raw data into semantic data via annotation.

For example, a smobject in a self-regulated heating system can contain
a TemperaturePerceptor connected to a built-in temperature sensor. The
TemperaturePerceptor polls the sensor periodically obtaining the current
temperature and using a temperature vocabulary such as

http://www.awareit.com/onto/2005/12/temperature

to annotate the data. Whenever the perceptor is polled by the Perceptor
Manager via the perceive() method, it returns just one triple, such as

<http://www.awareit.com/onto/2005/12/location#ThisLocation> <http://

www.awareit.com/onto/2005/12/temperature#hasTemperatureCelsius>

"23"

On the other hand, all the effectors share a common interface called
IEffector which is accessed by the Effector Manager. This interface provides
a unique method:

146



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

void operate (constraint[] state)

This method receives a set of constraints (a class derived from RDF
triple1) representing the desired state of the information in the concrete
knowledge domain the effector operates. The effector is in charge
of translating this semantic-based representation into concrete low-level
operations on the attached device actuators. Therefore, an effector
transforms semantic data representing a goal state (constraint) into concrete
operations for the built-in actuators to achieve that state.

For example, the TemperatureEffector could receive as parameter of
operate() a single constraint about the temperature of the current location:

<http://www.awareit.com/onto/2005/12/location#ThisLocation> <http://

www.awareit.com/onto/2005/12/temperature#hasTemperatureCelsius>

"26"

Since this is a simple effector, it may only accept constraint with

http://www.awareit.com/onto/2005/12/temperature

#hasTemperatureCelsius

as predicate, so its task is limited to checking that the received predicate is
such, and to operating the built-in actuator to configure “26◦C” as the target
temperature.

Figure 5.3 illustrates this example depicting the internal information
flows involving transformation of raw data into semantic data in a smobject.

(QYLURQPHQW

6PREMHFW ORFDWLRQ�7KLV/RFDWLRQ

WHPSHUDWXUH�KDV7HPSHUDWXUH&HOVLXV�����
7HPSHUDWXUH

3HUFHSWRU

7HPS

6HQVRU

��

ORFDWLRQ�7KLV/RFDWLRQ

WHPSHUDWXUH�KDV7HPSHUDWXUH&HOVLXV�����
7HPSHUDWXUH

(IIHFWRU

7HPS

$FWXDWRU

��

3HUFHSWRU�

0DQDJHU

(IIHFWRU�

0DQDJHU

id870225234 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.3: Example of internal perception and operation process in a
smobject.

1A constraint is basically an RDF triple augmented with an optional operator property to
represent ranges (e.g. “greater than 30”) and some other control data.

147



A Reactive Behavioural Model for Context-Aware Semantic Devices

Perceptors and effectors are not required to be mutually isolated and
some times they can be packaged into the same logical component,
exhibiting the IPerceptor and IEffector interfaces simultaneously and
being registered with both the Perceptor and Effector Manager. This
is the desired configuration in the previous example, so resulting in
a TemperaturePerceptorEffector, allowing the component to act as a
control process: continuously reading the current temperature and acting
(controling) on the built-in actuator to meet the desired constraint.

The “smobject configuration file” contains basic information to initialise
and operate the smobject, for example:

• Smobject ID (generally an UUID), class types and other information.

• Perceptors polling period by the Perceptor Manager.

• Correspondences between perceptors and perception capabilities.

• Correspondences between effectors and operation capabilities.

• Conflict resolution strategies for the operation capabilities.

• Any other data for smobject initialisation and operation.

An example configuration file is included in appendix G.

As stated before, perceptor and effector interfaces act as semantic
gateways to the built-in platform-specific sensors and actuators, hiding the
low-level details to other smobject components.

Conflict resolution strategies

A smobject can be affected by more than one constraint on the same
knowledge domain item at a concrete moment of time.

If the knowledge domain item is multivalued, that is, it can assume more
than one value at the same time, no conflict arises and all the constraints
can be honoured. An example on multivalued property could be the a
displayOption property of an information kiosk, it can show an unlimited
number of options to the user, so the following constraints do not pose any
conflict and can be presented to the user:

<urn:uuid:panel1> display:displayOption <http://www.awareit.com/onto

/2005/12/tourist#Monuments> .

<urn:uuid:panel1> display:displayOption <http://www.awareit.com/onto

/2005/12/tourist#Museums> .

148



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

<urn:uuid:panel1> display:displayOption <http://www.awareit.com/onto

/2005/12/tourist#TypicalShopping> .

This would be the case of a tourist whose main interest when browsing
information kiosks are monuments, museums and typical shopping spots
in town. The user’s preferences in this scenario are provided by his PDA
or mobile phone, and processed by the kiosk, generating the previous
constraints, which in turn may highlight the above mentioned options in
the user interface for easy identification.

As well as multivalued properties, there are also functional properties
which can assume only one value at a time. Examples of functional
properties are light:luminance or tv:channel2. In these cases when several
constraints are requested on the same knowledge domain item, some
mechanism must be activated to generate the final value.

Conflict resolution strategies are intended to provide different
mechanisms to cope with these situations by automatically obtaining the
value the property must assume. The right strategy to apply depends on
the property characteristics and the behaviour the designer of the smobject
intends to apply.

Examples of conflicts are already present in existing devices and the
strategy uses to be statically coded or hardcoded by the designer. For
instance, a TV whose channel is simultaneously configured from the remote
control and the TV set external buttons; or an electronic opening door whose
“open” and “close” buttons are pressed at the same time.

From the smobject’s point of view, a conflict resolution strategy can
be attached to each operation capability, and thus, to each effector as
established in the “smobject configuration file”. By applying a strategy, a set
of applied constraints is generated from the set of active constraints received
by the device.

While applied constraints are those finally passed to the effector, the
active constraints are still important for a concrete property, since their
processing finally results in the applied constraints being generated for such
property (which may be different from the all the active constraints, e.g. an
average value).

Although smobject designers can provide particular strategies depending
on the knowledge domain item, device and so forth, we have designed
several generic built-in conflict resolution strategies intended for a wide
range of situations:

2Except in the case the TV screen can be split up in a mosaic-like way to show multiple
channels.

149



A Reactive Behavioural Model for Context-Aware Semantic Devices

• First wins: the first received constraint takes precedence over
subsequent ones and becomes the applied constraint, following a FIFO
scheme. When this constraint expires, the next one following the
reception order becomes the applied constraint.

• Last wins: the opposite of the “first wins” strategy, the last received
constraint becomes the applied one, following a LIFO scheme.
Everyday appliances usually behave this way (e.g. TV set with remote
controls, washing machines, lights, and so on).

• Requester-based priority: all the constraints have a compulsory field
called “requester” conveying the requester ID (a URI), which can be
used in combination with a priority list to promote some constraints
over others depending on the requester. In the case two requesters
share the same priority a “first wins” or “last wins” strategy can be
complementarily applied.

• Numeric average: if the object is a numerical value, all the active
constraints are taken into account to generate the average value which
results in the applied constraint.

• Numeric ranges weighted average: if the constraints also express
ranges, they can be taken into account to generate the applied
constraint. For instance, let’s consider the following active constraints:

location:ThisLocation temperature:hasTemperature "<" "20" .

location:ThisLocation temperature:hasTemperature "30" .

location:ThisLocation temperature:hasTemperature "<" "15" .

location:ThisLocation temperature:hasTemperature ">" "20" .

location:ThisLocation temperature:hasTemperature ">" "22" .

location:ThisLocation temperature:hasTemperature ">" "25" .

We have designed a conflict resolution strategy that works as follows:

1. Identify all the constraints ranged with “<” and multiply their
number as many times as the lower accompanying value. In the
example there are 2 of such, [< 20] and [< 15], so multiplying
2×15 = 30 (15 is the lower value among these).

2. Analogously, identify those constraints specified with “>” and
multiply their number as many times as the larger value. In the
example, 3×25 = 75.

3. Add the resulting values of the previous steps to those without
range. In the example, 30 is provided without range, so 30+75+
30 = 135.

150



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

4. Divide the resulting value among the total amount of constraints
to obtain the final value for the applied constraint. In the
example, 135÷6 = 22.5.

Using this strategy, ranges are weighted and an average value is
generated. Of course, since some constraints may be disjoint, such as
in the example, they cannot be fully honoured, but they still “attract”
the final value towards their side.

Conflict resolution is difficult and very situation specific. These strategies
are not intended to cover all the cases but to provide a basic functionality for
typical scenarios, while still allowing smobject designers to create particular
device- or domain-specific resolution strategies.

5.1.4 Built-in platform components

These components are platform-specific and out of SoaM standardisation.
Platform interfaces, perceptors and effectors, interact with these
components as explained above in order to provide semantic gateways to
them. Built-in platform components are generally sensors, actuators, and
other device-specific elements, such as digital or analog inputs, outputs, or
attached devices.

5.1.5 Awareness components

Awareness components provide the smobject with intelligent capabilities
and autonomous reactive behaviour. Through these components, the
smobject is able to receive behavioural profiles from requesting parties,
retrieve capabilities and context information from other neighbour
smobjects, and finally perform reactive behaviour based on all this
knowledge.

Awareness components expose an additional service through the
communication interface: the behavioural profiles management service,
which provides management operations over the profiles that represent the
required behaviour.

Figure 5.4 depicts the complete smobject communication interfaces
provided by both base and awareness components.

Awareness components act independently from base components and its
activity is triggered by the existence of at least one behavioural profile, since
their operation is associated to the management and processing of such.

The steps carried out by these components are:

151



A Reactive Behavioural Model for Context-Aware Semantic Devices

(QYLURQPHQW

'HYLFH

6PREMHFW

3HU
FHS

WLRQ

2SHUDWLRQ

 

&DSDELOLWLHV

'
LV
F
R
Y
H
U\

 

&RQWH[W�

,QIRUPDWLRQ

 

%HKDYLRXUDO�

3URILOHV

 

&RQVWUDLQWV

id619962296 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.4: Complete smobject communication interfaces.

1. Listen for behavioural profiles: the existence of a profile is the event
that triggers the context-awareness process in the smobject. If no
behavioural profile is configured at the smobject, there is no need for
the awareness process. Behavioural profiles can be natively provided
with the smobject and/or injected externally.

2. Discover other existing smobjects in the environment, and retrieve
their capabilities.

3. Retrieve context information from the Perceptor Manager and from
other discovered smobjects.

4. Apply description logics based on domain knowledge ontologies to
augment the context information.

5. Apply knowledge domain rules to augment the context information.

6. Resolve existing behavioural profiles against the augmented
information obtaining the constraints.

7. Identify the constraints that can be honoured by the smobject
by matching them against its operation capabilities and send the
candidate constraints to the Effector Manager.

8. Manage and renew the constraints on the Effector Manager as needed.

There are four awareness-related components:

• Profiles Manager: manages the life cycle of the behavioural profiles in
the smobject, removing them at expiration and renewing them under

152



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

request. It receives the profiles through the HTTP interface, passing
them along to the Awareness Engine for processing.

• Entity Manager: periodically searches for other smobjects in the
environment using installed discovery protocols. The Entity Manager
is the component in charge of communicating with other smobjects,
retrieving their capabilities and context information, and making the
resulting knowledge available to the Awareness Engine.

• Awareness Engine: whenever a behavioural profile is present,
the Awareness Engine retrieves the context information from the
smobjects (including the local smobject) via the Entity Manager. Then,
the Awareness Engine augments the context information through the
Reasoner, and resolves the profile generating the constraints, which
are passed along to the Constraints Manager.

• Reasoner: implements one or several reasoning mechanisms, such as
description logics or inference rules. It receives context information
directly obtained from environmental entities and returns that
information augmented via reasoning.

• Constraints Manager: manages the life cycle of the constraints,
dispatching, renewing and finally removing them when no longer
required in the local smobject via the Effector Manager. Removal
of constraints may have two different causes: either the behavioural
profiles have not generated the constraint during the last resolution,
or the original profile that generated the constraint has been removed
or not renewed by the requester.

Figure 5.5 illustrates the internal structure of a smobject including both
base and awareness components.

Therefore, the smobject behaviour is always driven by behavioural
profiles at a higher level and constraints at a lower level. Behavioural
profiles can be natively stored in the smobject or externally injected by
an influencing entity. Constraints are always generated from behavioural
profiles via a resolution process which can be performed internally by the
smobject, or externally by an intelligent entity in the environment. We have
designed one type of such external entity, called Orchestrator (see 5.2).

When the constraints are generated internally, the Awareness Engine
is able to obtain them by resolving behavioural profiles against existing
context information, applying the Profiles Resolution Algorithm.

153



A Reactive Behavioural Model for Context-Aware Semantic Devices

(QYLURQPHQW

6PREMHFW

+773�

LQWHUIDFH

3HUFHSWRU
3HUFHSWRU�

0DQDJHU

(IIHFWRU�

0DQDJHU

(IIHFWRU

6HPDQWLF

WULSOHV

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

&RQVWUDLQWV

6PREMHFW�

&RQILJXUDWLRQ

3HUFHSWRU
3HUFHSWRU

(IIHFWRU
(IIHFWRU

6HPDQWLF

WULSOHV

&DSDELOLWLHV

&DSDELOLWLHV

'LVFRYHU\�

0RGXOH

'LVFRYHU\

&RQIOLFW�

5HVROYHU

3�6HQVRU3�6HQVRU6HQVRU

3�6HQVRU3�6HQVRU$FWXDWRU

3URILOHV�

0DQDJHU

&RQVWUDLQWV�

0DQDJHU

(QWLW\�

0DQDJHU

$ZDUHQHVV�

(QJLQH

&RQWH[W

,QIRUPDWLRQ

3URILOHV

&RQWH[W

,QIRUPDWLRQ

&RQVWUDLQWV

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

%HKDYLRXUDO

3URILOHV

$ZDUHQHVV�

FRPSRQHQWV

%DVH�

FRPSRQHQWV

&RQVWUDLQWV

%HKDYLRXUDO�3URILOHV

&RQIOLFW�

5HVROXWLRQ�

6WUDWHJLHV

$SSOLHG�

&RQVWUDLQWV

$FWLYH�

&RQVWUDLQWV

&DSDELOLWLHV

5HDVRQHU

'RPDLQ

UXOHV
2QWRORJLHV

id2469937 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.5: Complete Smobject internal structure.

5.1.6 The Profiles Resolution Algorithm

The process of resolving behavioural profiles, formed by preconditions and
postconditions, against existing context information in order to obtain the
constraints, is very similar to rule processing, since once preconditions are
satisfied and resolved, postconditions are fully characterised.

In order to evaluate preconditions, we cannot make use of a complex
rule engine due to platform limitations in the smobject. However, we have
designed a lightweight mechanism to resolve queries with conditions and
variables against existing RDF information: the Plant Query Resolution
Algorithm presented in subsection 3.3.1.

The Profile Resolution Algorithm is an extension of the Plant Query
Resolution Algorithm. Since a behavioural profile is basically a rule
with some preconditions and postconditions, the preconditions can be

154



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

resolved using the Query Resolution Algorithm against existing context
information, and the values of the variables obtained, can be substituted
in the postconditions, generating the constraints.

For instance, let us revisit the simple example in Listing 4.8 represented
in RDF/XML:

<behavioralProfile id="urn:uuid:prof2" expires="PT2M"

requester="http://people.com/bobby">

<variable xml:id="x"/>

<variable xml:id="y"/>

<precondition id="urn:uuid:prof2_prec1"

subject="http://people.com/bobby"

predicate="http://www.awareit.com/onto/task#isDoing">

<objectResource

resource="http://www.awareit.com/onto/task#WorkingWithLaptop"/>

</precondition>

<precondition id="urn:uuid:prof2_prec2"

subject="http://people.com/bobby"

predicate="http://www.awareit.com/onto/location#isLocatedIn">

<objectVariable ref="x"/>

</precondition>

<precondition id="urn:uuid:prof2_prec3"

subject="#x"

predicate="http://www.awareit.com/onto/sound#hasSound">

<objectVariable ref="y"/>

</precondition>

<postcondition id="urn:uuid:prof2_postc1"

subject="#y"

predicate="http://www.awareit.com/onto/sound#volume">

<objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">

3

</objectLiteral>

</postcondition>

<postcondition id="urn:uuid:prof2_postc2"

subject="#y"

155



A Reactive Behavioural Model for Context-Aware Semantic Devices

predicate="http://www.awareit.com/onto/sound#station">

<objectResource resource="http://www.bbc.co.uk/radio4"/>

</postcondition>

</behavioralProfile>

Applying the Plant Query Resolution Algorithm on this profile against
the existing context information referred in subsection 4.4.3 would produce
possible values for x and y. These values, can be substituted in the
postconditions in order to generate the concrete constraints shown in Listing
4.9 and replicated here:

<constraint id="urn:uuid:con1"

requester="http://people.com/bobby"

subject="urn:uuid:hifi1_sound"

predicate="http://www.awareit.com/onto/sound#volume"

expires="PT2M">

<objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">

3

</objectLiteral>

</constraint>

<constraint id="urn:uuid:cond2"

requester="http://people.com/bobby"

subject="urn:uuid:hifi1_sound"

predicate="http://www.awareit.com/onto/sound#station"

expires="PT2M">

<objectResource resource="http://www.bbc.co.uk/radio4"/>

</constraint>

Therefore, the Profiles Resolution Algorithm produces the expected
results, taking advantage of the already existent Plant Query Resolution
Algorithm and adding an extra final step after variable solving: substituting
the obtained values for the variables in the postconditions. By performing
this final step constraints are generated (see section 6.2.1 for performance
measures about the profile resolution process).

5.1.7 Selective and comprehensive context information
collection

When collecting context information from existing smobjects in the
environment, there are two possible strategies to follow:

156



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

• Comprehensive context collection: it consists on retrieving all the
context information from every smobject present in the environment,
so that the smobject creates an RDF graph representing all the
available knowledge at a concrete moment of time. The drawback is
the amount of network traffic that can be generated as well as a huge
amount of information that can exceed the limited smobject storage
facilities (memory).

• Selective context collection: it consist on identifying the smobjects
that can provide the required context information for resolving the
current behavioural profiles, and only collecting information from
those smobjects. It is the best approach in terms of efficiency in
network traffic and information retrieval, but it requires a previous
process for selecting relevant smobjects.

At the initial steps of our design, we decided that smobjects should
implement the selective strategy, applying the following criterion to decide
whether a concrete smobject is relevant or not: if its perception capabilities
declare the ability to provide information matching any precondition of any
current behavioural profile, the smobject is considered relevant; ignored
otherwise.

This filter selects smobjects providing context information required to
evaluate existing behavioural profiles, which is in turn the main goal of the
information collection.

Since only required information is requested, this strategy decreases the
overall network traffic and saves processing cycles and RDF/XML parsing
both at the requesting smobject and at the requested ones.

However smobjects are intelligent entities that apply reasoning
processes over the context information. When reasoning process are applied
it is difficult to identify all the required data for resolving a behavioural
profile: since reasoning is based on rules, backward-chaining should be
applied to find out the original facts that can potentially generate some
context information via inference, and smobjects providing those original
facts must be also identified.

Since backward-chaining is costly in terms of computing power, which
is a scarce resource in embedded platforms, comprehensive context
information collection can provide a better alternative in some scenarios.

157



A Reactive Behavioural Model for Context-Aware Semantic Devices

Table 5.1 illustrates some criteria to select the most appropriate context
information collection strategy3.

Collection
strategy

Required
computing
power

Required
memory
space

Generated
network
traffic

Intelligence

Selective
without
backward-
chaining

Medium Low Low Medium

Selective with
backward-
chaining

High Medium Medium High

Comprehensive Low High High High

Table 5.1: Comparison among possible context collection strategies.

The suitability of each strategy can be summarised as:

• Selective without backward-chaining: provides a conservative balance
between intelligence and available resources.

• Selective with backward-chaining: optimises network traffic and
memory, but it can only be applied if enough computing resources
are available.

• Comprehensive: suitable in scenarios where the platform processor
capabilities are limited, and the network and platform memory can
cope with large amounts of context information.

In order to obtain the largest amount of context information collected
and thus, maximise the intelligence of the system, so that the smobject is
aware of any relevant information to reason upon and evaluate the profile,
either a selective with backward-chaining or a comprehensive strategy must
be applied.

Considering that network bandwidth is not generally a problem (context
information requires less bandwidth than any multimedia system), the
selected strategy depends on the hosting platform capabilities: computing
power and memory.

3Keeping other factors stable, perceived intelligence depends on the amount of context
information collected.

158



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

5.1.8 Optimising behavioural profiles resolution

We also decided to apply some optimisations in the resolution process at the
smobject when receiving behavioural profiles: if the smobject’s operation
capabilities do not match any of the profile postconditions, the behavioural
profile must be ignored and discarded.

When the smobject operation capabilities do not match any of the
profile postconditions, there is no point in retrieving context information
from other smobjects, evaluating the information and resolving the profile,
obtaining the constraints, to find out, at that moment, that none of the
constraints is suitable for execution at the smobject.

Upon reception of a behavioural profile, the smobject performs a filtering
against its operation capabilities, discarding the profile if none of its
postconditions could be honoured by the smobject when resolved into
constraints.

This optimisation saves a lot of network traffic by avoiding all the
messages involved in profile resolution, basically context information
requests to other smobjects, whenever there is no point in doing so.

5.1.9 Intelligence and reasoning at the smobject

The embedded reasoner at the smobject, powered with ontologies and
domain rules, can successfully interpret situations that were not previously
resolvable without reasoning.

For instance, a profile so ambiguous for a machine such as “if Bob
is sleeping at home, the ambient must be quiet”, can be resolved via
description logics ontologies and forward-chaining over knowledge domain
rules involving more atomic facts that can determine Bob’s state (e.g. “if
x last movement was 10 minutes ago and it is about midnight then x is
sleeping”. Applying ontologies about location and places, if “Bob is in
the room” and “the room is contained in home”, the transitive property of
location produces the fact that “Bob is at home”.

Similarly, “ambient must be quiet” is probably not a constraint
acceptable by any smobject, but rules such as “if the sound level is less
than 2 and all the appliances are muted, then the ambient is quiet” can
produce more concrete constraints injectable into smobjects (the premises
of the above rule).

High-level ambiguous or “naturally expressed” profiles can be processed
by the reasoning engine at the smobject contributing to a higher perceived
intelligence in surrounding objects.

159



A Reactive Behavioural Model for Context-Aware Semantic Devices

Augmenting smobject intelligence through ontologies and description
logics

As we have already discussed, description logics can contribute to better
interpret and analise context information by generating additional facts
obtained through the application of ontologies.

Smobjects can share and apply ontologies to augment the context
information they have obtained from fellow smobjects. The reasoner
we have designed at the smobject is composed of two subelements: the
MiniOwlReasoner and the MiniRuleReasoner. The MiniOwlReasoner is not
a full ontology reasoner, which would be too big for an embedded platform,
but a limited, yet powerful Semantic-Web oriented rule-engine.

The MiniOwlReasoner carries out the following steps:

1. It loads available ontologies.

2. It filters the ontologies, selecting the constructions the reasoner is
able to deal with. The constructions the smobject’s reasoner currently
supports in our prototype are:

• rdfs:subClassOf

• owl:sameAs

• owl:TransitiveProperty

• owl:SymmetricProperty

• owl:inverseOf

Which are the most common and used ontological predicates to
create relationships among concepts in ontologies. It is noteworthy
how any kind of transitive or symmetrical property can be processed
by the MiniOwlReasoner; these kind of properties intrinsically
embed a considerable amount of intelligence in any ontology. The
MiniOwlReasoner implements a subset of OWL Lite, but it is more
complex and powerful than other proposals such as RDF++ [Las06]
by Lassila and almost equivalent to OWL Tiny [Bec04].

3. It generates a rule for each construction, which is added to the
rules base. The rules are specifically generated depending on the
construction arguments. For example, if isLocatedIn is declared as
a transitive property, a particular rule matching RDF statements with
the isLocatedIn property is generated and added to the rules base.
This mechanism performed much better in terms of time consumed
during reasoning than other alternatives we also tested.

160



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

4. When context information needs to be augmented via ontologies, the
stored rules in the rule base are iteratively applied until no more
additional information is generated.

We deem this strategy to provide a good balance between intelligence
and limited resources availability, and the MiniOwlReasoner can be further
improved in the future to cope with additional constructions if the host
platform is powerful enough to support the work load.

Augmenting smobject intelligence through domain rules

The MiniRuleReasoner is able to generate new facts from existing data
(context information) by applying production rules.

The possibilities of this approach are remarkable: if a smobject stores
rules about different knowledge domains, it can generate new data from
existing context information and, thus, be able to resolve behavioural
profiles that were previously discarded, since required information was not
available.

For example, let us consider the following profile:

[<http://people.com/bobby> loc:isLocatedIn ?place]

[<http://people.com/bobby> task:isDoing tv:watchingTv]

⇒
[?place light:luminance "2"]

Basically this profile requests a faint light in a concrete room if
http://people.com/bobby is watching the TV there.

While a location system can provide information to evaluate the first
precondition, and the light control system can operate the postcondition, it
is more difficult to create devices able to detect the different activities of the
user in order to evaluate the second precondition. Interpreting whether the
user is watching the TV or not can be somehow tricky.

However, this information could be inferred with a certain confidence
degree from other available and easier-to-obtain facts. For instance, we
could infer that the user is probably watching the TV if the following
statements are true:

1. There is a device of type “TV set”.

2. The device is in a room.

3. There is a person.

161



A Reactive Behavioural Model for Context-Aware Semantic Devices

4. The person is in the same room as the TV set.

5. The TV is on.

We could express this knowledge in the form of rule as:

[?tv rdf:type tv:TV]

[?tv location:isLocatedIn ?place]

[?person rdf:type per:Person]

[?person location:isLocatedIn ?place]

[?tv tv:state dev:stateOn]

⇒
[?person task:isDoing tv:watchingTv]

Therefore, the fact that the user is watching the TV can be derived
from many more basic low level facts that can be obtained from existing
devices: the location system can provide information about locations and
the fact that a concrete ID belongs to a person; while the TV set can provide
information about its state and type.

The light control system in the room could now successfully process the
previously depicted adaptation profile from the information provided by the
TV set and the location system, to adjust the lights properly.

Implications of reasoning processes in performance

There are several issues to consider when applying reasoning processes in
smobjects hosted in limited platforms:

• If the selective context information strategy is applied, the rules-
enabled smobject must collect not only all the context information
to evaluate profile preconditions, but also all the context information
to evaluate rule premises using backward-chaining, thus generating
more network traffic and processing requirements.

• Another approach, of course, could be applying the comprehensive
context information collection strategy. In this way, smobjects
would collect information from all others ignoring the perception
capabilities. As already mentioned, the drawback of this approach
is a larger amount of network traffic generated as well as the memory
load in the smobject.

• As the amount of rules increases, the resolution process is more
costly and takes more computing resources, specially in more limited

162



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

devices. Intelligence and required platform resources are bounded to
each other.

• A mechanism should be defined for ontologies and rule exchange and
discovery among smobjects, since built-in default static rules are not
sufficient to cope with all the scenarios of everyday problems. The
good news is that mRDP can be successfully used for ontologies and
rules discovery, thus no additional protocol / infrastructure is required
(see section 5.3).

Considering all these issues and for experimental purposes we decided
to promote intelligence at the smobject by supporting both ontologies-
based and rules-based reasoning: the smobject collects context information
using a selective strategy, but a comprehensive strategy could also be
configured. We decided not to incorporate backward-chaining to still deal
with limited computing resources, keeping the balance between intelligence
and platform requirements.

We also decided that the main role in augmenting context information
via reasoning should be located at the requester side, not at the provider
side. That is, the context information provider is not required to perform
any kind of reasoning to augment context information before delivering it
to requesting parties, but the latter should be in charge of this task since
they are the users of the information and they can apply any configured
reasoning mechanism at their discretion.

This scheme penalises requesters that poll surrounding smobjects very
frequently and releases these smobjects, whose main role is providing
context information, from reasoning activities that are not their main
concern since they do not apply obtained conclusions.

In this way, every requester can self-regulate its polling period not to
overload its reasoning mechanisms and to achieve a proper balance between
awareness / reactivity, and energy consumption. On the other hand, non-
reactive smobjects are not required to perform reasoning, so they can
feature less platform requirements and save more energy.

5.1.10 Smobjects as context-aware entities

Designed in such a way, the smobject is a full context-aware entity as defined
in subsection 4.2.2:

Any context-aware entity pursues a major goal, which is to adapt
its behaviour accordingly to changes in the environment, that is, to
changes in perceived context information.

163



A Reactive Behavioural Model for Context-Aware Semantic Devices

As mentioned earlier, the smobject can augment this context information
by applying ontologies and rules, in order to fully interpret the deep
relationships among the concepts.

Driven by the expressive behavioural profiles, the smobject collects
context information directly from the environment and indirectly from other
existent smobjects, applies reasoning augmenting this information, resolves
the profiles, and finally generates the constraints that ultimately affect its
behaviour and maybe change the environment.

Smobjects are sensitive to environmental changes via both its direct
perception capabilities, represented by platform interfaces connected to
built-in sensors; and its indirect perception capabilities, represented by
fellow smobjects in the neighbourhood whose information is collected.
Smobjects implement the desired behaviour through direct operation
capabilities.

Thus, following the notation used in subsection 4.2.2, the smobject
capabilities sc can be expressed as:

ec = (Pd ,Pi,Od ,∅) (5.1)

Each smobject perceives information provided by itself and every other
smobject, acting over its direct operation capabilities. Since every single
smobject behaves this way, the result is that smobjects operate their
effectors, and thus built-in actuators, as required.

Therefore, in a concrete scenario populated by a number of smobjects,
all of them are aware of each other, exhibiting a coordinated reactive
behaviour according to their behavioural profiles and embodying the
concept of semantic device.

The awareness process in the smobject

The existence of a behavioural profile triggers the context-awareness
process. The smobject can be deployed with a number of pre-configured
or static behavioural profiles (with no expiration period) that represent the
permanent behavioural rules, the core behaviour, of the smobject. But any
existing agent in the environment can also inject behavioural profiles into
the smobject, augmenting its behaviour and making it more sensitive to
other stimuli.

The awareness process starts with the smobject discarding non-operable
profiles, then discovering other smobjects and retrieving their capabilities,
and finally collecting the context information. The Profiles Manager

164



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

periodically checks existing profiles, removing them upon expiration if no
renewal is requested by the influencing entity.

The Awareness Engine manages all the awareness process, identifying
the suitable smobjects needed to evaluate profile preconditions from those
provided by the Entity Manager. Requesting the information from them,
augmenting the information through the reasoning processes, resolving
each profile against the augmented context information, thus, generating
the constraints, and finally passing them along to the Constraints Manager.

These newly generated constraints are checked against current ones by
the Constraints Manager:

• If the constraint already exists, no further action is carried out

• If the constraint is new, not present among the current constraints, it
is injected into the Effector Manager

• If a current constraint is not in the new set, it is removed from the
Effector Manager, meaning that the originating influence no longer
exists

Moreover, the Constraints Manager periodically renews the constraints
in the Effector Manager as needed. From this point, the base components
carry out their task as explained in 5.1.1.

Figure 5.6 depicts graphically the context awareness process in an
environment populated by a number of smobjects.

As mentioned above, profiles may not always come from external
sources. Smobjects can be created and preconfigured with some static
profiles that embody smobjects behaviour, and are continuously active. In
this case, the awareness components are also active all the time, checking
the profiles against existing context information and carrying out the desired
behaviour.

In this way, upon startup, the smobject is already populated with some
profiles that define its behaviour and tries to discover other smobjects that
provide information to evaluate preconditions. For example, a TV set can
feature a preconfigured profile to allow or deny watching some TV shows
depending on the user age or the time; or a web browser in a mobile phone
can automatically show the homepage and most common services of the
user’s location, provided by an available location system.

In these cases, both the TV set and the mobile phone are context-aware
entities, powered by their internal smobjects, with some preconfigured
behaviour that makes them smarter for the user’s point of view.

165



A Reactive Behavioural Model for Context-Aware Semantic Devices

(QYLURQPHQW (QYLURQPHQW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

��±�5HDVRQLQJ�	�EHKDYLRXU�GHWHUPLQDWLRQ ��� 5HDFWLRQ

6PREMHFW

'LUHFW�RSHUDWLRQ

(QYLURQPHQW (QYLURQPHQW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

6PREMHFW

��� 'LVFRYHU\ ��� 3HUFHSWLRQ

'LUHFW�SHUFHSWLRQV

id233594718 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.6: The context awareness process for smobjects.

Passively influencing the smobject-powered environment

As presented in the theoretical model (see 4.1), we identified two
mechanisms for provoking a change in context-aware entities: context
modification and behavioural profiles injection.

We have designed smobjects as context-aware entities, in such a way
that their behaviour can be modified dynamically in both ways:

• Context modification: the behaviour carried out by a smobject
depends on the perceived context information. By altering the context,
we can change its behaviour. For example, if a TV smobject reacts
differently depending on user’s preferences, modifying the preferences
provoke a change in the smobject’s behaviour.

The conclusion is that it is possible to modify the environment
indirectly, applying the passive influence model, by exhibiting or
hiding information by the client (a user or other smobject) as needed.

166



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

• Behavioural profiles injection: smobjects’s behaviour can be altered
even at a higher level by injecting behavioural profiles that enable
them to be aware and react to other particular stimuli. Behavioural
profiles augment smobjects’ behaviour and make them more sensitive
and reactive to surrounding context information.

Therefore, smobjects can be dynamically influenced by any other entity,
being it a user or a smobject acting on behalf of a user or a device,
by exhibiting the appropriate context information and / or reconfiguring
smobjects’ behaviours for the intended goals.

5.1.11 An example scenario

Let us consider the following behavioural profile belonging to the user Alice:
“if I am working with my laptop in a room with a sound system, such sound
system must play classical music with the volume set to 2, and the light
luminance of the room to 5”.

The SoaM XML Datatypes representation of this profile is shown is
Listing 5.1.

Listing 5.1: Behavioural profile for the example scenario.
1 <behavioralProfile id="urn:uuid:prof2" expires="PT2M" requester="http

://people.com/alice">
2

3 <variable xml:id="vroom"/>
4 <variable xml:id="vsoundsys"/>
5 <variable xml:id="vsound"/>
6

7 <precondition id="" subject="http://people.com/alice" predicate="
http://www.awareit.com/onto/2005/12/task#isDoing">

8 <objectResource resource="http://www.awareit.com/onto/2005/12/
task#WorkingWithLaptop"/>

9 </precondition>
10

11 <precondition id="" subject="http://people.com/alice" predicate="
http://www.awareit.com/onto/2005/12/location#isLocatedIn">

12 <objectVariable ref="vroom"/>
13 </precondition>
14

15 <precondition id="" subject="#vsoundsys" predicate="http://www.
awareit.com/onto/2005/12/sound#hasSound">

16 <objectVariable ref="vsound"/>
17 </precondition>
18

19 <precondition id="" subject="#vsoundsys" predicate="http://www.
awareit.com/onto/2005/12/location#isLocatedIn">

167



A Reactive Behavioural Model for Context-Aware Semantic Devices

20 <objectVariable ref="vroom"/>
21 </precondition>
22

23 <postcondition id="" subject="#vsound" predicate="http://www.
awareit.com/onto/2005/12/sound#volume">

24 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int
">3</objectLiteral>

25 </postcondition>
26

27 <postcondition id="" subject="#vsound" predicate="http://www.
awareit.com/onto/2005/12/sound#style">

28 <objectResource resource="http://www.awareit.com/onto/2005/12/
sound#ClassicalMusic"/>

29 </postcondition>
30

31 <postcondition id="" subject="#vroom" predicate="http://www.
awareit.com/onto/2005/12/light#luminance">

32 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int
">5</objectLiteral>

33 </postcondition>
34

35 </behavioralProfile>

Let us suppose four different smobjects in a concrete room as depicted in
Figure 5.7: the light control system, the Hi-Fi system, a location system and
Alice’s laptop. Alice enters the room, using the access control in the entrance
that keeps track of the users inside and it is connected to the location system,
which also has a database of appliances and their locations.

When Alice turns on her laptop, the internal smobject is able to
provide the information “Alice is working with me (the laptop)”, along
with other authorised details about Alice and the laptop itself that can be
used by surrounding smobjects. The laptop also acts as Alice’s user-agent
(BPinjector), discovering existing smobjects (step 1) in the environment and
injecting Alice’s profiles into them (step 2), including again the laptop itself.

If the profile were disseminated to every smobject, they would check it
against their capabilities, keeping it in the case of the Hi-Fi and light control
systems, and discarding it in the case of the laptop and the location system,
since their behaviour is not affected by the profile.

The Hi-Fi and light control systems discover each other as well as other
smobjects (step 3), retrieve their capabilities and finally each of them notice
how the information to evaluate the profile is provided by three different
smobjects: the location system, the Hi-Fi system and the laptop. So,
they start polling the context information from these sources (step 4) and
evaluating it against the profile, generating the following constraints:

168



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

6PREMHFW

/DSWRS

6PREMHFW

/LJKW�&RQWURO

6PREMHFW

+L�)L

6PREMHFW

/RFDWLRQ�6\VWHP

���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W�,QIRUPDWLRQ���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W�,QIRUPDWLRQ

%HKDYLRXUDO

3URILOH

%HKDYLRXUDO

3URILOH

���3URILOH�LQMHFWLRQ
�
��
3
UR
IL
OH
�L
Q
MH
F
WL
R
Q

���'
LVFRYHU\

���'
LVFRYHU\

���'
LVFRYHU\

id7597281 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.7: Example scenario with four smobjects.

<urn:uuid:hifi1_sound> sound:volume "3".

<urn:uuid:hifi1_sound> sound:style sound:ClassicalMusic.

<urn:uuid:room21> light:luminance "5".

The Hi-Fi system operates the first two constraints, discarding the third,
while the light control system performs inversely, thus finally configuring
the system to Alice’s goals.

The laptop must renew the profiles in the smobjects periodically,
otherwise, without external influences, the smobjects are free to carry out
a different behaviour as adopting an energy saving mode in the case of the
Hi-Fi system.

5.1.12 Advanced perceptors and effectors

We would like to remark that one of the most noteworthy features of the
smobject is its modular architecture for the platform interfaces: perceptors
and effectors. Preserving the rest of the architecture unmodified, any
designer can create his/her own specific smobject just by plugging-in the

169



A Reactive Behavioural Model for Context-Aware Semantic Devices

appropriate perceptors and effectors for a particular purpose, and making
the appropriate changes in the configuration file.

The rest of the modules remain unaltered, since they integrate with
perceptors and effectors dynamically, on the fly, as specified in the
configuration file.

This flexible plug-in architecture makes it possible to create advanced
perceptors and effectors with additional properties. We have identified and
tested two of these properties:

• Internet connection: perceptors can use the Internet as “sensor”
system. For instance, we can create a perceptor that connects
to a weather information website, downloads the weather forecast
for the current day, and annotates the data using the appropriate
ontology to make them available to surrounding smobjects in case
some behavioural profile must be activated depending on the weather.
Other examples of relevant information that can be accessed and
“semantized” through perceptors are: vehicles traffic data, events in
town, news feeds, user’s mailbox or even stock market quotes.

In this way, it is possible to build the user’s context both from very local
and location-constrained data captured by smobjects in the ubiquitous
network, as well as from more global information sources, enabling
the creation of profiles such as “if I am watching TV and a new email
arrives, show an alert on TV”.

Similarly, effectors can also connect to the Internet to perform some
kind of action on remote entities. For instance, “if I am watching TV
at time x, create an appointment at x in my shared calendar and label
it as busy”.

• Proxy-tised external reasoners: combining the Internet connection
capability with reasoning, a perceptor can act as a reasoner proxy,
accessing an Internet hosted reasoner, sending the context information
and obtaining the results, which are in turn returned to the Perceptor
Manager. However, while architecturally correct, this approach is
more costly in terms of bandwidth and response time. The advantage
is that even a smobject hosted in a limited device without enough
processing power to perform reasoning, can emulate it via an external
agent.

170



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

5.2 Orchestrator

We have designed an optional entity in the SoaM architecture called
Orchestrator, generally hosted in an advanced computing platform, that
extends the functionality of the awareness components of the smobject
to take advantage of more resources, and more intelligent and powerful
reasoning mechanisms.

Basically, orchestrators are formed by the same individual modules
as the awareness components, behaving the same way, except that the
“Awareness Engine” is renamed as “Orchestrator Module” and features the
capability of orchestrating (controlling) external smobjects.

Orchestrators are named this way, because they perceive and coordinate
existing smobjects in the environment in order to implement a more
refined context-awareness process. The orchestrator is the agent where the
reasoning can be fully exploited without resource limitations, and pushed to
its limits, thus, is the entity that can exhibit more intelligence in the SoaM
architecture, along with more platform requirements.

Another important difference between smobjects and orchestrators is
that while the Constraints Manager at the smobject awareness components
discards constraints not suitable for the local smobject, the Constraints
Manager at the Orchestrator processes all the constraints, finding the
appropriate smobjects to inject them into.

Therefore, the main role of the orchestrator is to process behavioural
profiles for the environment, applying advanced reasoning mechanisms,
resolve the profiles into constraints and send those constraints to the
appropriate smobjects.

The orchestrator resembles similar central components in other
architectures such as CoBrA’s Context Broker or Gaia’s Lookup and History
services. However, SoaM’s orchestrator is a completely optional component,
a reasoning and orchestrating facility that can provide more intelligence to
the environment but is not required at all for the smobjects to operate: they
can still collaborate autonomously and spontaneously.

An orchestrator exposes several services through its communication
interfaces:

• Discovery: replies to discovery requests issued by other entities
(orchestrators and BPinjectors).

• Context information retrieval: provides to requesting entities the
context information collected by the orchestrator from all the

171



A Reactive Behavioural Model for Context-Aware Semantic Devices

managed smobjects, augmented after ontological and knowledge
domain reasoning.

• Behavioural profiles management: provides management operations
over the profiles that represent the required environmental behaviour
the orchestrator is in charge of.

Orchestrators do not only provide these services, but they also request
some from other entities:

• Discovery: orchestrators search the network continuously for
smobjects and retrieve their capabilities.

• Context Information retrieval: orchestrators request context
information from smobjects in order to build a comprehensive
knowledge base of the environment over which reasoning can be
performed.

• Constraints management: orchestrators inject constraints into
smobjects to drive their behaviour, managing these constraints as
needed.

Figure 5.8 depicts the communication interfaces of the orchestrator.

 

 

 

id458239171 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.8: Orchestrator communication interfaces.

The orchestrator implements a more sophisticated context-awareness
process by managing and orchestrating the smobjects. The steps carried
out by the orchestrator are:

172



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

1. Listen for behavioural profiles: the reception of a profile is the event
that triggers the context-awareness process. The orchestrator is a
reasoning and orchestrating facility, it does not feature any pre-
configured behavioural profiles since it does not perform any action.

2. Discover existing smobjects.

3. Retrieve context information from available smobjects.

4. Apply description logics, domain rules and any other kind of complex
reasoning mechanism to augment the context information.

5. Resolve existing behavioural profiles against the augmented context
information obtaining the constraints.

6. Identify the smobjects whose operation capabilities can honour the
generated constraints and inject these constraints into them.

7. Manage and renew the constraints influence on the smobjects as
needed.

These activities are carried out continuously by the orchestrator,
whenever at least one behavioural profile exists.

The orchestrator functional components are depicted in Figure 5.9. The
internal architecture resembles the awareness components except for two
differences:

• The Orchestrator Module can feature not only ontologies-based and
rules-based reasoning, but also more advanced mechanisms such as
fuzzy logic, neural or bayesian networks.

• The communication flow that linked the Constraints Manager to the
Effector Manager in the smobject architecture is substituted by a link
between the former and the Entity Manager, since the constraints
are injected through HTTP communication into external smobjects
(as opposite to internal communication between awareness and base
components within a smobject).

While increasing intelligence in smobjects via domain rules and
ontologies must be used spairingly and its performance carefully evaluated
in the hosting platform, the approach when it comes to orchestrators is
completely the opposite: their mission is both to augment and enrich
context information as much as possible through reasoning as well as
to coordinate smobjects behaviour to implement the required goals.
Orchestrators, if present, are devoted to reasoning without limitations

173



A Reactive Behavioural Model for Context-Aware Semantic Devices

2UFKHVWUDWRU

+773�

LQWHUIDFH

3URILOHV�

0DQDJHU

&RQVWUDLQWV�

0DQDJHU

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

&RQVWUDLQWV

2UFKHVWUDWRU�

&RQILJXUDWLRQ

'LVFRYHU\�

0RGXOH

'LVFRYHU\

(QWLW\�

0DQDJHU

2UFKHVWUDWRU�

0RGXOH

%HKDYLRXUDO�3URILOHV

5HDVRQHU

&RQWH[W

,QIRUPDWLRQ

3URILOHV

&RQVWUDLQWV

&RQVWUDLQWV

&RQVWUDLQWV

'RPDLQ�UXOHV

%HKDYLRXUDO�

3URILOHV

2QWRORJLHV

id448711328 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.9: Orchestrator internal structure.

for the sake of other smobjects, and to creating apparent higher level
intelligence in the environment.

Since the domain rules can be chained as already explained and
there may be dependences among different ontologies when performing
description logics reasoning, the orchestrator can adopt one of the two
previously commented strategies:

• Comprehensive context information collection, in order to have the
maximum amount of information available before reasoning.

• Selective context information collection, analysing both domain rules
and ontologies to find out the minimum set of context information
required, identifying the smobjects able to provide it and polling only
these smobjects.

The limitations of computing power and memory that were a major
concern in smobjects to select the best strategy are not such an issue for
the orchestrator.

174



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

Whatever the strategy selected, it must be granted that all relevant
information is generated during reasoning in order to process the profile.

We opted for a comprehensive information collection strategy in the
orchestrator for our implementation (see chapter 6).

5.2.1 Example scenario with orchestrator

Revisiting the scenario depicted previously in subsection 5.1.11, now
incorporating one orchestrator which can be provided by the existing laptop,
the relationships among the entities are shaped in a different way as
illustrated in Figure 5.10.

6PREMHFW

/DSWRS

6PREMHFW

/LJKW�&RQWURO

6PREMHFW

+L�)L

6PREMHFW

/RFDWLRQ�6\VWHP

���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W

,QIRUPDWLRQ
���&RQWH[W�,QIRUPDWLRQ

���&RQWH[W�,QIRUPDWLRQ2UFKHVWUDWRU

%HKDYLRXUDO

3URILOH

���&RQVWUDLQW

���&RQVWUDLQW

�
��
3
UR
IL
OH
�L
Q
MH
F
WL
R
Q

�
��
'
LV
F
R
Y
H
U\

�
��'
LVFR

YH
U\

id7432390 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.10: Example scenario with one orchestrator coordinating four
smobjects.

Alice’s user agent with her profiles, that is, the BPinjector (see section
5.5), discovers the presence of an orchestrator (step 1) and injects the
behavioural profiles into it (step 2). Since the smobjects do not receive
any profile, their awareness components remain idle and only the base
components are active.

175



A Reactive Behavioural Model for Context-Aware Semantic Devices

The presence of an orchestrator releases existing smobjects from the
reasoning process, saving resources for context information provision and
constraints operation.

The orchestrator discovers (step 3) and collects all the context
information (step 4) from the surrounding smobjects; it applies the
relevant ontologies and domain rules (downloading them from a website or
searching them through the network via mRDP) and resolves the profiles,
generating the constraints.

Constraints are injected by the Constraints Manager module of the
Orchestrator into the appropriate smobjects (step 5), as stated by their
operation capabilities, achieving the desired reactivity.

5.2.2 Reasoning at the orchestrator

The orchestrator, hosted in a non resource-limited platform, is potentially
able to implement more sophisticated reasoning mechanisms than the
smobject, including backward-chaining or fuzzy logic.

Moreover, the orchestrator could be able to store registries with all
the interactions, and context-information snapshots that took place in
the system over time, and apply neural or bayesian networks to identify
recurrent patterns and predict situations before they take place, thus
fulfilling the anticipatory character of Ambient Intelligence.

The integration of ontologies, domain rules, fuzzy logic or other
reasoning mechanisms able to deal with uncertainty in the reasoner makes
the orchestrator to emulate in a higher degree how people reason, and how
to process “naturally expressed” desired behaviours in profiles.

5.3 Ontologies and domain rules discovery for
Ubiquitous Computing

One of the most challenging issues when it comes to dealing with OWL
ontologies or domain rules is how a semantic engine, such as the reasoners
embedded in smobjects or in the orchestrator, is able to obtain the ontologies
and rules.

For example, if existing smobjects can provide information about
location, user profiles in the enterprise and available surveillance systems,
how can the reasoner identify, locate and apply the appropriate ontologies
and rules for augmenting the information via inference and create new
relationships among the concepts?

176



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

In the case of locating ontologies, which must be explicitly declared
in the RDF document using <owl:imports>[Wor04e], current semantic
reasoners4 generally provide two complementary means:

• Provision of a copy of the ontology in local storage.

• Downloading the ontology dynamically via HTTP.

When an <owl:imports> clause is found while parsing an RDF document,
the usual mechanism starts by looking in the local storage for the referred
ontology, then loading it. If the ontology is not stored, an HTTP GET request
is issued to the ontology URI where the OWL document can be downloaded.
In order to accomplish this second step, the reasoner must be connected to
the Internet.

Since it is quite difficult to determine beforehand which ontologies
are needed to process RDF graphs about arbitrary knowledge domains
generated by different entities, and thus, store the required ontologies
previously in the system, dynamic downloading of ontologies is a must.
Moreover, downloaded ontologies can be cached in the local storage for
subsequent accesses.

However, when it comes to Ubiquitous Computing scenarios is not
always feasible to have an Internet connection available, so this situation
must not be taken for granted. For example, in open public spaces, travelling
by car or at restaurants, public Internet connection is not always available,
and sometimes requires explicit configuration by the user, which breaks our
serendipitous principle.

For knowledge domain rules, the problem becomes more evident since
there is no standardised means of locating and retrieving rules related to
a particular knowledge domain in a concrete scenario. Generally, these
rules are stored by the reasoning engine and applied as needed, without any
further dynamic mechanism for retrieving other rules about that domain or
about other domains.

Without Internet connection, orchestrators and semantic engines in
general, are not able to locate and download new ontologies and domain
rules, thus limiting their ability to generate new valuable information and
RDF triples from existing knowledge. Moreover, there is no means of
identifying suitable domain rules or URLs where they can be downloaded
from, related to concrete knowledge domains: semantic engines check all
available rules, just in case.

4Such as the default Jena2 OWL reasoner document manager.

177



A Reactive Behavioural Model for Context-Aware Semantic Devices

Our approach for solving these problems is based on several premises
that SoaM fulfils:

• Since smobjects provide context information about different
knowledge domains, depending on attached perceptors and effectors,
they could also provide related ontologies and rules documents to
requesting parties.

• Since mRDP is a general resource discovery protocol, it can be used
to locate ontologies and domain rules through the SoaM network,
without the need for an Internet connection. This is not possible using
UPnP SSDP or any other traditional service discovery protocol.

For example, if a TV set is manufactured with a built-in smobject
providing information about the TV state, configured stations or show type
in digital TV, related ontologies and even domain rules can also be stored
in the smobject in order to make them available to existing reasoners in the
environment.

After retrieving context information from existing smobjects, the
reasoner identifies the <owl:imports> provided and issues an mRDP LOCATE

multicast message:

LOCATE http://www.awareit.com/onto/2005/12/tv mRDP/1.0

NSeq: 67

Callback-URI: http://169.254.0.3/mrdpendpoint

Possible locations of the ontology in the network will be provided via
ReDEL responses to the callback URI. Then, the reasoner downloads the
ontologies as indicated in ReDEL, applying them during reasoning.

Identifying and locating possible domain rules is more difficult. First,
there is no framework for integration of rules languages with RDF and OWL,
although RuleML and SWRL have been proposed (see subsection 4.4.3) and
standardisation is on its way at the W3C5.

We have designed some classes and properties in SoaMonto, the SoaM
ontology (see section 5.9), to allow association of rules with knowledge
domains represented by ontologies using their URIs.

Moreover, rules can involve different knowledge domains at the same
time. For instance the already analysed rule “if x last movement was 10
minutes ago and it is about midnight then x is sleeping”, involves user

5As of December 2006.

178



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

movement, time and user activities (sleeping), and can be attached to the
three different domains.

The next excerpt associates a rule with the TV and task domains,
using the appropriate ontology URIs and the SoaMonto ontology predicate
soamonto:involves:

<http://www.awareit.com/rules/2005/12/tv_basicrules#rule2> soamonto:

involves <http://www.awareit.com/onto/2005/12/tv>

<http://www.awareit.com/rules/2005/12/tv_basicrules#rule2> soamonto:

involves <http://www.awareit.com/onto/2005/12/task>

Since TV domain-related information is provided by a smobject, the
reasoning engine can search the network for rules involving the TV domain,
in case they can be applied to generate new knowledge.

We have designed a two-step discovery process: first the reasoner issues
an mRDP IDENTIFY message with a Plant query to identify rules in the
network involving the TV domain:

IDENTIFY ?r mRDP/1.0

NSeq: 57

Content-Type: application/com.awareit.plant

Content-Length: 101

Callback-URI: http://169.254.0.3/mrdpendpoint

?r <http://www.awareit.com/soam/2005/12/soamonto#involves> <http://www

.awareit.com/onto/2005/12/tv> .

In this example, no explicit representation of the rule is requested.
However, if the reasoning engine is only able to process rules in some
concrete language, for instance SWRL, the message conveying the Plant
query in this case would be:

IDENTIFY ?r mRDP/1.0

NSeq: 57

Content-Type: application/com.awareit.plant

Content-Length: 194

Callback-URI: http://169.254.0.3/mrdpendpoint

?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.

org/2003/11/swrl#Imp> .

?r <http://www.awareit.com/soam/2005/12/soamonto#involves> <http://www

.awareit.com/onto/2005/12/tv> .

179



A Reactive Behavioural Model for Context-Aware Semantic Devices

This last Plant query embodies two conditions: the resource type must
be swrl:Imp, which is the class for rules in SWRL; and, the resource must
involve the TV domain.

All the nodes storing rules of that type, would return a ReDEL response
with identification and the location where more information about the rule
can be downloaded, possibly including the rule itself or a link to the rule
file, depending on the rules language used. Alternatively, an mRDP LOCATE

request can be issued to find other possible locations of the rule or file. Once
downloaded, the rule can be applied.

Defining the structure and use of rules languages is out of the scope
of SoaM; reasoning engines can build and disseminate appropriate Plant
requests for identifying and downloading individual rules or rule files,
depending on the allowed granularity of the language.

Since we wanted to maintain smobjects design simple, they are not
expected to create an RDF graph including every single stored rule; the
smobject designer can group rules in files with associations to knowledge
domains, and make them available for download by other smobjects. The
only requirement is that every file must be identified with a URI, as any
other resource, for the purposes of Plant queries, and annotated with
soamonto:involves and rdf:type predicates for the query resolution.

For example, a TV smobject designer could store a rules file in RuleML
0.9 format and annotate it as:

<http://www.sony.com/tv/rules/basictvrules-01> rdf:type <http://www.

ruleml.org/0.9/onto#RuleSet>

<http://www.sony.com/tv/rules/basictvrules-01> soamonto:involves <http

://www.awareit.com/onto/2005/12/tv>

When requested about the location of such resource (a RuleML 0.9
rules file6) the smobject can generate a reply with ReDEL payload including
the URL where such file is provided by the smobject. For example, if the
smobject has IP address 169.254.0.12:

POST /mrdpendpoint HTTP/1.0

Host: 169.254.0.12

NSeq: 58

Content-Type: application/com.awareit.redel+xml

Content-Length: 438

<?xml version="1.0" encoding="UTF-8"?>

6As of December 2006, there is not any ontology for representing RuleML rule sets.

180



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

<redel xmlns="http://www.awareit.com/soam/2006/04/redel"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.awareit.com/soam/2006/04/redel

http://www.awareit.com/soam/2006/04/redel.xsd">

<resource uri="http://www.sony.com/tv/rules/basictvrules-01">

<location url="http://169.254.0.12/basictvrules-01.ruleml"/>

</resource>

</redel>

Therefore, smobjects can store ontologies and rules about the knowledge
domains they deal with, so that reasoning engines in the ubiquitous network
can discover and download those ontologies and rules in order to apply
them in the reasoning process.

In this way, reasoning engines at smobjects and orchestrators insert an
additional step between local storage file search and Internet download.
This step represents the capability of the network to store and share
ontologies and rules: ubiquitous network search using mRDP.

5.4 Smobjects-only versus orchestrator-powered
scenarios

There are some remarkable differences to be aware of when deciding
whether to use or not an orchestrator in the environment.

From our point of view, the following are some of the major advantages
of orchestrator-powered topologies:

• More intelligence: the orchestrator is able to provide more advanced
reasoning mechanisms over context information due to the absence of
platform limitations.

• Reduced network traffic: the orchestrator acts as an information
attractor, a central point where context information converges. This
feature reduces the traffic compared to the smobjects-only scenario.

In the worst case where all the smobjects require context information
from every other, the amount of connections to collect the data is
n× (n−1), being n the number of smobjects. In a medium case, where
any smobject must collect information from 50% of the available
smobjects, the number of connections would be n×(n−1)

2 .

181



A Reactive Behavioural Model for Context-Aware Semantic Devices

In the presence of an orchestrator, the amount of connections to collect
context information is just n, one connection per smobject from the
orchestrator.

Figure 5.11 compares the number of connections required as the
amount of smobjects increases.

• The use of an orchestrator demands less platform requirements at
the smobjects, since only base components are required: context
information collection, reasoning and behavioural profiles resolution
is performed by the orchestrator.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19

Smobjects

C
on

ne
ct

io
ns

W/o orchestrator - Worst case

W/o orchestrator - Medium
case
With orchestrator

id462398015 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.11: Number of connections for retrieving context information with
and without orchestrator.

On the other hand, among the major advantages of smobjects-only
topologies we would remark:

• Seamless deployment: the cooperation among smobjects emerges
naturally anywhere as they discover each other, there is no need
for deploying or providing a central point of control. This feature
supports the requirement about the serendipitous nature of Ubiquitous
Computing, while promoting distributed dynamic intelligence in the
environment.

• Fault tolerance: smobjects-only networks do not rely on a single
central point of control, but the responsibilities are distributed among

182



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

all the nodes. Any node is equally important and a single failure does
not interrupt the process. Orchestrator-powered topologies become
out of operation if the orchestrator fails.

The obvious conclusion is that both topologies are useful and must be
activated depending on the circumstances: if an orchestrator is available, it
must be used to coordinate environmental behaviour with more intelligent
and traffic-optimisation features; in the absence of such orchestrator,
smobjects are still able to form a context-awareness network autonomously
and provide the required intelligent behaviour.

5.5 BPinjector

We have designed an additional SoaM entity called BPinjector (behavioural
profiles injector) that acts on behalf of a user or other entity,
disseminating behavioural profiles through the environment in order to
obtain personalised behaviour and reactivity from available smobjects.

The BPinjector does not expose any service to other entities, acting solely
as a client. Its internal architecture is very simple, easily embeddable in
resource-constrained platforms, as illustrated in Figure 5.12.

%3LQMHFWRU

+773�

LQWHUIDFH

'LVFRYHU\�

0RGXOH

'LVFRYHU\

3URILOHV�

0DQDJHU

(QWLW\�

0DQDJHU

%HKDYLRXUDO

3URILOHV
%HKDYLRXUDO

3URILOHV

&DSDELOLWLHV

id26963468 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.12: BPinjector internal structure.

The BPinjector is composed of three different modules:

• Discovery Module: periodically searches the environment for
orchestrators or smobjects, using the provided discovery protocols.

183



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Entity Manager: manages the information related to the entities
found in the network, orchestrators and smobjects, retrieving their
capabilities in the latter case.

• Profiles Manager: injects the client’s behavioural profiles into the
appropriate entities, renewing them as needed.

The BPinjector is the entity that triggers the whole process of
personalised behavioural change and adaptation in the smobjects of the
environment by injecting the profiles. The concrete steps performed are:

1. Search the network for orchestrators and smobjects.

2. If more than one orchestrator is found, select one. Inject or renew the
profiles (if needed) in the orchestrator. Go to step 1.

3. If no orchestrator is found, retrieve smobjects’ capabilities and inject
or renew the appropriate profiles (if needed) depending on their
operation capabilities. Go to step 1.

First, the BPinjector tries to find orchestrators in the network. If these
are found, profiles are injected into one of them, which will be in charge of
performing the reasoning procedures as well as orchestrating the smobjects.

In the case that more than one orchestrator is found and if mRDP
is used for discovery, the BPinjector can locate and download additional
descriptions of the orchestrators from the network to check their features
and select the most appropriate.

The SoaMonto ontology described in section 5.9, declares an extensible
set of classes and predicates for describing orchestrators and their available
reasoners, so that the BPinjector can make the selection based on criteria
such as the reasoning mechanism, or whether the reasoner is local or
remote.

In the case no orchestrator is found, the BPinjector retrieves smobjects’
capabilities and injects the appropriate behavioural profiles into the
correspondent smobjects.

There are two situations managed by the BPinjector and supported in
the process as described previously:

• An orchestrator shows up when profiles have already been injected
in smobjects. In this case, the BPinjector injects the profiles into the
orchestrator, and since step 3 is never reached again, the profiles at the
smobjects are not renewed. Upon profile expiration in smobjects, the

184



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

orchestrator is already exerting influence over them, so the constraints
continue active without any perceived gap; the Effector Manager
at the smobject is still receiving the constraints, now sent by the
orchestrator’s Constraints Manager.

• An orchestrator leaves the network. In this case, step 3 is executed
and behavioural profiles are directly injected into the appropriate
smobjects. The Constraints Manager in the smobject awareness
components sends the constraints to the Effector Manager of the local
smobject, and no gap in the behaviour is perceived.

However, there is one scenario in which the above mentioned situations
motivate a discontinuity in the smobject operation: when the advanced
reasoner in the orchestrator (powered with fuzzy logic or neural networks)
generates new facts in the context information that lead to profile resolution
and thus, constraints. The limited reasoner at smobjects may not augment
the context information as much as the orchestrator’s reasoner, so profile
resolution is performed based on a smaller knowledge and some constraints
may not be generated.

This outcome is consequent with the model, since the orchestrator’s
leaving is, after all, a loss of intelligence in the environment

BPinjectors could be embedded in wearables, phones, PDAs, or any other
item the user carries with him anywhere and anytime in order to achieve a
continuous influence over the environment and the surrounding devices.

This influence forces surrounding objects to react and behave
accordingly to the user’s preferences without any explicit command. The
user presence influences the surrounding devices or, from a different point
of view, devices are sensitive to user’s preferences about their behaviour7.

5.5.1 The smobject as BPinjector

The BPinjector acts in behalf of a concrete client that desires to exert
influence on the surrounding environment. In general terms, the client can
be a user, a process, a device or even a smobject.

In the case of a user, although behavioural profiles can be created and
edited manually, it is better to use some kind of software wizard or end-user
programming technique to generate them automatically (e.g. based on user
selections in a graphical interface).

7A scenario with a BPinjector disguised in a work jacket is explained in section 5.6.2.2.

185



A Reactive Behavioural Model for Context-Aware Semantic Devices

Since ontologies are usually well documented in natural language using
the annotation properties of OWL, and they have been used in other projects
in the past for helping the user to make selections, for instance Task
Computing (see subsection 2.3.3), they can also be used to help the user
to create behavioural profiles without dealing with hard-to-remember and
hard-to-process URIs.

Pre-configured or statically stored behavioural profiles act as a local
BPinjector in smobjects. For example, a newly manufactured TV can
be provided with the ability to adjust its screen brightness dynamically
depending on existing luminance in the environment (which can make
user watching difficult). The good news is that complying with the SoaM
awareness model, the TV does not need to feature a built-in light sensor, but
any smobject with a light perceptor can provide the information for the TV
to react.

Multiple examples are possible where smobject-powered devices can rely
on information provided by other fellow smobjects to implement context-
awareness:

• A web browser whose homepage is automatically configured,
depending on user’s location.

• A TV set that reduces its volume automatically, if the user is making a
phone call.

• A sculpture whose colour changes depending on the user’s favourite
football team performance.

• An office door that locks when nobody is in to prevent an unauthorised
party entering.

• A fixed phone which redirects the phone calls to a mobile phone,
depending on whether the user is or not at home as reported by the
access control system.

The possibility of the BPinjector being a smobject is noteworthy, because
of its side effects, which lead to a brand new range of SoaM applications.
Having a BPinjector attached to a smobject means that the smobject takes an
active role in deciding how other smobjects should behave, which basically
means that the smobject is able to influence others’ behaviours through
the profiles. An example is the SmartPlants scenario depicted in chapter
1, where the plants actively influence how the lights, air-conditioning and
heating systems behave in order to preserve their health.

186



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

5.6 Interactions

As mentioned earlier, the BPinjector performs in different ways depending
on the existence of orchestrators in the environment. The following UML
sequence diagrams illustrate the interactions among the different entities
of the SoaM architecture in smobjects-only and orchestrator-powered
scenarios.

In both cases, it is supposed there are two smobjects, called Smobject
1 and Smobject 2, and perceived information is such that profiles
preconditions are immediately met and constraints are generated.

The first case, represented by Figure 5.13, illustrates the smobjects-only
scenario. The steps carried out by the entities are:

1. The BPinjector searches for orchestrators. Since none is found, issues
a request for smobjects and discovers two of them, retrieving their
capabilities.

2. After checking smobjects’ operation capabilities and find out the
profiles that are suitable for them, the BPinjector injects the profiles.

3. The BPinjector performs discovery and injection periodically in case
other smobjects or orchestrators show up.

4. Upon profile reception, the awareness components in each smobject
become active.

5. The smobjects discover each other (although represented as a single
arrow with two heads to save space, there are two interactions here,
from one smobject towards the other), replying the discovery message
with an HTTP POST request conveying ReDEL payload, and retrieving
each other’s capabilities.

6. Every smobject retrieves the required context information (provided
by itself and the other smobject).

7. Every smobject performs reasoning over that information, augmenting
it.

8. Every smobject evaluates the profiles and executes the constraints that
match its operation capabilities.

9. Every smobject renews internally the constraints as needed.

10. Smobjects perform the discovery, context information retrieval,
reasoning, profile resolving and constraints renewal periodically,
checking changes in context information.

187



A Reactive Behavioural Model for Context-Aware Semantic Devices

11. The BPinjector removes the profiles from the smobjects, the awareness
components become inactive and constraints are removed internally.

5HDVRQLQJ

3URILOH�UHVROXWLRQ

,QWHUQDO�FRQVWUDLQWV�

LQMHFWLRQ�DQG�

UHQHZDO

5HDVRQLQJ

3URILOH�UHVROXWLRQ

,QWHUQDO�FRQVWUDLQWV�

LQMHFWLRQ�DQG�

UHQHZDO

5HDVRQLQJ

3URILOH�UHVROXWLRQ

,QWHUQDO�FRQVWUDLQWV�

LQMHFWLRQ�DQG�

UHQHZDO

6PREMHFW�� 6PREMHFW��%3LQMHFWRU

'LVFRYHU\�UHT��P5'3�,'(17,)<�

&DSDELOLWLHV�UHV��+773�������6RD0�'7�

&DSDELOLWLHV�UHT��+773�*(7�

'LVFRYHU\�UHT��P5'3�,'(17,)<�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

'LVFRYHU\�UHV��+773�3267���5H'(/�

'LVFRYHU\�UHV��+773�3267���5H'(/�

&DSDELOLWLHV�UHT��+773�*(7�

&DSDELOLWLHV�UHV��+773�������6RD0�'7�

3URILOHV�LQMHFWLRQ��+773�3267���6RD0�'7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

3URILOHV�UHPRYDO��+773�*(7�

3URILOHV�UHPRYDO��+773�*(7�

3URILOHV�LQMHFWLRQ��+773�3267���6RD0�'7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

'LVFRYHU\�UHT��P5'3�,'(17,)<�

'LVFRYHU\�UHV��+773�3267���5H'(/�

&DSDELOLWLHV�UHV��+773�������6RD0�'7�

&DSDELOLWLHV�UHT��+773�*(7�

5HDVRQLQJ

3URILOH�UHVROXWLRQ

,QWHUQDO�FRQVWUDLQWV�

LQMHFWLRQ�DQG�

UHQHZDO

id235927046 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.13: Interactions in a smobjects-only scenario.

The second case, represented by Figure 5.14, illustrates the orchestrator-
powered scenario. The steps carried out by the entities are:

188



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

1. The orchestrator periodically searches for existing smobjects and
retrieves their capabilities. This step could be delayed until a
behavioural profile is received, but maintaining a list of existing
smobjects speeds up the subsequent process.

2. The orchestrator periodically updates the list of existing smobjects.

3. The BPinjector searches for orchestrators, finds one and injects the
profiles into it.

4. The BPinjector performs discovery periodically in case a more
advanced orchestrator (featuring more complex reasoning) is found,
or the current one leaves the network.

5. Upon profile reception, the orchestration module becomes active.

6. The orchestrator periodically retrieves context information from
existing smobjects.

7. The orchestrator performs reasoning over that information, resolves
the profiles and generates the constraints.

8. Constraints are injected into smobjects, according to their operation
capabilities, and renewed as needed.

9. The BPinjector removes the profiles from the orchestrator, which in
turn removes the constraints from the smobjects.

These examples show a particular interaction possibility among SoaM
entities. However, there is a remarkable number of situations that can
produce variations in these interactions, and that have been already
mentioned along this chapter:

• Smobjects and orchestrators joining and leaving the network
unexpectedly, thus reorganising profiles distribution by the BPinjector.

• Smobjects joining or leaving the network, thus providing or removing
certain capabilities and context information awareness from the
environment, which in turn leads to the successful or failed processing
of a profile.

• Behavioural profiles whose preconditions are not matched at the
beginning but after a certain period, when context information
changes, thus generating the constraints some time after profile
injection.

• Removal of constraints due to changes in context information that
makes profile preconditions no longer valid.

189



A Reactive Behavioural Model for Context-Aware Semantic Devices

%3LQMHFWRU 2UFKHVWUDWRU 6PREMHFW��

'LVFRYHU\�UHT��P5'3�,'(17,)<�

&DSDELOLWLHV�UHV��+773�������6RD0�'7�

&DSDELOLWLHV�UHT��+773�*(7�

6PREMHFW��

'LVFRYHU\�UHT��P5'3�,'(17,)<�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

'LVFRYHU\�UHT��P5'3�,'(17,)<�

&RQVWUDLQWV�LQMHFWLRQ��+773�3267���6RDP�'7�

'LVFRYHU\�UHV��+773�3267���5H'(/�

'LVFRYHU\�UHV��+773�3267���5H'(/�

&DSDELOLWLHV�UHT��+773�*(7�

&DSDELOLWLHV�UHV��+773�����6RD0�'7�

'LVFRYHU\�UHV��+773�3267���5H'(/�

3URILOHV�LQMHFWLRQ��+773�3267���6RD0�'7�

&RQVWUDLQWV�LQMHFWLRQ��+773�3267���6RD0�'7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

3URILOHV�UHPRYDO��+773�*(7�

&RQVWUDLQWV�UHPRYDO��+773�*(7�

&RQVWUDLQWV�UHPRYDO��+773�*(7�

&RQVWUDLQWV�UHQHZDO��+773�*(7�

&RQVWUDLQWV�UHQHZDO��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHT��+773�*(7�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

&RQWH[W�,QIRUPDWLRQ�UHV��+773�������5')�2:/�

$GYDQFHG�UHDVRQLQJ

3URILOH�UHVROXWLRQ

$GYDQFHG�UHDVRQLQJ

3URILOH�UHVROXWLRQ

id28404171 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.14: Interactions in a orchestrator-powered scenario.

• Behavioural profiles renewal, thus renewing the awareness behaviour
in a concrete orchestrator or smobject.

• Behavioural profiles expiration, triggering associated constraints
expiration and removal if they are no longer needed or generated by
other profiles.

190



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

5.7 SoaM Discovery

The goal of SoaM discovery is to find the entities than can take part in SoaM
activities throughout the network. BPinjectors use the discovery service to
find orchestrators in the network, orchestrators use it to find smobjects,
while smobjects can make use of it to find other smobjects. Therefore,
searched entities are always either orchestrators or smobjects.

Every orchestrator exposes its functionality through an interface with
three different services:

• Discovery: replies to discovery requests issued by other entities
(orchestrators and BPinjectors).

• Context information retrieval: provides to requesting entities the
context information collected by the orchestrator from all the
managed smobjects, augmented after ontological and knowledge
domain reasoning.

• Behavioural profiles management: provides management operations
over the profiles that represent the required environmental behaviour
the orchestrator is in charge of.

Smobjects expose their functionality through five different services in a
very similar way:

• Discovery: the smobject replies to discovery requests issued by other
entities.

• Capabilities retrieval: it provides descriptions about smobject
perception and operation capabilities to requesting parties.

• Context information retrieval: it provides the context information
captured by the smobject, as stated in its perception capabilities, to
requesting parties.

• Constraints management: it provides management operations over
the constraints that drive the smobject’s behaviour as declared in its
operation capabilities.

• Behavioural profiles management service: it provides management
operations over the profiles that represent the required behaviour.

In order to provide these services we have created communication
endpoints for each of them. The purpose is SoaM discovery is not only

191



A Reactive Behavioural Model for Context-Aware Semantic Devices

to find orchestrators and smobjects in the network, but also to find their
communication endpoints.

We have experimentally applied two different discovery protocols in
SoaM for different evaluation purposes: UPnP SSDP and mRDP.

SSDP is not only used in UPnP as explained in section 2.2, but also
is the discovery protocol applied in many other Ubiquitous Computing
architectures such as Task Computing.

Despite the lack of standardisation approval in most of its protocols,
including SSDP, UPnP is widely used by manufacturers in many computer
platforms and devices. Extending these existing devices with SoaM, in order
to “semanticise” them was an added challenge in our research, since we
could not only reuse already existing devices and functionality but also
increase it to make them smarter: semantic UPnP devices.

Therefore, one alternative for SoaM was to be 100% compatible with
UPnP, taking existing UPnP devices and augmenting them with SoaM
functionality, to make them more intelligent while still being accessible as
normal UPnP devices to other UPnP entities.

On the other hand, mRDP is able to provide semantic discovery, which
is much more powerful than SSDP.

We designed two different alternatives, so that SoaM can be deployed in
both types of scenarios:

• Existing UPnP devices can be converted into smobjects and integrated
in SoaM by slightly altering the SSDP layer and implementing the
SoaM services.

• New “native” SoaM devices can implement the more powerful and
efficient mRDP discovery protocol as well as the SoaM services.

5.7.1 SoaM discovery with UPnP integration and SSDP
extensions

Our first challenge in this approach was to model UPnP devices as
smobjects without losing their UPnP nature. UPnP devices exhibit a
unique device type. They can become smobjects by changing their type
to urn:awareit-com:device:smobject:1, following the naming requirements
provided by UPnP specification.

However, this alternative results in the device losing its native type, for
example urn:schemas-upnp-org:device:BinaryLight:1 in the case of a simple
light. We wanted the UPnP device to share both natures at the same time:
becoming a smobject while still retaining its initial device type unaltered.

192



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

The solution was to represent the smobject as an embedded device
within the root device (see Figure 5.15). Since the UPnP specification allows
a root device to contain any number of embedded devices, the smobject
nature can be embodied in this way, without affecting the original device
type.

5RRW�GHYLFH5RRW�GHYLFH

6HUYLFH

6HUYLFH

(PEHGGHG�GHYLFH��

6PREMHFW

6HUYLFH

6HUYLFH

7UDQVIRUPDWLRQ

83Q3�LQWHUIDFH

6Rl0�LQWHUIDFH

id291093609 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.15: Transformation of a UPnP device into a SoaM UPnP device.

The smobject UPnP device is not populated by any UPnP services, since
SoaM services are provided by non-UPnP interfaces, but the root device
still provides the same UPnP services as the original device, thus remaining
unaffected.

The problem now is how to notify SoaM entities about SoaM endpoints
in the device using UPnP mechanisms. Since SSDP is the UPnP discovery
protocol, we have extended SSDP to provide this information. SSDP was
briefly described in section 2.2 and the complete specification can be found
in [GC+99].

SSDP uses three headers to inform about the device type:

• NT (Notification Type): the type of the device for notifications.

• ST (Search Target): the type of the device for searching.

• USN (Unique Service Name): a composite identifier formed by the
device unique ID and its service type.

We have defined the values of these headers for smobjects as:

NT / ST: urn:awareit-com:device:smobject:1

USN: uuid:device-uuid::urn:awareit-com:device:smobject:1

193



A Reactive Behavioural Model for Context-Aware Semantic Devices

And the values for orchestrators as:

NT / ST: urn:awareit-com:device:orchestrator:1

USN: uuid:device-uuid::urn:awareit-com:device:orchestrator:1

In order to provide the SoaM comunication endpoints in the discovery
messages, we have augmented SSDP specification with four new headers.
The ABNF grammar of these headers is:

Listing 5.2: ABNF grammar for SoaM SSDP extensions.
1 h-soam-cap = "SoaM-Capabilities" ":" absoluteURI
2 h-soam-con = "SoaM-Constraints" ":" absoluteURI
3 h-soam-prof = "SoaM-Profiles" ":" absoluteURI
4 h-soam-info = "SoaM-Information" ":" absoluteURI

Smobjects will notify their capabilities, constraints, profiles and
information communication endpoints through the correspondent headers,
while orchestrators will use the “profiles” and “information” headers.

Listing 5.3 and Listing 5.4 illustrate a SoaM SSDP extended search
interaction to find smobjects in the network, with one smobject replying.

Listing 5.3: UPnP Control Point request message.
1 M-SEARCH * HTTP/1.1
2 HOST: 239.255.255.250:1900
3 MAN: "ssdp:discover"
4 MX: 3
5 ST: urn:awareit-com:device:smobject:1

Listing 5.4: UPnP Device response messages.
1 HTTP/1.1 200 OK
2 Cache-Control: max-age=60
3 EXT:
4 Location: http://192.168.2.1/igd.xml
5 Server: DSL router/1.02 UPnP/1.0 UPnP-Device-Host/1.0
6 ST:uuid:00000000-0000-0001-0000-000d54a55be6
7 USN: uuid:00000000-0000-0001-0000-000d54a55be6
8

9 HTTP/1.1 200 OK
10 Cache-Control: max-age=60
11 EXT:
12 Location: http://192.168.2.1/igd.xml
13 Server: DSL router/1.02 UPnP/1.0 UPnP-Device-Host/1.0
14 ST: urn:awareit-com:device:smobject:1
15 USN: uuid:00000000-0000-0001-0000-000d54a55be6::urn:awareit-com:device

:smobject:1
16 SoaM-Capabilities: http://http://192.168.2.1/capabilities
17 SoaM-Constraints: http://http://192.168.2.1/constraints

194



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

18 SoaM-Information: http://http://192.168.2.1/information
19 SoaM-Profiles: http://http://192.168.2.1/profiles

Since the smobject is an embedded UPnP device, it generates two replies.
While ST and USN headers provide information for identifying the device and
and its type as smobject, the last four headers inform about the endpoints for
communicating with the smobject following the SoaM Entity Management
API – HTTP Binding (see section 5.8).

The receiving entity can use these endpoints for carrying out SoaM
communication processes with the smobject.

5.7.2 SoaM discovery with mRDP and SoaMonto

mRDP can be used without alterations as discovery protocol for SoaM. In
this case, resource identification queries using Plant can be disseminated
to the network in order to identify the entities that are either smobjects or
orchestrators.

Listing 5.5 contains a Plant query over mRDP to identify smobjects in
the network.

Listing 5.5: Example of a IDENTIFY mRDP message during SoaM mRDP
Discovery.

1 IDENTIFY ?r mRDP/1.0
2 NSeq: 23
3 Content-Type: application/com.awareit.plant
4 Content-Length: 110
5 Callback-URI: http://169.254.0.3/mrdpendpoint
6

7 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/soam/2005/12/soamonto#Smobject> .

SoaMonto, the SoaM ontology described in section 5.9, declares OWL
classes such as “smobject” or “orchestrator”, that are used for constructing
the query. One of the advantages of mRDP is its expressiveness for the
search process. For example, a client can issue a request to find sound-
system smobjects used by a concrete person as illustrated in Listing 5.6.

Listing 5.6: Complex smobject discovery message in mRDP.
1 IDENTIFY ?r mRDP/1.0
2 NSeq: 23
3 Content-Type: application/com.awareit.plant
4 Content-Length: 316
5 Callback-URI: http://169.254.0.3/mrdpendpoint
6

195



A Reactive Behavioural Model for Context-Aware Semantic Devices

7 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/soam/2005/12/soamonto#Smobject> .

8 ?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/sound#SoundSystem> .

9 ?r <http://pervasive.semanticweb.org/ont/2004/06/device#hasUser> <http
://people.com/bobby> .

Replies are sent to the provided calllback URI using HTTP POST
messages as explained in subsection 3.5. A possible response is depicted
in Listing 5.7.

Listing 5.7: Example of a HTTP POST message during SoaM mRDP
Discovery.

1 POST /mrdpendpoint HTTP/1.0
2 Host: 169.254.0.3
3 NSeq: 23
4 Content-Type: application/com.awareit.plant
5 Content-Length: 454
6

7 <?xml version="1.0" encoding="UTF-8"?>
8 <redel xmlns="http://www.awareit.com/soam/2006/04/redel"
9 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

10 xsi:schemaLocation="http://www.awareit.com/soam/2006/04/redel
11 http://www.awareit.com/soam/2006/04/redel.xsd">
12

13 <resource uri="urn:uuid:hifi1">
14 <location url="http://169.254.0.13/description" type="http://www

.awareit.com/soam/2006/04/srdfws#httpGet"/>
15 </resource>
16

17 </redel>

Orchestrators are discovered in a very similar way, using the Plant query:

?r <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.

awareit.com/soam/2005/12/soamonto#Orchestrator> .

Since SoaM concepts, such as “smobject” and “orchestrator” are defined
in the ontology SoaMonto, the discovery process can be seamlessly
integrated into a semantic-based query model such as Plant or SPARQL.

In order to obtain the communication endpoints for the discovered
smobject, the URL provided in the ReDEL payload of the callback can be
accessed (line 14 of Listing 5.7). Listing 5.8 shows the query and the
response containing the RDF description of the smobject, including the
communication endpoints using SoaMonto.

196



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

Listing 5.8: Example of smobject RDF description retrieval.
1 GET /information HTTP/1.0
2 Host: 169.254.0.13
3 Accept: application/rdf+xml, */*
4

5 HTTP/1.0 200 OK
6 Date: Wed, 21 Jun 2006 10:15:19 GMT
7 Cache-Control: max-age=21600
8 Expires: Wed, 21 Jun 2006 16:15:19 GMT
9 Last-Modified: Thu, 15 Dec 2005 14:59:50 GMT

10 Content-Length: 1209
11 Content-Type: application/rdf+xml
12

13 <?xml version="1.0"?>
14 <rdf:RDF
15 xmlns:owl="http://www.w3.org/2002/07/owl#"
16 xmlns="http://www.awareit.com/example2#"
17 xmlns:dev="http://pervasive.semanticweb.org/ont/2004/06/device#"
18 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
19 xmlns:soamonto="http://www.awareit.com/soam/2005/12/soamonto#"
20 xml:base="http://www.awareit.com/example2">
21

22 <owl:Ontology rdf:about="">
23 <owl:imports rdf:resource="http://www.awareit.com/soam/2005/12/

soamonto"/>
24 </owl:Ontology>
25

26 <rdf:Description rdf:about="urn:uuid:hifi1">
27 <rdf:type rdf:resource="http://pervasive.semanticweb.org/ont

/2004/06/device#Device"/>
28 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/sound#

SoundSystem"/>
29 <rdf:type rdf:resource="http://www.awareit.com/soam/2005/12/

soamonto#Smobject"/>
30

31 <soamonto:capabilitiesUri>http://169.254.0.13/capabilities</
soamonto:capabilitiesUri>

32

33 <soamonto:constraintsUri>http://169.254.0.13/constraints</soamonto
:constraintsUri>

34

35 <soamonto:informationUri>http://169.254.0.13/information</soamonto
:informationUri>

36

37 <soamonto:profilesUri>http://169.254.0.13/profiles</soamonto:
profilesUri>

38

39 <dev:hasUser rdf:resource="http://people.com/bobby"/>
40 </rdf:Description>

197



A Reactive Behavioural Model for Context-Aware Semantic Devices

41

42 </rdf:RDF>

It is remarkable how this reply does not provide just the communication
endpoints, but also a rich description of the device, including the types (lines
27, 28 and 29) and even information about the user (line 39) that can be
used by the receiving entity.

5.7.3 Comparison

Two discovery mechanisms have been designed for SoaM: the first one
based on UPnP integration via SSDP extensions, and a second one based
on mRDP semantic queries and SoaMonto. Table 5.2 compares advantages
and drawbacks of both mechanisms.

Mechanism Advantages Drawbacks
SoaM SSDP
extensions

Integration with already
existent UPnP devices

No security mechanisms

Simplicity Neither complex queries nor
semantic discovery

Communication not reliable
(UDP)

mRDP+SoaMonto Reliable replies (TCP) Slightly more complex

HTTPS and HTTP-based
authentication

Advanced queries and
semantic discovery

Table 5.2: Comparison of SoaM SSDP extensions and mRDP as SoaM
discovery mechanisms.

Both SSDP and mRDP require around 21 IP packets for a single search
process encapsulating UDP datagrams or TCP segments:

• SSDP:

– 1 UDP datagram for the search request (repeated 3 times)

– 2 UDP datagrams for replying every request (repeated 3 times
each), in the case no request packet is lost.

• mRDP:

– 1 UDP datagram for the search request (repeated 3 times)

198



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

– 9 IP packets for HTTP callback (3 for connection opening, 1 for
the HTTP request, 1 for the HTTP reply and 4 for TCP connection
closing)

– 9 IP packets more for the resource information retrieval in a very
similar way.

Since replies are reliable and requests have a sequence number, replies
are not repeated even in the case the same request is received more
than once.

UPnP specification states that SSDP packets should be sent more than
once and three times at most to maximise the possibilities of reaching the
destination without increasing significantly network traffic. If SSDP packets
are sent just twice, the total number of IP packets for a search would be
reduced to 10 (but the possibility of loss would increase).

TCP connection closing in mRDP can involve just 3 TCP segments, so
reducing the number of IP packets to 19.

The requirement of mRDP about providing an HTTP server in the client
for receiving the callbacks could be perceived as a disadvantage, but UPnP
also requires an HTTP server in every UPnP device, so both alternatives
feature this issue.

5.8 SoaM Entity Management API

As mentioned and illustrated earlier, the SoaM architecture fulfils our
research goals by making extensive use of HTTP for communication
purposes and proving how an advanced Ubiquitous Computing architecture
can be designed based on this protocol. Even during discovery when mRDP
is applied, we maximise the use of HTTP by providing a reliable means for
callbacks; only multicasting is not possible using this protocol.

The reuse of HTTP everywhere in the smobject architecture promotes a
small software footprint, embeddable in limited-resource devices as well as
it provides a powerful and consistent communication model.

HTTP is used in several different activities involving SoaM entities and
data types. As explained in section 4.4, we have designed two XML-based
languages whose structures form the payload of most HTTP messages;
except for context information messages, which convey RDF/XML, and
mRDP callbacks that use ReDEL. The XML grammars in form of XML
Schemas for these two languages, SoaM XML Datatypes and SoaM XML
Exchange Messages, are included in appendix D.

199



A Reactive Behavioural Model for Context-Aware Semantic Devices

However, not only the payload must be defined but also the relationships
among the different possible calls, the HTTP endpoints, and the URI formats
provided for requesting the services, that is, the web service description for
SoaM.

As a first step, we have identified and defined the operations that can be
performed over the different entities for requesting services. These are:

• Smobject:

– Context Information [retrieve]: from smobjects, orchestrators
and any other entity.

– Capabilities [retrieve]: from smobjects, orchestrators and
BPinjectors.

– Behavioural profiles [retrieve, add, renew and remove]: from
orchestrators and BPinjectors.

– Constraints [retrieve, add, renew and remove]: from
orchestrators.

• Orchestrator:

– Context Information [retrieve]: from smobjects, orchestrators,
BPinjectors and any other entity.

– Behavioural profiles [retrieve, add, renew and remove]: from
BPinjectors.

BPinjectors are not included as service providers, since they act as
clients, requesting services from others.

We have labelled context information as being accessible from any entity
because it is provided in RDF/XML format, so that it can be collected
from any other Semantic Web infrastructure and integrated into business
processes.

Context information and capabilities services do not provide advanced
management mechanisms over HTTP; they are just endpoints where these
structures can be downloaded from.

However, behavioural profiles and constraints can be managed from
external sources via HTTP operations, so that the correspondent endpoints
must provide facilities for requesting the four operations referred above:
retrieve, add, renew and remove.

In order to specify the HTTP interface for invoking these operations,
we have applied the widely used Web Services Description Language
(WSDL)[Wor01a]. However, limited devices hosting smobjects are not

200



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

expected to be able to process and deserialise SOAP [Wor03] messages. That
is the reason we have also designed an alternative, more compact HTTP
interface based on simple HTTP GET and POST requests, less expressive
than SOAP, but easier to process by limited devices.

The HTTP interface for managing behavioural profiles and constraints,
provided in both more expressive (SOAP binding) and more compact
(simple HTTP binding, GET and POST) versions, constitute the SoaM Entity
Management API.

In the next subsection, we describe the compact version. The full WSDL
description, including the SOAP version, is provided in appendix E.

5.8.1 HTTP binding operations and messages

Let us suppose that the endpoint URLs for behavioural profiles and
constraints management provided by a smobject (the same applies to the
orchestrator in the case of behavioural profiles) are respectively

http://169.254.0.3/profiles

http://169.254.0.3/constraints

For the HTTP binding, we have created a simple mechanism to identify
the required operation, based in adding the appropriate suffix to the URI:

• Retrieve: (nothing). E.g. http://169.254.0.3/constraints

• Add: (?add). E.g. http://169.254.0.3/constraints?add

• Renew: (?renew). E.g. http://169.254.0.3/constraints?renew

• Remove: (?remove). E.g. http://169.254.0.3/constraints?remove

Using this mechanism, only one management endpoint URL is required
for the concrete element type (constraint or profile), and operations are
identified by adding the correspondent suffix as explained and illustrated
below.

Retrieve

The retrieve operation is performed by issuing a simple HTTP GET request
on the endpoint URL. The requested entity must reply with the SoaM XML
Datatypes message conveying the results, or RDF/XML in the case of context
information.

201



A Reactive Behavioural Model for Context-Aware Semantic Devices

For example, the messages involved in retrieving the constraints using
the previous URL are illustrated in Listing 5.9.

Listing 5.9: Example of constraints retrieval.
1 GET /constraints HTTP/1.0
2 Host: 169.254.0.3
3 Accept: text/xml,application/xml,application/com.awareit.soamdt+xml

,*/*
4 Connection: close
5

6 HTTP/1.0 200 OK
7 Content-Type: application/com.awareit.soamdt+xml
8 Date: Tue, 11 Jul 2006 14:12:01 GMT
9 Content-Length: 629

10

11 <?xml version="1.0" encoding="UTF-8" ?>
12 <constraintsCollection xmlns="http://www.awareit.com/soam/2006/02/

soamdt" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:
schemaLocation="http://www.awareit.com/soam/2006/02/soamdt http://
www.awareit.com/soam/2006/02/soamdt" owner="urn:uuid:tempControl1
">

13

14 <constraint id="urn:uuid:9248857817233744" requester="http://people.
com/bobby" subject="urn:uuid:room1" predicate="http://www.awareit.
com/onto/2005/12/temperature#hasTemperature" expires="PT1M9S">

15 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int
">24</objectLiteral>

16 </constraint>
17

18 </constraintsCollection>

Add

The “add” operation injects several instances of the data structure,
behavioural profile or constraint, into the HTTP endpoint for processing.
Every time we mentioned “injection” during this chapter we meant an add
operation.

The “add” operation is carried out by issuing an HTTP POST request
conveying the profiles in the body, on the endpoint URL augmented with
the operation suffix ?add, for example

http://169.254.0.3/profiles?add

Listing 5.10 illustrates the injection of two behavioural profiles into a
smobject, using the correspondent endpoint.

202



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

Listing 5.10: Example of constraints injection with add.
1 POST /profiles?add HTTP/1.0
2 Content-Length:2352
3 Connection:close
4 User-Agent:awareIT.com/HTTP Java client 1.0
5 Host:169.254.0.3
6

7 <?xml version="1.0" encoding="UTF-8" ?>
8 <behavioralProfilesCollection xmlns="http://www.awareit.com/soam

/2006/02/soamdt" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.awareit.com/soam/2006/02/
soamdt http://www.awareit.com/soam/2006/02/soamdt">

9 <behavioralProfile id="urn:uuid:prof2" requester="http://people.com/
bobby" expires="PT2M0S">

10 <variable xml:id="x2"/>
11 <variable xml:id="y2"/>
12 <precondition id="" subject="http://people.com/bobby" predicate="

http://www.awareit.com/onto/2005/12/task#isDoing">
13 <objectResource resource="http://www.awareit.com/onto/2005/12/

task#WorkingWithLaptop"/>
14 </precondition>
15 <precondition id="" subject="http://people.com/bobby" predicate="

http://www.awareit.com/onto/2005/12/location#isLocatedIn">
16 <objectVariable ref="x2"/>
17 </precondition>
18 <precondition id="" subject="#x2" predicate="http://www.awareit.

com/onto/2005/12/sound#hasSound">
19 <objectVariable ref="y2"/>
20 </precondition>
21 <postcondition id="" subject="#y2" predicate="http://www.awareit.

com/onto/2005/12/sound#volume">
22 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int

">3</objectLiteral>
23 </postcondition>
24 <postcondition id="" subject="#y2" predicate="http://www.awareit.

com/onto/2005/12/sound#style">
25 <objectResource resource="http://www.awareit.com/onto/2005/12/

sound#ClassicalMusic"/>
26 </postcondition>
27 </behavioralProfile>
28 <behavioralProfile id="urn:uuid:prof3" requester="http://people.com/

bobby" expires="PT2M0S">
29 <variable xml:id="x3"/>
30 <variable xml:id="y3"/>
31 <precondition id="" subject="http://people.com/bobby" predicate="

http://www.awareit.com/onto/2005/12/task#isDoing">
32 <objectResource resource="http://www.awareit.com/onto/2005/12/

task#Talking"/>
33 </precondition>

203



A Reactive Behavioural Model for Context-Aware Semantic Devices

34 <precondition id="" subject="http://people.com/bobby" predicate="
http://www.awareit.com/onto/2005/12/location#isLocatedIn">

35 <objectVariable ref="x3"/>
36 </precondition>
37 <precondition id="" subject="#x3" predicate="http://www.awareit.

com/onto/2005/12/sound#hasSound">
38 <objectVariable ref="y3"/>
39 </precondition>
40 <postcondition id="" subject="#y3" predicate="http://www.awareit.

com/onto/2005/12/sound#volume">
41 <objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int

">0</objectLiteral>
42 </postcondition>
43 </behavioralProfile>
44 </behavioralProfilesCollection>
45

46 HTTP/1.0 200 OK
47 Content-Length:534
48 Date:Tue, 11 Jul 2006 14:38:51 GMT
49 Content-Type:application/com.awareit.soammsg+xml
50

51 <?xml version="1.0" encoding="UTF-8"?>
52 <soamResultsCollection xmlns="http://www.awareit.com/soam/2006/02/

soammsg" xmlns:soamdt="http://www.awareit.com/soam/2006/02/soamdt"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:
schemaLocation="http://www.awareit.com/soam/2006/02/soammsg http
://www.awareit.com/soam/2006/02/soammsg">

53

54 <soamResult ref="urn:uuid:prof2" code="200" expires="PT2M0S">Accepted
</soamResult>

55 <soamResult ref="urn:uuid:prof3" code="200" expires="PT2M0S">Accepted
</soamResult>

56

57 </soamResultsCollection>

The first remarkable aspect is the format of the response, whose body
contains a soamResultsCollection with individual results for every data
structure conveyed in the request. In the example, two profiles were sent, so
the response is populated with two soamResult elements, each referencing
the appropriate profile and informing about:

• The status code associated to the profile. In both cases is 200, which
means that the profile has been accepted.

• The expiration time configured for the profile. In both cases, 2
minutes, as requested. However, the smobject or orchestrator, could
have reduced the accepted period not to exceed the maximum allowed
expiration period.

204



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

• A text message, for debugging purposes.

The response message body uses SoaM XML Exchange Messages, whose
root element is soamResultsCollection.

Renew and remove

These operations can be performed either by HTTP GET or HTTP POST, but
there is an important difference: using HTTP GET only one managed entity
(constraint or profile) can be renewed or removed at a time, while using
HTTP POST several entities can be renewed or removed.

This difference originates from the fact that HTTP POST requests
contain a message body in which a soamEntityIdsCollection element can
be embedded with multiple soamEntityId containing the unique URIs for
the constraints or profiles.

On the other hand, HTTP GET operations are not allowed to contain
a message body, so the constraint or profile is identified via URL encoding
using the query part of the URL with the parameter soamEntityId.

Either if HTTP POST or GET are used, the reply contains a
soamResultsCollection with individual results for each addressed resource,
although in the case of HTTP GET only one result will be provided.

For example, Listing 5.11 illustrates a renew interaction using HTTP
GET.

Listing 5.11: Example of constraint renewal using HTTP GET.
1 GET /constraints?renew&soamEntityId=urn:uuid:constraint1 HTTP/1.0
2 Connection:close
3 User-Agent:awareIT.com/HTTP Java client 1.0
4 Host:169.254.0.3
5

6 HTTP/1.0 200 OK
7 Content-Length:459
8 Date:Thu, 13 Jul 2006 15:52:27 GMT
9 Content-Type:application/com.awareit.soammsg+xml

10

11 <?xml version="1.0" encoding="UTF-8"?>
12 <soamResultsCollection xmlns="http://www.awareit.com/soam/2006/02/

soammsg" xmlns
13 :soamdt="http://www.awareit.com/soam/2006/02/soamdt" xmlns:xsi="http

://www.w3.or
14 g/2001/XMLSchema-instance" xsi:schemaLocation="http://www.awareit.com/

soam/2006/
15 02/soammsg http://www.awareit.com/soam/2006/02/soammsg">
16 <soamResult ref="urn:uuid:constraint1" code="200" expires="PT2M0S">

205



A Reactive Behavioural Model for Context-Aware Semantic Devices

17 Renewed
18 </soamResult>
19 </soamResultsCollection>

On the other hand, Listing 5.12 illustrates a remove interaction using
HTTP POST, to remove two constraints, where the second constraint was
not found at the smobject.

Listing 5.12: Example of constraint removal using HTTP POST.
1 POST /constraints?remove HTTP/1.0
2 Connection:close
3 User-Agent:awareIT.com/HTTP Java client 1.0
4 Host:169.254.0.3
5

6 <?xml version="1.0" encoding="UTF-8"?>
7 <soamEntityIdsCollection xmlns="http://www.awareit.com/soam/2006/02/

soammsg" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi
:schemaLocation="http://www.awareit.com/soam/2006/02/soammsg

8 http://www.awareit.com/soam/2006/02/soammsg.xsd">
9 <soamEntityId ref="urn:uuid:constraint1"/>

10 <soamEntityId ref="urn:uuid:constraint2"/>
11 </soamEntityIdsCollection>
12

13 HTTP/1.0 200 OK
14 Content-Length:576
15 Date:Thu, 13 Jul 2006 15:54:26 GMT
16 Content-Type:application/com.awareit.soammsg+xml
17

18 <?xml version="1.0" encoding="UTF-8"?>
19 <soamResultsCollection xmlns="http://www.awareit.com/soam/2006/02/

soammsg" xmlns
20 :soamdt="http://www.awareit.com/soam/2006/02/soamdt" xmlns:xsi="http

://www.w3.or
21 g/2001/XMLSchema-instance" xsi:schemaLocation="http://www.awareit.com/

soam/2006/
22 02/soammsg http://www.awareit.com/soam/2006/02/soammsg">
23 <soamResult ref="urn:uuid:constraint1" code="200">
24 Removed
25 </soamResult>
26 <soamResult ref="urn:uuid:constraint2" code="404">
27 Not found
28 </soamResult>
29 </soamResultsCollection>

206



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

5.9 SoaMonto: the SoaM support ontology

We have created SoaMonto, the SoaM support ontology to describe
semantically all the entities and concepts that take part in SoaM. SoaMonto
defines 14 classes, 16 properties and 12 individual instances. Some of these
elements are widely used across SoaM in different parts of the process, while
others can only be applied to specific situations.

We have already introduced the use of SoaMonto during the discovery
process in order to find smobjects or orchestrators by disseminating a Plant
query, which is a semantic query after all, through the network. The use of
soamonto:Any was also introduced in section 4.4 for representing wildcards
in capabilities.

We designed SoaMonto to provide a means for representing some
information and structures about the SoaM architecture in a semantic way,
so that intelligent processes with reasoning mechanisms can take advantage
of this information to produce new conclusions.

The main advantage of this approach is that SoaM-related management
data become context information per se and can be used to describe a
smobject, an orchestrator or any other SoaM concept. Using SoaMonto,
the SoaM architecture itself becomes semantically self-descriptive.

For example, behavioural profiles and constraints are exchanged using
SoaM XML Datatypes; but a concrete smobject can also include the profiles
or constraints that drive its behaviour as part of the semantic information
provided as if it was captured by a virtual “Smobject Perceptor”.

Very much in the same way, using RDF and the SoaM ontology, an
orchestrator can describe which smobjects have been discovered, the set
of managed behavioural profiles and even which constraints have been
injected in which smobjects.

SoaM XML Datatypes and SoaMonto are not competing mechanisms,
but rather they serve for different purposes: while SoaM XML Datatypes
are designed for data structures exchange via HTTP messages as explained
earlier, SoaMonto defines semantic relationships among SoaM elements
in order to represent available knowledge about the system in a concrete
moment of time.

The full specification of SoaMonto in RDF/XML is included in appendix
F.

207



A Reactive Behavioural Model for Context-Aware Semantic Devices

5.9.1 SoaMonto classes

We have designed 14 classes representing concepts in SoaM. They form the
SoaMonto taxonomy:

• Capability: extends rdf:Statement. It represents a smobject capability.

• Entity: represents a SoaM entity.

• Smobject and Orchestrator: they are subclasses of Entity to represent
a particular smobject or orchestrator.

• Condition: a subclass of rdf:Statement, augmented with an operator

property.

• Variable: represents a variable for conditions.

• Operator: represents an operator for conditions and constraints.

• Constraint: declared as subclass of Condition, since basically a
constraint is a fully resolved condition (a condition with no Variable

resources).

• BehaviouralProfile: represents a profile relating preconditions and
postconditions.

• Rule: represents a domain knowledge rule.

• Reasoner: represents a reasoner attached to a smobject or orchestrator.

• LocalReasoner and RemoteReasoner: subclasses of Reasoner.

• ReasoningMechanism: represents a reasoning mechanism of a Reasoner,
such as an OWL DL reasoner, an OWL Lite reasoner, a generic rule
reasoner and so forth.

Every remarkable element taking part in SoaM can be represented
using these classes. In fact Smobject and Orchestrator are used during
the discovery process with mRDP (see subsection 5.7.2); and Reasoner,
LocalReasoner, RemoteReasoner, ReasoningMechanism and Rule can be used
to characterise the reasoner in the smobject or orchestrator as well as to
identify rules in the ubiquitous network (see subsection 5.3).

Other advanced semantic searches are possible. For example, if a
BPinjector needs to find orchestrators and smobjects in the network, instead

208



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

of issuing two different requests for each type, it could issue just one request
for a type Entity8.

5.9.2 SoaMonto properties

We have designed 16 properties to create relationships among SoaMonto
concepts. The following list includes their domains and ranges:

• hasPerceptionCapability and hasOperationCapability [domain =
Smobject, range = Capability]: declares the capabilities of a concrete
smobject.

• hasPrecondition and hasPostcondition [domain = BehaviouralProfile,
range = Condition]: declares the preconditions and postconditions of
a behavioural profile.

• operator [domain = Condition, range = Operator]: declares an
operator for the condition (or constraint, since it is a subclass of the
former).

• capabilitiesUri and constraintsUri [domain = Smobject, range =
xsd:anyURI]: these are data type properties containing the endpoint
URI of capabilities and constraints for the smobject.

• informationUri and profilesUri [domain = Entity, range =
xsd:anyURI]: these are endpoints for context information and profiles
management associated to SoaM entities, and thus its subclasses
(smobject and orchestrator).

• isConstrainedBy [domain = Smobject, range = Constraint]: declares
the constraints that currently drive a smobject’s behaviour.

• observesBehaviour [domain = Entity, range = BehaviouralProfile]:
declares the profiles honoured by an entity (smobject or orchestrator).

• manages [domain = Orchestrator, range = Smobject]: declares the
smobjects managed by an orchestrator.

• managedBy [domain = Smobject, range = Orchestrator]: declares the
orchestrator that manages a concrete smobject. It is the inverse of
manages.

8For this request to be successful, the receiving entities must be able to perform
ontological processing based on SoaMonto.

209



A Reactive Behavioural Model for Context-Aware Semantic Devices

• involves [domain = Rule, range = owl:Ontology]: associates a
concrete rule with related ontologies.

• usesReasoner [domain = Entity, range = Reasoner]: declares the
reasoners used by a smobject or an orchestrator.

• applies [domain = Reasoner, range = ReasoningMechanism]: declares
the reasoning mechanisms used by a reasoner.

These properties enable the creation of rich relationships among
instances of the above SoaMonto classes: declaring which profiles are being
honoured by a concrete smobject or orchestrator, specifying all the relevant
details about the reasoners, declaring the active constraints in a smobject,
and so forth.

In this way, the full description of a concrete SoaM element can be
obtained and interpreted.

5.9.3 SoaMonto instances

We have designed 12 individual instances of SoaMonto classes, required in
the model. This list can be extended with new instances as needed:

• Any [is a owl:Thing]: represents the wildcard in capabilities.

• Equals, NotEquals, GreaterThan, GreaterOrEqualsThan, LessThan and
LessOrEqualsThan [is a Operator]: represent different SoaM built-in
operators for conditions and constraints.

• GenericRules, OwlFull, OwlDL, OwlLite and Rdfs [is
a ReasoningMechanism]: represent different reasoning mechanisms to
characterise reasoners.

These built-in predefined instances of SoaMonto may be used
throughout the architecture as explained earlier.

5.9.4 Examples

Let us suppose that a concrete smobject represents its internal state in
terms of active profiles and constraints using SoaMonto, augmenting its
perceived context information with these data. In this way, when the
smobject is queried, it does not only provide semantised data about sensorial
perceptions, but also its internal state as mentioned.

210



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

For example, if the smobject’s behaviour was driven by one behavioural
profile and one constraint, the resulting RDF graph, including an
hypothetically perceived temperature value, could be that depicted in Figure
5.16.

��

XUQ�XXLG�VPREMHFW�

VRDPRQWR�FDSDELOLWLHV8UL

KWWS���������������FDSDELOLWLHVKWWS���������������LQIRUPDWLRQ

KWWS���������������SURILOHV

KWWS���������������FRQVWUDLQWV

VRDPRQWR�SURILOHV8UL

VRDPRQWR�FRQVWUDLQWV8UL

VRDPRQWR�LQIRUPDWLRQ8UL

XUQ�XXLG�SURI�

VRDPRQWR�6PREMHFW

UGI�W\SH

UGI�W\SH VRDPRQWR�%HKDYLRXUDO3URILOH

VRDPRQWR�REVHUYHV%HKDYLRXU

VRDPRQWR�KDV3UHFRQGLWLRQVRDPRQWR�KDV3RVWFRQGLWLRQ

XUQ�XXLG�SURI�SUHF�XUQ�XXLG�SURI�SRVW�

UGI�REMHFW UGI�VXEMHFWUGI�VXEMHFW

UGI�REMHFW

XUQ�XXLG�URRP� KWWS���SHRSOH�FRP�EREE\

ORFDWLRQ�LV/RFDWHG,Q
WHPSHUDWXUH�KDV7HPSHUDWXUH&HOVLXV

XUQ�XXLG�FRQVWUDLQW�

UGI�VXEMHFW

UGI�SUHGLFDWH

UGI�REMHFW

VRDPRQWR�LV&RQVWUDLQHG%\

��

UGI�SUHGLFDWH
UGI�SUHGLFDWH

WHPSHUDWXUH�KDV7HPSHUDWXUH&HOVLXV

id20710078 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 5.16: Context information provided by a smobject, including
SoaMonto data.

The upper part of the RDF graph provides information about the
smobject, its type and its communication endpoints. The medium and lower
right part represents the behavioural profile and the constraint currently
active. The profile is formed by one precondition (“if Bobby is located
in room1”) and one postcondition (“then room1 must have temperature
28◦C”).

The current perceived information is depicted in the lower left part,
asserting that “room1 has a temperature of 24◦C” (thus, the constraint
has not been fully met yet, but probably the smobject is increasing the
temperature steadily though effectors / actuators).

211



A Reactive Behavioural Model for Context-Aware Semantic Devices

For the sake of clarity in this example we omitted the declaration of
other relationships and concepts that would be present normally such as
perception and operation capabilities and some types.

We would like to remark again that SoaMonto does not only play an
important role in the whole architecture, used in different parts, but it may
also be fully exploited to represent SoaM-related context information for
self-describing purposes, as shown in the example.

Since SoaMonto is a fundamental ontology, SoaM entities (smobjects
and orchestrators), should always have it available in the local storage for
the built-in reasoner.

In this way, the retrieval of capabilities, constraints and profiles could
be carried out by applying SoaMonto and RDF/XML serialisation through
the context information interface, instead of using the retrieval operation
defined in the SoaM Entities Management API – HTTP Binding, explained
in section 5.8.

However, the increment in the amount of resulting context information,
higher RDF processing requirements at the smobject side, and the obligation
of keeping on providing the SoaM Entities Management API – HTTP
Binding for the rest of operations (add, renew and remove), disallowed this
approach9.

5.10 Comparative analysis

We have tested the two possible topologies of SoaM against the evaluation
criteria, with the following results:

Decentralisation: while the smobjects-only architecture is completely
decentralised, the orchestrator-powered topology fails to fulfill this
criterium as other similar architectures. SoaM smobjects: High; SoaM
orchestrator: Low.

Reasonability: smobjects feature a limited level of reasoning, applying
ontologies (a subset of OWL Lite) and rules, while the orchestrator-
powered topology features a full reasoner, that can be even extended
with new mechanisms. SoaM smobjects: Medium; SoaM orchestrator:
High.

9Further discussion about this is provided in section 7.2.

212



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

Context-awareness: both topologies feature a high level of reactivity to
changes in context information supported by dynamic behavioural
profiles. SoaM smobjects: High; SoaM orchestrator: High.

Technological Consistency: the exclusive application of web technologies
to design the majority of aspects of SoaM such as behavioural profiles,
context-information descriptions, capabilities and so on, contributes to
an unprecedented technological consistency, similar to that provided
in UPnP. Same APIs, protocol layers and framework facilities can
be used for multiple activities both at the smobjects and at the
orchestrator. SoaM smobjects: High; SoaM orchestrator: High.

Standards Adherence: SoaM strictly adheres to existing standards such as
HTTP, XML, RDF, OWL and so forth. Only mRDP related aspects are
specifically designed for SoaM and yet highly integrated with other
existing technologies such as SPARQL. SoaM smobjects: High; SoaM
orchestrator: High.

Device Implementation Cost: as a distinguishing aspect, SoaM is targeted
to embedded platforms. Components such as the SmobjectBase
and SmobjectAware can be easily implemented limited devices with
minimum requirements, only UPnP is lighter. SoaM smobjects:
Medium; SoaM orchestrator: Medium.

Environment Deployment Cost: the smobjects-only topology does not
require any kind of preparation in the environment. Smobjects
dynamically discover each other and collaborate spontaneously to
honour their behavioural profiles. On the other hand, the orchestrator-
powered topology requires an orchestrator to be deployed in the
environment previously. SoaM smobjects: Low; SoaM orchestrator:
High.

Lightness: the SmobjectBase component is very light and easy to
implement in resource constrained devices, and the SmobjectAware
component can perform reasoning in embedded platforms with
little extra computing power. However, the orchestrator cannot be
implemented in such platforms. SoaM smobjects: Medium; SoaM
orchestrator: Low.

Autonomy: both topologies are completely autonomous and self-
manageable. No user intervention is required as the activities are
carried out automatically by smobjects and the orchestrator after
discovery. SoaM smobjects: High; SoaM orchestrator: High.

The Table 5.3 compares the values obtained by the different technologies
analysed in chapter 2 with those provided by the two possible topologies of

213



A Reactive Behavioural Model for Context-Aware Semantic Devices

SoaM. The weighted final values have been obtained following the same
procedure as in the original comparative (e.g. the two economical criteria
are interpreted as negative figures, thus promoting low values).

SoaM promotes a balance between decentralisation and intelligence,
being light enough for implementation in embedded devices and
maintaining low implementation and deployment costs. It meets our criteria
naturally, ranking exceptionally well in some of them.

As already mentioned, SoaM distinguishes itself from other alternatives
by leveraging spontaneous collaboration and semantic information
exchange among devices that can semantically interpret and react to
changes in context information. SoaM is a Ubiquitous Computing
architecture powered by semantic devices.

214



Juan Ignacio Vázquez Chapter 5. SoaM Architecture

C
ri

te
ri

on
U

Pn
P

Ta
sk

C
om

pu
ti

n
g

C
oB

rA
SO

U
PA

G
ai

a
Se

m
an

ti
c

Sp
ac

es
SO

C
A

M

So
aM

sm
ob

je
ct

s-
on

ly

So
aM

or
ch

es
tr

at
or

-
po

w
er

ed
D

ec
en

tr
al

is
at

io
n

M
ed

iu
m

(8
)

Lo
w

(4
)

Lo
w

(4
)

Lo
w

(4
)

Lo
w

(4
)

H
ig

h(
12

)
Lo

w
(4

)
R

ea
so

n
ab

il
it

y
N

on
e(

0)
Lo

w
(4

)
H

ig
h(

12
)

Ve
ry

H
ig

h(
16

)
H

ig
h(

12
)

M
ed

iu
m

(8
)

H
ig

h(
12

)

C
on

te
xt

-a
w

ar
en

es
s

N
on

e(
0)

Lo
w

(4
)

M
ed

iu
m

(8
)

H
ig

h(
12

)
H

ig
h(

12
)

H
ig

h(
12

)
H

ig
h(

12
)

Te
ch

n
ol

og
ic

al
C

on
si

st
en

cy
H

ig
h(

9)
H

ig
h(

9)
Lo

w
(3

)
Lo

w
(3

)
M

ed
iu

m
(6

)
H

ig
h(

9)
H

ig
h(

9)

St
an

da
rd

s
A

dh
er

en
ce

M
ed

iu
m

(4
)

H
ig

h(
6)

H
ig

h(
6)

H
ig

h(
6)

M
ed

iu
m

(4
)

H
ig

h(
6)

H
ig

h(
6)

D
ev

ic
e

Im
pl

em
en

ta
ti

on
C

os
t

Lo
w

(-
2)

H
ig

h(
-6

)
H

ig
h(

-6
)

H
ig

h(
-6

)
H

ig
h(

-6
)

M
ed

iu
m

(-
4)

M
ed

iu
m

(-
4)

En
vi

ro
n

m
en

t
D

ep
lo

ym
en

t
C

os
t

Lo
w

(-
2)

M
ed

iu
m

(-
4)

H
ig

h(
-6

)
H

ig
h(

-6
)

H
ig

h(
-6

)
Lo

w
(-

2)
H

ig
h(

-6
)

Li
gh

tn
es

s
H

ig
h(

3)
Lo

w
(1

)
Lo

w
(1

)
Lo

w
(1

)
Lo

w
(1

)
M

ed
iu

m
(2

)
Lo

w
(1

)
A

u
to

n
om

y
Lo

w
(1

)
Lo

w
(1

)
H

ig
h(

3)
H

ig
h(

3)
H

ig
h(

3)
H

ig
h(

3)
H

ig
h(

3)
TO

TA
L

21
19

25
33

30
46

37

Ta
bl

e
5.

3:
A

na
ly

si
s

of
So

aM
an

d
ot

he
r

te
ch

no
lo

gi
es

ag
ai

ns
t

th
e

ev
al

ua
ti

on
cr

it
er

ia
.

215





Chapter

6
Prototypes and Evaluation

“That was its trial run, the first time it had ever been tested [. . . ]
This was the first full-scale operational run of the ENIAC.”

Mike Hally
Electronic Brains, 2006

WE already mentioned how the design process was highly linked
with the implementation activity, during which increasingly more
complete versions of the prototypes were implemented and

tested, thus validating both the theoretical model and the architecture.

The feedback and results we obtained contributed to improve
architectural designs as these prototypes were progressively built.

The iterative implementation process consisted in the following steps
(see Figure 6.1):

1. Selection of the target (module / component / functionality) of the
architecture to implement.

2. Implementation of the target.

3. Execution of unit tests of the target and development of required
corrections.

4. Execution of integrated tests of the target and development of required
corrections.

5. Execution of performance tests of the target, and development of
corrections to improve efficiency.

217



A Reactive Behavioural Model for Context-Aware Semantic Devices

3
H
UI
R
UP
D
Q
F
H
�W
H
V
WV

,QWHJUDWLRQ�WHVWV
8
QL
W�W
HV
WV

3
UR
WR
W\
S
H
�

LP
S
OH
P
H
Q
WD
WLR
Q

)HHGEDFN�DQG

VHOHFWLRQ

3
H
UI
R
UP
D
Q
F
H
�W
H
V
WV

,QWHJUDWLRQ�WHVWV
8
QL
W�W
HV
WV

3
UR
WR
W\
S
H
�

LP
S
OH
P
H
Q
WD
WLR
Q

)HHGEDFN�DQG

VHOHFWLRQ

3
H
UI
R
UP
D
Q
F
H
�

WH
V
WV

,QWHJUDWLRQ�WHVWV
8
QL
W�W
HV
WV

3
UR
WR
W\
S
H
�

LP
S
OH
P
H
Q
WD
WLR
Q

)HHGEDFN�DQG

VHOHFWLRQ

)LQDO�SURWRW\SH

3URWRW\SH��

3URWRW\SH�Q

'HSOR\PHQW (YDOXDWLRQ

VFHQDULRV

id9370812 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.1: Incremental prototyping and testing process in SoaM.

Finally, we recreated some evaluation scenarios and carried out end-to-
end performance tests throughout the whole system, with smobjects hosted
in an assortment of commercial embedded platforms.

Performance results heavily depend on the computing power of the
platform, specially when it comes to dealing with somehow complex
information structures in limited devices, but we think that our evaluation
results can provide some valuable information for future semantic devices
developers.

218



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

6.1 Prototyping

The order in which the main components of the architecture were
implemented and tested in the prototypes depended inversely on the degree
of uncertainty about possible implementation problems. Therefore, we
started with the simpler and less problematic components, augmenting the
prototype by adding more complex ones, gradually.

The order in which the elements of SoaM architecture were implemented
is:

1. Smobject base components

2. SoaM UPnP SSDP extensions

3. Orchestrator with semantic reasoning engine

4. BPinjector

5. mRDP client and server

6. Smobject awareness components

7. Smobject embedded reasoner

The implementation of the first three elements (base components,
UPnP SSDP extensions and the orchestrator) enabled us to validate the
orchestrator-powered architecture, and thus, the awareness process without
any kind of semantic processing in the smobject, whose feasibility was one
of our main concerns at that time. The BPinjector contributed to end-to-end
validation of the system .

This first high-level iteration of the architecture already retained some
of the major principles and requirements we addressed at the beginning
of our research (such as reasonability, context-awareness and standards
adherence) while still lacking of some others (such as decentralisation and
a higher degree of technological consistency).

The more difficult components to implement in the embedded platform
were the mRDP discovery client and server, the awareness components and
the reasoning engines (MiniOWlReasoner and MiniRuleReasoner). mRDP
was initially implemented and tested in PC platforms, but some adaptation
and redesign was needed to make it work in more resource-constrained
devices as explained further below.

The awareness components implementation was one of the most difficult
activities, since involved RDF processing and profiles resolution at the

219



A Reactive Behavioural Model for Context-Aware Semantic Devices

smobject; we did not know whether it was going to work with an
acceptable performance before testing it. Finally, the reasoning engines
implementation was specially time consuming due to several optimisations
in order to save processing times and memory.

The development language and software platform was Java, because
one of our main concerns was to create an easy-to-port middleware that
could be migrated to different underlying computing systems, so that
other researchers in the future were able to design and create smobjects
just reusing the core components. We even did not know if, during the
development of the project, other hardware platforms were going to be
available, so that the implementation could be easily migrated.

This decision proved to be correct when, at the final steps of the testing,
several embedded platforms were available and prototype porting was as
easy as copying and configuring the smobject middleware. At the end
of prototyping, smobject components have been succesfully hosted in six
different computing platforms:

• ARM7-based ConnectCore 7U with µClinux

• ARM9-based ConnectCore 9U with Linux

• Intel XScale PXA255 Gumstix with Linux

• Intel Pentium Mobile with Windows XP

• Intel Pentium Mobile with Linux

• Intel Core Duo with Mac OS

Regarding the orchestrator component, since most of existing Semantic
Web libraries are developed in Java, the orchestrator can reuse existing
reasoning engines developed and maintained by open-source communities.

In the following subsections we describe how the implementation
process was carried out for each major component.

6.1.1 Smobject base components

The initial hardware and software platform for hosting the smobject
was the Digi ConnectCore 7U (earlier, FS Forth UNC20) with an ARM7
microprocessor at 55 MHz., a µClinux kernel and a stripped-down Java
Virtual Machine called mi|k|a.

The ConnectCore 7U also featured 8 Mb Flash and 16 Mb RAM, 2
serial interfaces and Ethernet connectivity, easily convertible into Wi-Fi

220



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

connectivity, in a relatively small form factor of 6.28 cm × 1.85 cm × 1.04
cm (12.08 cm3, see Figure 6.2).

Figure 6.2: Image of the ConnectCore 7U platform that hosted the smobject.

All the base components were implemented following the smobject
architectural designs, along with additional helper classes and functions.
Managing an XML parser to work in this platform was specially difficult,
since Java platform libraries required by most of parsers are not included in
mi|k|a.

After trying with several candidates, the MinML parser seemed to work.
We augmented this parser by developing a subsystem for initially parsing
results into memory and looking for XML elements and attributes there,
releasing the memory afterwards. This enabled us to build high-level XML
functions for parsing and generating XML documents.

Multicast networking, needed both for SSDP and mRDP, required a
special configuration of the kernel that had to be recompiled.

The use of the serial port from Java is a typical problem in many
computing platforms, since is very specific to the particular hardware and
operating system involved, and it took some time before it worked in the
ConnectCore 7U.

One of the most remarkable aspects of the implementation architecture
was the design of a pluggable protocol subsystem: since there were at
least two possible communication protocols for SoaM SSDP extensions
and mRDP, we designed an independent mechanism, so that any protocol
honouring an specific interface could be plugged as communication protocol
for the smobject.

The result is that, not only SSDP extensions and mRDP can be used
in the smobject, but any other protocol or communication mechanism,
including Bluetooth or Zigbee -compatible ones could be used for discovery
and communication.

Moreover, the architecture promotes the use of several protocols at the
same time, by plugging them into the Entity Manager, which searches for

221



A Reactive Behavioural Model for Context-Aware Semantic Devices

smobjects throughout installed protocols, keeping track and communicating
with them.

For testing purposes, several helper perceptors and effectors were
designed:

• PerceptorFile: convenience perceptor that reads information from a
file, simulating a sensor, and makes it available in a semantic way.

• EffectorFile: convenience effector that uses a file as actuator, writing
the desired actions, and thus logging the behaviour.

• PerceptorHttp: similar to the PerceptorFile, but reading the
information from a remote URL, acting as a sensor.

• EffectorHttp: similar to the EffectorFile, but writing the actions on a
remote process accessible via an URL, and simulating an actuator.

These peceptors and effectors enabled us to perform a broad range
of simulations and to design smobjects that emulated different devices as
illustrated in the examples throughout this dissertation. Changes in context
information were performed by altering the perception files, either manually
or by an automated process.

These perceptors are not only suitable for testing purposes but also for
real execution environments: since they take a file as default input, only
an external process is required to write that file with the real perceived
information to have an end-to-end complete system. For example, if a
camera surveillance system provides an URL where the captured image
and movement information is posted, a particular PerceptorHttp can be
designed to download these data and semantically annotate them with the
appropriate ontology.

We also developed a small HTTP server and client for the base
components. The HTTP server featured a handler-based architecture, so
that different handlers could be associated to different URL prefixes: when
the server received the request, examined the URL and delivered it to the
appropriate handler, which generated a response for the server, that passed
it back to the original requesting client.

This strategy enabled the use of a single HTTP server from different
modules and became even more important when we added the mRDP
protocol, since discovery replies are HTTP requests that must be notified
to the mRDP client.

We had to create a new HTTP client from scratch, since the one
provided in mi|k|a did not manage the HTTP connections properly, leading
to disruptions and wasting resources.

222



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

6.1.2 UPnP SSDP extensions

Our approach for implementing the discovery protocol was to reuse as much
as possible existing UPnP SSDP libraries, modifying the code conveniently
to support our SoaM SSDP extensions commented in subsection 5.7.1.

In order to achieve this goal we selected the CyberLink Development
Package for UPnP Devices as base platform, adapting the source code to
make it run with mi|k|a and carrying out the modifications to implement
our extensions.

This task was specially troublesome, since features such as multicast
communication or intensive networking were tested then for first time in
the ConnectCore 7U, along with modifications to CyberLink original code.

By adopting existing UPnP libraries we also wanted to prove that existing
UPnP devices could be augmented into smobjects, without losing their UPnP
features.

6.1.3 Orchestrator

The orchestrator reused our SoaM UPnP SSDP extensions implemented so
that it was able to discover and communicate with surrounding smobjects.

The orchestrator is the agent in charge of collecting the context
information from smobjects, reasoning over it, receiving and resolving
behavioural profiles against augmented context information, and
orchestrating smobjects reactivity by sending and managing the constraints.

We implemented all the modules described in section 5.2. Since the
orchestrator was intended to run on non resource-constrained devices, we
avoided all the problems derived of using limited Java virtual machines and
a full development platform was available.

We implemented the four main modules that compose the structure of
the orchestrator (ProfilesManager, ConstraintsManager, SmobjectsManager
and the Orchestration Module) in such a way that they could be run in two
different modes: as different concurrent subprocesses or sequentially within
the same subprocess.

As concurrent subprocesses the overall performance was better since, for
example, the SmobjectsManager could update the list of smobjects, while
the Constraints Manager renewed constraints on existing ones. Our design
dealt with possible concurrency problems derived from simultaneous access
from different execution threads.

The orchestrator must also implement reasoning mechanisms. We
created a pluggable architecture for reasoners, very similar to the designs

223



A Reactive Behavioural Model for Context-Aware Semantic Devices

we used for the discovery protocols, so that any kind of reasoner could be
used without affecting other modules.

We used Jena 2 Semantic Web Framework for developing all the
Semantic Web related activities in the orchestrator, such as serialising and
deserialising RDF/XML, performing declarative logics reasoning or even rule
reasoning, since Jena provides several built-in reasoners.

In order to resolve the profiles, we came up with a mechanism that could
take advantage of the Jena generic rule reasoner:

1. The profile was transformed into a rule, using the Jena rule syntax
and taking profile variables into account.

2. The reasoner was provided with the profile (in the form of rule) and
the augmented context information (after applying description logics
and domain rules).

3. The reasoner generated the new context information, even more
augmented.

4. The orchestrator discarded those statements that were part of the
previous context information, thus obtaining just the new ones
(deductions).

5. The statements were transformed into constraints.

Once the constraints were obtained, they were passed along to
the ConstraintsManager in charge of injecting, renewing and removing
constraints in smobjects as needed.

The orchestrator reused the HTTP server and client developed for the
smobject. The client was used for communicating with the smobjects, while
the server featured a unique handler for dealing with profile injections from
BPinjectors.

6.1.4 BPinjector

For the BPinjector we reused the SoaM UPnP SSDP extensions developed
for the smobject base components, extending them with the ability to search
for orchestrators. We also provided the additional function of injecting the
profiles into the orchestrator or the smobjects.

The ProfilesManager module of the BPinjector had to be designed from
scratch since it has nothing to do with the ProfilesManager at the smobject.
The latter is in change of checking profile expiration and removing the

224



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

profile if required. However, the module at the BPinjector performs the
inverse task: checking possible profile expiration to dispatch renewal
messages.

The BPinjector, as a standalone surrounding elements influencing
component, is intended to be embedded into wearables and portable devices
such as cellular phones or PDAs.

6.1.5 mRDP client and server

The mRDP client and server development was conceived as a different
project from the beginning, since it was intended to be used beyond the
scope of SoaM. We deem mRDP suitable for a broad range of applications
involving identifying and searching semantic information throughout the
network1.

However, since the first tests with mRDP were to be carried out within
SoaM, we tried to design the system in such a way that it would be simple
enough to be hosted in limited platforms as well as easily extensible to take
advantage of advanced computing resources in more powerful platforms,
particularly making use of Jena 2 and its SPARQL query engine in personal
computers.

Therefore, the architecture of mRDP involves not only an mRDP client,
a server and an HTTP server for callbacks (the same HTTP server used
for smobjects, featuring an mRDP handler thus reusing components and
limiting platform size), but also several additional elements that provide
the basis for extensibility.

In fact, we created two abstractions called query model and location
model. The query model abstraction allows the integration of different query
models, depending on the platform characteristics. We developed two query
models: the Plant query model and the SPARQL query model. Query models
are attached to the mRDP server during its initialisation, so that the query
is dispatched to the appropriate query model upon reception.

Obviously, in the smobject implementation of mRDP only the Plant
query model is provided, while the more powerful and resource-demanding
SPARQL query model is used in the orchestrator.

The Plant query model implements the Plant Query Resolution
Algorithm described in subsection 3.3.1. Since program size is a critical

1We created project pages for mRDP in SourceForge
http://sourceforge.net/projects/mrdp and http://mrdp.awareit.com.

225



A Reactive Behavioural Model for Context-Aware Semantic Devices

factor in smobjects, we were able to code the Plant Query Resolution
Algorithm in less than 10 Kb of Java bytecode including helper classes.

The other abstraction is the location model, which is a generator of
URLs where information about resources can be downloaded. A location
model takes a URI resource as input and produces a URL where information
about the resource can be downloaded. We designed three types of location
models:

• SimpleLocationModel: it returns URLs associated with resource URIs
previously in an ad hoc way.

• HttpPrefixUriLocationModel: it creates URLs by adding the resource’s
URI suffix at the end of a URL prefix. We created an HTTP server
handler called HttpPlantHandler for dealing with requests about this
kind of URL at the HTTP server.

• SparqlLocationModel: it generates URLs complying with the SPARQL
protocol specification [Wor06a]. We also implemented an HTTP
handler called HttpSparqlHandler for dealing with requests about this
kind of URLs at the HTTP server.

These abstractions facilitate the creation of query and location models
adapted to platform resources. As mentioned, we created models
appropriate for smobjects and complete PC platforms.

In order to test semantic searches and its corresponding replies, we
developed a special client called “mRDP Browser”, able to send any kind
of Plant query through the network, receive the replies from existing
information sources and retrieve resource descriptions from the attached
locations.

For example, during an early test we started five smobjects in the
network and used the mRDP Browser to discover them by multicasting the
Plant query:

?resource <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://

www.awareit.com/soam/2005/12/soamonto#Smobject>.

This one is the very same Plant query a BPinjector would issue to
discover surrounding smobjects.

After discovery the mRDP Browser is able to browse through the RDF
descriptions of the smobjects. Figure 6.3 depicts a screenshot of this process.

226



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

Figure 6.3: The mRDP Browser browsing through located smobjects in the
network.

6.1.6 Smobject awareness components

All the smobject awarenes components were implemented following the
architecture described in subsection 5.1.5.

Although some of these components perform similarly to those present
in the orchestrator, all the algorithms, specially those related to the
processing of semantic information, required recoding, since Jena 2 cannot
be run on limited platforms. Jena 2 libraries exceed 10 MB of disk space,
while the ConnectCore 7U features only 8 MB Flash and the whole mi|k|a
platform size is 1.37 MB.

Therefore, we developed a small Semantic Web library for the smobject.
This library took advantage of the MinML parser used for the base
components, combined with an RDF parser developed by Megginson
Technologies in 2001 whose size is just 13 Kb. Unfortunately, the project
was discontinued and the parser did not work properly, e.g. it did not take
into account XML namespaces, so we had to correct and adapt it to finally
make it work.

Although the RDF parser provided a means for deserialising RDF/XML, it
did not provide any mechanism for serialisation, so we had to develop extra
functions for serialising RDF triples into RDF/XML, taking into account XML
namespaces as well as adding RDF datatypes parsing capabilities to the RDF
parser for successfully interpreting literal types.

227



A Reactive Behavioural Model for Context-Aware Semantic Devices

A small set of classes was also developed with the purpose of
representing concepts such as RDF triples or RDF stores to provide some
means of managing RDF information.

As already mentioned, reasoning processes were carried out by two
small engines: MiniOwlEngine and MiniRuleEngine. If fact, the MiniOwlEngine

transforms ontological relationships among semantic concepts into
programmatic rules that can be processed by the rule engine implemented
in the resolution algorithm. The MiniRuleEngine transforms rules expressed
using a particular syntax we created for representing domain rules into
programmatic rule structures for the resolution algorithm.

While profile resolution at the orchestrator was carried out by
transforming the profile into a rule and applying the Jena 2 generic rule
reasoner, the process at the smobject involved again the application of the
resolution algorithm we already designed and used as a rule engine.

Combining the XML parser, the RDF parser, the RDF serialiser, the
classes for managing RDF triples, the implementation of the reasoners
and resolution algorithm, we managed to create a small semantic web
framework, a kind of “Jena Lite”, now suitable for the smobject ConnectCore
7U platform.

The whole smobject platform, including the base and awareness
components, was finally implemented in 300 Kb Java bytecode (165 Kb JAR
size), distributed as specified in Table 6.1 (not including specific perceptors
or effectors).

Component name Size (bytecode)
HTTP Server and client 35 Kb
XML API 87 Kb
Base components 46 Kb
mRDP libraries 32 Kb
RDF parser 24 Kb
RDF API 19 Kb
Awareness components 57 Kb

Table 6.1: Smobject components size.

6.1.7 Prototyping issues

The main challenges and problems during the prototyping process were
essentially derived from the platform features and limitations. It took a
remarkable amount of time to solve some of these problems, generally
motivated by the immaturity of the platform that resulted in a lack

228



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

of existing documentation and experiences by other developers. mi|k|a
developed unexpected behaviours that were not found in the same Java
code running in a desktop computer as mentioned below.

Based on our contact with the platform providers and existing feedback,
we believe we have developed the most complex application ever run on
Java for ConnectCore 7U, at least publicly disclosed, so far.

The low performance obtained using the awareness components during
the initial tests encouraged us to optimise a lot of activities and to use basic
Java libraries. In fact, the smobject components can be run in any Java 1.2
platform, which dates back to 1998.

Among the main problems we found developing the prototype were:

• The lack of an automatic garbage collector in mi|k|a forces to carefully
establish “checkpoints” where garbage collection must be performed,
otherwise the system never releases memory and eventually crashes.

• Network libraries in mi|k|a have a number of differences compared
to the standard Java network library, so we had to adapt CyberLink
UPnP to make it work in the ConnectCore 7U. Moreover, the structure
of the CyberLink API made somehow difficult to incorporate our SoaM
SSDP extensions. Several modifications at different classes had to be
carefully done to add a single new capability.

• Making an XML parser work with the RDF parser, while having a small
footprint, was even more difficult, since the RDF parser required SAX2
parsers.

• We also selected the parser in terms of performance (see subsection
6.2.1) by running several tests on the ConnectCore 7U platform. The
one that ranked best was MinML, which is a SAX1 parser, but finally
we could make it work by providing a SAX2 adapter for it.

• The RDF parser did not support RDF datatypes, local XML namespaces
or the XML base namespace. We had to develop all this features.

• Although mi|k|a provided an implementation of the standard Java
HTTP client class, we found unexpected behaviours when reading
network data, mainly connection break-ups and data losses. Since,
network traffic analysis reported that the data were arriving properly,
we suspected of the HTTP client class and developed another from
scratch, which worked perfectly.

Despite having developed two alternative communication stacks at the
beginning, one based on SoaM SSDP extensions and other based in mRDP,

229



A Reactive Behavioural Model for Context-Aware Semantic Devices

after developing the awareness components and make them work with
mRDP, we discontinued the use of SSDP extensions.

The advantage of using UPnP was to readapt existing UPnP devices
to make it work with SoaM extending their capabilities. Once this goal
was achieved, and being UPnP further developments halted by the UPnP
Forum, we focused our efforts in mRDP semantic discovery which is more
challenging and promising.

6.1.8 Second generation prototypes

Shortly after the first generation of prototypes were deployed and tested
in ConnectCore 7U-based platforms, we achieved to port the smobject
middleware to more powerful and even smaller embedded alternatives:
ConnectCore 9U and Gumstix Connex 400xm.

ConnectCore 9U

The ConnectCore 9U is pin-to-pin compatible with ConnectCore 7U, but
hosting a much more powerful ARM9-based processor at 180 MHz, more
than three times faster than the CC7U, 16 Mb RAM and 16 Mb flash ROM.
The CC9U operating system consists on a Linux-based kernel, while the
CC7U had a µClinux kernel.

Regarding to Java platforms for CC9U we ported the open-source JVM-
like Kaffe and also tested the mi|k|a version. The latter was remarkably
faster and it was the one we used for performance evaluation. Moreover, it
did not feature some of the limitations of the CC7U version (e.g. garbage
collection).

Gumstix Connex 400xm

However, the ultimate selected platform for deploying the prototypes in real
world-like scenarios was the Gumstix Connex 400xm. This platform features
an impressive Intel XScale PXA255 at 400 MHz, 16 MB flash ROM and 64
MB RAM in a 8.0 cm × 2.0 cm × 0.63 cm (10.08 cm3) form factor, even
smaller than Digi’s ConnectCore alternatives.

230



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

Table 6.2 compares size, computing power and the resulting “computing
power-per-cm3” ratio for several platforms2, being the Gumstix clearly the
best choice for embedding more intelligence in small sized artifacts.

Platform Computing
power

Size Power-per-
cm3

Laptop computer 2.33 GHz 2596.21 cm3 0.89
MHz/cm3

PDA 416 MHz 150.80 cm3 2.76
MHz/cm3

Digi ConnectCore 7U 55 MHz 12.08 cm3 4.55
MHz/cm3

Digi ConnectCore 9U 180 MHz 12.08 cm3 14.90
MHz/cm3

Gumstix Connex 400xm 400 MHz 10.08 cm3 39.68
MHz/cm3

Table 6.2: Relation among computing power and platform size.

The Gumstix components family allows easy and rapid prototyping and
a wide range of daughterboards are available, including Wi-Fi, GPS or audio
support (see Figure 6.4).

Figure 6.4: Image of the Gumxtix 400xm with Wi-Fi card and antenna that
hosted the second generation of smobjects.

2Although the embedded platforms require additional components to be fully operational
for our prototyping goals, e.g. a wireless adapter and a battery, they still remain as the best
choice.

231



A Reactive Behavioural Model for Context-Aware Semantic Devices

Moreover, a Java virtual machine called JamVM is provided, so the
smobject middleware was hosted into Gumstix Connex 400xm naturally.

6.1.9 Integration with wireless sensor networks

Although we developed a number of domain-specific perceptors and
effectors, we would like to note the implementation of a Wireless Sensor
Network perceptor that was used in several scenarios.

This perceptor was able to connect to a Crossbow Motes Wireless Sensor
Network through a gateway. The network was formed by nodes capturing
temperature, light, sound, and other parameters. The perceptor polled the
sensor network periodically, retrieving the values provided by individual
sensor nodes distributed along a room or building, and applying concrete
OWL vocabularies to semanticise the information.

Therefore, a smobject containing this perceptor was able to share the
information with other fellow smobjects in the environment, which were
able to react accordingly to changes in temperature, light and any other
semantically annotated parameter provided by the perceptor.

This example proves the integration capabilities of smobjects with other
state-of-the-art Ubiquitous Computing-related technologies such as wireless
sensor networks, and how to carry out semantic annotation and sharing of
low-level data provided by other architectures.

6.2 Evaluation

The following phase in our research was to deploy and evaluate a number
of scenarios to face the real challenges of implementing intelligence through
the SoaM model in everyday devices and environments.

We decomposed evaluation into two different but complementary
approaches:

• Performance tests: these tests focused on obtaining performance
measures about different technical aspects of the SoaM architecture.
We tested different configurations of the entities in a basic scenario.

• Scenarios tests: these tests focused on deploying real reasoning-
demanding scenarios, similar to those depicted at the initial phases
of our research, populated by smobject-powered semantic devices.
The final goal was to demonstrate how SoaM is able to provide the
technology to create Ambient Intelligence environments.

232



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

6.2.1 Performance tests

We carried out the following activities:

• XML and RDF parsing: since XML/RDF parsing is one of the most
costly activities in terms of time and required memory, we obatined
several measures that enabled us to select the XML parser that best
performed at this stage.

• Context-awareness and reactivity: these tests were aimed at
measuring the performance of smobjects and orchestrators when
polling surrounding smobjects for context-information, and reacting
appropriately in order to carry out the required behaviour. These tests
measured the following aspects:

– Context information retrieval: the amount of time required for an
entity (smobject or orchestrator) to retrieve context information
from surrounding smobjects as needed in order to evaluate the
behavioural profiles.

– Reasoning: the amount of time required for an entity to
augment the context information via ontological and domain
rules reasoning, in order to create a comprehensive knowledge
base about the environment.

– Behavioural profile resolution: the amount of time required
for an entity to resolve existing behavioural profiles against
the augmented context information in order to generate the
constraints.

– Constraints operation: the amount of time required for a
smobject to process received constraints and to be ready for
operating them. The actual execution time of a constraint was
not included here as it is very domain dependent (e.g. changing
the current room temperature can take several minutes).

The addition of the above measures provides an estimation of the total
reactivity time: the amount of time required from the moment some
piece of information changes in the environment until the associated
reactivity is initiated, including all the reasoning processes.

• Impact of context information awareness in network traffic load: we
also evaluated the dependence between context information update
periods and its impact on network traffic. The obvious conclusion is
that the shorter polling period, the higher network traffic load, but we
obtained a recommendation threshold for selecting the most suitable
polling period depending on the number of deployed smobjects and
the network bandwidth.

233



A Reactive Behavioural Model for Context-Aware Semantic Devices

XML and RDF parsing

We carried out these tests to determine which of three possible XML parsers
that could be run at mi|k|a / ConnectCore 7U exhibited a better performance
along with a balanced size, when parsing XML and RDF.

In order to execute the XML tests we designed a collection of four
behavioural profiles in a single XML document. The document comprised a
total amount of 44 XML elements and 86 XML attributes.

We tested three different parsers: MinML (10 Kb), Ælfred (23 Kb) and
Saxon-Ælfred (32 Kb). Figure 6.5 illustrates graphically the amount of
time required for the parsers to parse the document ten consecutive times
during the same run. It is noteworthy how the first and second tests take
remarkably more time that the others, something usual in Java, since classes
are dynamically loaded as they are required. After the third test the average
time shows more uniformity.

0

2000

4000

6000

8000

10000

12000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e 
(m

s) Saxon Aelfred
Aelfred
MinML

id99056609 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.5: Performance of the different XML parsers parsing an XML
document in the ConnectCore 7U platform.

The second test linked the RDF parser with the three different XML
parsers in order to obtain the best combination in terms of performance. We
used an RDF/XML document formed by 29 RDF triples of information which
summed up 44 XML elements and 57 XML attributes. Figure 6.6 depicts the
results obtained in ten consecutive parsings with each combination. Again,
first parsings take more time as already explained.

234



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e 
(m

s) Saxon Aelfred
Aelfred
MinML

id98943265 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.6: Performance of the different XML parsers parsing an RDF/XML
document in the ConnectCore 7U platform.

In both cases, the MinML parser performed slightly better than the
others. Moreover, MinML is remarkably lighter than other alternatives,
still supporting our whole set of requirements. This advantage is depicted
graphically in Figure 6.7, representing the number of XML documents, like
the one provided, that can be parsed per minute and kilobyte of the parser’s
file size, where MinML clearly outperforms the others.

Context-awareness and reactivity

Several performance aspects of the prototype implementation were
evaluated both for the smobjects-only and for the orchestration-powered
topologies.

A testing scenario resembling a home environment was deployed
including smobjects for representing a simulated location system, a TV
set, a temperature control system, an “alerter” in a laptop and a Hi-Fi
system. A number of behavioral profiles were designed to obtain automatic
environmental reactivity depending on certain situations, for example “turn
off the TV if I leave the TV room” or “alert me if I am leaving home
and the weather forecast says it is going to rain” (this information was
obtained by a perceptor in the laptop smobject that retrieved the forecast

235



A Reactive Behavioural Model for Context-Aware Semantic Devices

0

0,5

1

1,5

2

2,5

3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Saxon Aelfred
Aelfred
MinML

id110024968 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.7: Performance of the different XML parsers in relation to its size.

from Weather.com, annotated it semantically and made it available to other
surrounding smobjects).

Several ontologies were reused, mainly from SOUPA [CPFJ04], and
others were designed from scratch to embody the knowledge of some
domains such as the TV domain, the weather domain and the location
domain, the latter including concepts such as room, building or town.

A particularly interesting issue about the ontology we created for the
location domain is the application of the transitive property islocatedIn and
its inverse contains as well as the symmetric property nearby to infer the
location relationships among the deployed elements. In fact, the majority
of behavioral profiles we designed demanded certain reactivity of smobjects
depending on their location; for example, to turn on an Hi-Fi system in a
certain room near the user’s location.

These situations promoted the application of ontologies and description
logics reasoning in order to successfully obtain the required reactivity. In
the concrete scenarios described above an average of 30-50 triples were
selectively collected from surrounding smobjects, and augmented around
50% once OWL reasoning was applied (mainly due to inferences obtained
through the location ontology). This “augmented” context information was
then matched against the previously injected behavioral profiles in order to
determine the constraints that finally represented the desired environmental
reactions.

236



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

The results of the tests using the completely decentralized smobjects-
only architecture are depicted in Figure 6.8, illustrating the amounts of time
required by the smobject to perform every activity.

0

500

1000

1500

2000

2500

3000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e 
(m

s)

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id258511312 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.8: Performance measures of the smobjects-powered CC9U
topology.

As already mentioned two activities take most of the operating time:
context information retrieval, which includes HTTP communication to
poll surrounding smobjects and RDF parsing of the received data; and
description logics reasoning.

Our tests also pointed out that the performance of a smobject may
be severely affected by external or platform issues such as the garbage
collection process, or being intensively polled by other entities during a
short period of time. This kind of situations arises in limited devices, very
sensitive to additional work load, and must be taken into account when a
constant reactivity response time is required.

While the smobject implementation in the ConnectCore 7U (CC7U)
platform exhibited the above mentioned limitations, the ConnectCore 9U
(CC9U) prototype performed exceptionally well. Therefore, we deployed
the smobject-only topology with ConnectCore 9U devices hosting the
SmobjectBase and SmobjectAware components, while the orchestrator-
powered topology was deployed in an scenario populated by more limited
ConnectCore 7U devices hosting SmobjectBase components coordinated by
the central orchestrator.

237



A Reactive Behavioural Model for Context-Aware Semantic Devices

In the smobjects-only topology, the average time required by a CC9U
smobject to complete a full cycle including retrieving context information
from other smobjects, generating new triples through reasoning, resolving
the behavioral profiles against the context information and executing these
constraints, was around 2.28 seconds for the above described scenario.

The orchestrator-powered topology performed similarly, around 2.59
seconds, being remarkably slowed by the limited CC7U smobjects, where
XML processing and HTTP communication at the context information
retrieval phase are very costly in terms of time (see Figure 6.9).

0

500

1000

1500

2000

2500

3000

3500

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e 
(m

s)

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id259050468 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.9: Performance measures of the orchestrator-powered CC7U
topology.

The orchestrator ran in a Pentium-M 1.86 GHz with 1 GB RAM and
enjoyed all the advantages of full computing resources. It is especially
remarkable how the use of the Jena API for OWL reasoning reduced the
reasoning time to an almost imperceptible amount, due to the extensive
optimizations for representing the RDF graph in memory used by Jena.
However, profile resolution performed relatively bad compared to the other
activities. The approach applied here was to convert the profile into a rule
to feed the general rule engine provided by Jena, but this mechanism can
probably be optimized in the future.

Since constraints operation is an activity carried out in the CC7U
smobject, thus being slowed again by this resource-constrained platform,
the performance of this phase is not remarkably improved.

238



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

Figure 6.10 compares the performance of both topologies for the
described scenario in absolute terms, while Figure 6.11 compares them in
terms of relative time required for each activity to be carried out.

0

500

1000

1500

2000

2500

3000

3500

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e 
(m

s) Orchestrator-powered
CC7U
Smobjects-only CC9U

id259271437 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.10: Comparison of performance measures for the smobjects-only
CC9U and orchestrator-powered CC7U topologies.

Impact of context information awareness in network traffic load

As we mentioned in section 5.4, the smobjects-only scenario may generate
a lot of network traffic. In the worst case where all the smobjects require
context information from every other, the overall amount of connections to
collect the data is n× (n−1), being n the number of smobjects.

Short polling periods promote promptly reactivity but also require a
higher network bandwidth as well as better performance in smobjects to
process a higher amount of inbound and outbound requests. Therefore, the
factors to consider when deciding the polling period are:

• The number of deployed smobjects

• The upper limit of traffic (messages/second) the whole network or
individual smobjects are able to process

Figure 6.12 and Figure 6.13 illustrate a 3-D and a two dimensional
projection of the relationships among polling period, number of smobjects

239



A Reactive Behavioural Model for Context-Aware Semantic Devices

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Smobjects-only
CC9U

Orchestrator-
powered CC7U

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id258168000 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.11: Comparison of relative effort for the activities in the smobjects-
only CC9U and orchestrator-powered CC7U topologies.

and network capacity in messages/second for the “worst case” smobjects-
only topology.

In this example we considered 20 (a very conservative value) as the
maximum number of messages/second a network can support. This
threshold can be noticed in yellow colour in the 3-D view and even more
clearly in the two dimensional projection.

As the number of smobjects increase, the polling period must also
increase (reducing the amount of requests) in order to maintain the stability
of the messages/second ratio. For a large number of smobjects the polling
period and, thus, device reactivity is severely affected. For example, in an
scenario populated with 30 smobjects the polling period must not be shorter
than 43.5 seconds.

Again, we must remark that these figures illustrate the worst-case
scenario for a smobjects-only topology where all smobjects poll each other.
In a more natural situation, where every smobject polls an average of 20%
of surrounding smobjects, the above scenario with 30 smobjects can support
an average polling period of 9 seconds.

Figure 6.14 and Figure 6.15 illustrate analogous concepts from a single
smobject’s point of view.

240



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0

 20

 40

 60

 80

 100

Messages/s

# of smobjects

Polling period (s)

Messages/s

id223909218 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.12: 3-D view of relationships among relevant factors for smobjects-
only networking.

In this case we marked in yellow the maximum number of
messages/second an individual smobject is able to process. This value
depends on the concrete platform performance; for the simulation we
selected a conservative value of 6 messages/second.

As the number of polled smobjects increase, the polling period must
increase too. For example, 3.33 seconds for polling 20 smobjects.

Obviously, the conclusion is that the polling period must be fine-tuned in
order to optimise the reactivity periods to the particular characteristics of the
deployed scenario in terms of network bandwidth and smobjects platform
performance.

6.2.2 Scenarios tests

In order to validate the hypothesis, we selected the first three scenarios
described in section 1.5 and faced their design and deployment. These
environments were populated by smobject-powered semantic devices, able
to perform reasoning processes over exchanged context information in order
to carry out different flavours of intelligent behaviour.

For each of these scenarios we accomplished the following steps:

241



A Reactive Behavioural Model for Context-Aware Semantic Devices

 0

 5

 10

 15

 20

 25

 30

 35

 40

# of smobjects

P
ol

lin
g 

pe
rio

d 
(s

)

 5  10  15  20  25  30  35  40  45  50

# of smobjects

 1

 2

 4

 8

 16

 32

 64

 128

 256

P
ol

lin
g 

pe
rio

d 
(s

)

id224190890 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.13: Two dimensional projection of the relationships among
relevant factors for smobjects-only networking.

• Goals statement: we identified the major goals of the scenario in terms
of SoaM features evaluation.

• Scenario design: we designed the scenario domain aiming to
represent real-world situations. This task generally involved semantic
devices identification with perceptors and effectors, how the devices
connected with other hardware or software systems, ontologies reuse
or design, and rules and smart behaviour design.

• Implementation: we implemented the different elements for the
scenario. This task generally involved implementing particular
perceptors and effectors, connection with external systems or
hardware, ontologies, vocabularies, domain rules and behavioural
profiles.

• Deployment: we deployed and configured the required elements in
the environment.

• Evaluation: finally, we monitorised how the whole system worked
and how individual semantic devices exhibited intelligent behaviour
reacting to different situations.

242



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0

 10

 20

 30

 40

 50

Messages/s

# of smobjects

Polling period (s)

Messages/s

id224275156 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.14: 3-D view of relationships among relevant factors for a single
smobject.

We applied this process through three paradigmatic scenarios depicting
possible applications of SoaM:

• SmartPlants: autonomous objects that interact with their environ-
ment.

• Aware-Umbrella: a reactive device integrating local and global co-
mmunication.

• WorkSafe: a protective working agent enforcing user care in dange-
rous environments.

For all these scenarios we deployed the second generation smobject
prototype shown in Figure 6.16. This prototype used a Gumstix embedded
platform with the smobject middleware, Wi-Fi capabilities, audio output,
a small speaker and a battery. The audio output daughterboard and the
speaker where removed in the situations where they were not required,
reducing the overall size.

243



A Reactive Behavioural Model for Context-Aware Semantic Devices

 0

 1

 2

 3

 4

 5

 6

 7

 8

# of smobjects

P
ol

lin
g 

pe
rio

d 
(s

)

 2  4  6  8  10  12  14  16  18  20

# of smobjects

 1

 2

 4

 8

 16

 32

 64

 128

 256

P
ol

lin
g 

pe
rio

d 
(s

)

id224303046 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 6.15: Two dimensional projection of the relationships among
relevant factors for a single smobject.

Figure 6.16: The complete smobject prototype with Wi-Fi, audio and battery.

SmartPlants: autonomous objects that interact with their environment

One of the scenarios we envisioned at the beginning of the research was to
create an artifact that could be attached to real objects, augmenting their

244



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

perceptions and providing them with intelligent capabilities. An additional
challenge was to attach this kind of artifact to living entities, such as plants,
in a way that could result in intelligent behaviour carried out by the entities
from the user’s point of view.

Creating this kind of “smart plants” raised several new important
implications such as:

• They could become first-class citizens in the environment, rather
than passive elements. They could inject their preferences into their
location to influence temperature, humidity of lighting settings.

• They could be perceived as autonomic systems [KC03] in a twofold
view: as normal living beings they try to survive and adapt to
environmental conditions; but also, as augmented intelligent entities
they can interact and communicate with surrounding objects to create
a more suitable and healthy environment.

We wanted these smart plants to be aware of relevant environmental
conditions, and we provided them with the ability to disseminate their
preferences to their location, as well as actively communicate with the user,
asking her or him for help.

For example, when a plant is placed in an unknown room, it can discover
existing temperature and lighting control systems, and inject its behavioural
profiles to influence temperature and lighting according to its requirements.
If the plant perceives that other nearby place is better conditioned (e.g.
more illuminated) it can ask the user to be moved and placed there.

In order to evaluate the scenario, we developed the following
components:

• A Crossbow Motes wireless sensor network with nodes featuring
temperature and light sensors throughout a room. We also attached
one of these motes to the plant to make it aware of its own location
conditions.

• Ontologies and vocabularies for the location, temperature, lighting
and sensor domains.

• Domain rules extrapolating the temperature obtained by a sensor node
to the room area where it is located (see Listing 6.4).

• A PerceptorMotes connected to the wireless sensor network that
captured the information provided by the sensor nodes and
semantically annotated it using the mentioned ontologies.

245



A Reactive Behavioural Model for Context-Aware Semantic Devices

• An augmented plant pot with the second generation smobject
prototype in a plastic case (see Figure 6.17).

• An EffectorTTSAlerter in the smobject using a text-to-speech
embedded engine able to synthesise human-like voice. Using this
effector in the pot’s smobject, the plant could alert the user using its
voice, thus “talking” to the user.

• Appropriate behavioural profiles for the plant to influence the
surrounding environment as well as to drive its own behaviour which
basically consisted in alerting the user, using the synthesised voice,
about the plant’s needs.

Figure 6.17: The smobject prototype in the plant protected with a plastic
case.

As already mentioned, the smobject prototype in the plant was placed in
a plastic case for protection. Several sensor nodes were distributed across
the environment and one was placed in the plant to measure its ambient
conditions.

The plant was able to inject behavioural profiles into surrounding
temperature and light control systems to adjust them as required in order
to fulfill the plant’s requirements. This system allowed the user to distribute
a number of such plants in any environment without worrying about plants
requirements, since they were able to autonomously establish their best

246



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

living conditions releasing the user from this burden. This was the way a
smart plant could actively influence the surrounding environment in which
it was located.

But the plant was also reactive via a number of statically configured
behavioural profiles, in such a way that it was continuously aware of the
temperature and light measures about different nearby locations provided
by the wireless sensor network, and asked the user to me moved to the
most suitable place using a synthesised voice. This was the way a smart
plant was aware of the most suitable location in terms of environmental
conditions and reacted asking the user to be reallocated.

Example Listing 6.1 illustrates a behavioural profile disseminated by
the smart plant to request some concrete ambient conditions (20◦-30◦C
temperature, and 50-90 % humidity) to smobjects in the environment.

Listing 6.1: Behavioural profile disseminated by the smart plant to adapt
the environment.

1 <behavioralProfile id="urn:uuid:profbptoi1" expires="PT1000M"
requester="urn:uuid:plant1">

2

3 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/light#luminance" operator="http://www.awareit.com
/soam/2005/12/soamonto#GreaterThan" subject="http://www.
awareit.com/onto/2005/12/location#ThisLocation">

4 <objectLiteral>50</objectLiteral>
5 </postcondition>
6

7 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/light#luminance" operator="http://www.awareit.com
/soam/2005/12/soamonto#LessThan" subject="http://www.
awareit.com/onto/2005/12/location#ThisLocation">

8 <objectLiteral>90</objectLiteral>
9 </postcondition>

10

11 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/temperature#hasTemperature" operator="http://www.
awareit.com/soam/2005/12/soamonto#GreaterThan" subject="
http://www.awareit.com/onto/2005/12/location#ThisLocation
">

12 <objectLiteral>20</objectLiteral>
13 </postcondition>
14

15 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/temperature#hasTemperature" operator="http://www.
awareit.com/soam/2005/12/soamonto#LessThan" subject="http
://www.awareit.com/onto/2005/12/location#ThisLocation">

247



A Reactive Behavioural Model for Context-Aware Semantic Devices

16 <objectLiteral>30</objectLiteral>
17 </postcondition>
18

19 </behavioralProfile>

Listing 6.2 illustrates an example of statically configured behavioural
profile for a smart plant. This profile provoked the plant to ask to be moved
whenever the plant’s location featured more than 30◦C and there was a
place with suitable temperature and lighting conditions. Similar profiles
were configured for other ambient conditions.

Listing 6.2: Example of native behavioural profile for the smart plant.
1 <behavioralProfile id="urn:uuid:profa1" expires="PT1000M"

requester="urn:uuid:plant1">
2 <variable xml:id="otherLocation"/>
3 <variable xml:id="otherLocationLabel"/>
4

5 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/temperature#hasTemperature" operator="http://www.
awareit.com/soam/2005/12/soamonto#GreaterThan" subject="
urn:uuid:plant1">

6 <objectLiteral>30</objectLiteral>
7 </precondition>
8

9 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/light#luminance" operator="http://www.awareit.com
/soam/2005/12/soamonto#GreaterThan" subject="#
otherLocation">

10 <objectLiteral>50</objectLiteral>
11 </precondition>
12

13 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/light#luminance" operator="http://www.awareit.com
/soam/2005/12/soamonto#LessThan" subject="#otherLocation">

14 <objectLiteral>90</objectLiteral>
15 </precondition>
16

17 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/temperature#hasTemperature" operator="http://www.
awareit.com/soam/2005/12/soamonto#GreaterThan" subject="#
otherLocation">

18 <objectLiteral>20</objectLiteral>
19 </precondition>
20

21 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/temperature#hasTemperature" operator="http://www.
awareit.com/soam/2005/12/soamonto#LessThan" subject="#
otherLocation">

22 <objectLiteral>30</objectLiteral>

248



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

23 </precondition>
24

25 <precondition id="" predicate="http://www.w3.org/2000/01/rdf-
schema#label" subject="#otherLocation">

26 <objectVariable ref="otherLocationLabel"/>
27 </precondition>
28

29 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#alertsAbout" subject="urn:uuid:plant1">

30 <objectResource resource="urn:uuid:prof0_alert"/>
31 </postcondition>
32

33 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#level" subject="urn:uuid:prof0_alert">

34 <objectResource resource="http://www.awareit.com/onto
/2005/12/alerting#warning"/>

35 </postcondition>
36

37 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#message" subject="urn:uuid:prof0_alert">

38 <objectLiteral>Please, take me to ?(otherLocationLabel).
The temperature is better for me there.</objectLiteral
>

39 </postcondition>
40

41 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#title" subject="urn:uuid:prof0_alert">

42 <objectLiteral>Hey</objectLiteral>
43 </postcondition>
44

45 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#frequency" subject="urn:uuid:prof0_alert
">

46 <objectLiteral>30</objectLiteral>
47 </postcondition>
48

49 </behavioralProfile>

The plant was aware of existing temperature and lighting values in
different parts of the scenario via the PerceptorMotes which provided
real-time measures of deployed wireless temperature and light sensors.
Information about sensors’ location and labels was configured at this
perceptor, basically mapping sensor IDs to their locations.

Listing 6.3 illustrates a concrete piece of context information at a
particular moment of time. We can notice how the plant’s temperature
captured by the plant’s sensor was out of the required bounds in
the behavioural profile (30◦C), while the temperature and lighting

249



A Reactive Behavioural Model for Context-Aware Semantic Devices

conditions measured by the sensor “near the window” matched the plant’s
requirements. This situation provoked the plant to ask the user to be placed
“near the window”.

Listing 6.3: Excerpt of integrated context information obtained from several
sources by the smart plant.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns="http://www.awareit.com/example2#"
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:owl="http://www.w3.org/2002/07/owl#"
6 xmlns:loc="http://www.awareit.com/onto/2005/12/location#"
7 xmlns:light="http://www.awareit.com/onto/2005/12/light#"
8 xmlns:temp="http://www.awareit.com/onto/2005/12/temperature#"
9 xmlns:sensor="http://www.awareit.com/onto/2005/12/sensor#"

10 xml:base="http://www.awareit.com/example2">
11

12 <owl:Ontology rdf:about="">
13 <owl:imports rdf:resource="http://www.awareit.com/onto/2005/12/

location"/>
14 </owl:Ontology>
15

16 <rdf:Description rdf:about="urn:uuid:plant1">
17 <owl:sameAs rdf:resource="urn:uuid:mote5"/>
18 </rdf:Description>
19

20 <loc:Room rdf:about="urn:uuid:smartlab">
21 <rdfs:label>SmartLab</rdfs:label>
22 </loc:Room>
23

24 <loc:RoomArea rdf:about="urn:uuid:door_area">
25 <loc:isLocatedIn rdf:resource="urn:uuid:smartlab"/>
26 <loc:contains rdf:resource="urn:uuid:mote1"/>
27 <loc:nearby rdf:resource="urn:uuid:window_area"/>
28 <loc:nearby rdf:resource="urn:uuid:tv_area"/>
29 <loc:nearby rdf:resource="urn:uuid:meeting_area"/>
30 <rdfs:label>The door</rdfs:label>
31 </loc:RoomArea>
32

33 <loc:RoomArea rdf:about="urn:uuid:window_area">
34 <loc:isLocatedIn rdf:resource="urn:uuid:smartlab"/>
35 <loc:contains rdf:resource="urn:uuid:mote2"/>
36 <loc:nearby rdf:resource="urn:uuid:door_area"/>
37 <loc:nearby rdf:resource="urn:uuid:tv_area"/>
38 <loc:nearby rdf:resource="urn:uuid:meeting_area"/>
39 <rdfs:label>The window</rdfs:label>
40 </loc:RoomArea>
41

42 <loc:RoomArea rdf:about="urn:uuid:tv_area">

250



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

43 <loc:isLocatedIn rdf:resource="urn:uuid:smartlab"/>
44 <loc:contains rdf:resource="urn:uuid:mote3"/>
45 <loc:nearby rdf:resource="urn:uuid:window_area"/>
46 <loc:nearby rdf:resource="urn:uuid:door_area"/>
47 <loc:nearby rdf:resource="urn:uuid:meeting_area"/>
48 <rdfs:label>The TV</rdfs:label>
49 </loc:RoomArea>
50

51 <loc:RoomArea rdf:about="urn:uuid:meeting_area">
52 <loc:isLocatedIn rdf:resource="urn:uuid:smartlab"/>
53 <loc:contains rdf:resource="urn:uuid:mote4"/>
54 <loc:nearby rdf:resource="urn:uuid:window_area"/>
55 <loc:nearby rdf:resource="urn:uuid:door_area"/>
56 <loc:nearby rdf:resource="urn:uuid:tv_area"/>
57 <rdfs:label>The meeting area</rdfs:label>
58 </loc:RoomArea>
59

60 <sensor:Mote rdf:about="urn:uuid:mote1">
61 <temp:hasTemperature rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">16</temp:hasTemperature>
62 <light:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#

int">80</light:luminance>
63 </sensor:Mote>
64

65 <sensor:Mote rdf:about="urn:uuid:mote2">
66 <temp:hasTemperature rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">23</temp:hasTemperature>
67 <light:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#

int">60</light:luminance>
68 </sensor:Mote>
69

70 <sensor:Mote rdf:about="urn:uuid:mote3">
71 <temp:hasTemperature rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">12</temp:hasTemperature>
72 <light:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#

int">90</light:luminance>
73 </sensor:Mote>
74

75 <sensor:Mote rdf:about="urn:uuid:mote4">
76 <temp:hasTemperature rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">32</temp:hasTemperature>
77 <light:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#

int">40</light:luminance>
78 </sensor:Mote>
79

80 <sensor:Mote rdf:about="urn:uuid:mote5">
81 <temp:hasTemperature rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">38</temp:hasTemperature>

251



A Reactive Behavioural Model for Context-Aware Semantic Devices

82 <light:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#
int">60</light:luminance>

83 </sensor:Mote>
84

85 </rdf:RDF>

Lines 16–18 were provided by the smart plant itself identifying its
embedded wireless sensor ID (mote5); lines 20–58 were provided by the
room’s smobject, informing about the different areas in the room, the
location relationships among them, and the wireless sensors placed in
each one; and lines 60–83 are provided by the wireless sensor network’s
smobject.

Listing 6.4 illustrates the two rules loaded by the smart plant to infer that
a temperature or luminance obtained by a sensor node located at a concrete
room area can be assumed as the temperature or luminance value for that
location.

Listing 6.4: Domain rules associating sensor nodes measures to their
location.

1 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/location#RoomArea> .

2 ?mote <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/sensor#Mote> .

3 ?mote <http://www.awareit.com/onto/2005/12/location#isLocatedIn> ?
place .

4 ?mote <http://www.awareit.com/onto/2005/12/temperature#hasTemperature>
?temp .

5 ->
6 ?place <http://www.awareit.com/onto/2005/12/temperature#hasTemperature

> ?temp .
7

8 ****
9

10 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/location#RoomArea> .

11 ?mote <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/sensor#Mote> .

12 ?mote <http://www.awareit.com/onto/2005/12/location#isLocatedIn> ?
place .

13 ?mote <http://www.awareit.com/onto/2005/12/light#luminance> ?lux .
14 ->
15 ?place <http://www.awareit.com/onto/2005/12/light#luminance> ?lux .

Lines 1–4 and 10–13 represent the premises, while lines 6 and 15
provide the conclusions.

252



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

As previously mentioned, the combined deductions obtained from the
ontologies, especially the location ontology, and the domain rules augment
the available context information that enables the smart plant to correctly
deduce whether a more appropriate location in the room exists and ask for
a reallocation.

Aware-Umbrella: a reactive device integrating local and global
communication

An additional challenge for SoaM identified earlier was the ability to
seamless integrate local and global information sources in order to augment
local intelligence and knowledge by injecting externally obtained context
information. The most probable, but not unique, source for this information
is the Internet, and particularly, available dynamic web services.

Our goal in this scenario was to design some kind of smart object
that could be aware of both environment-provided and Internet-provided
information in order to take decisions and look more intelligent from users’
perspective.

Our choice was to create a smart umbrella that could obtain current
weather information from both surrounding sensors and the Internet, as
well as to obtain the weather forecast through the Internet for the next
hours. The smart umbrella reacted when the user was leaving home without
taking it by issuing a synthesised voice alert.

We attached the second generation smobject prototype to the umbrella
(see Figure 6.18), and developed the following additional components:

• Ontologies and vocabularies for the weather and location domains.

• A PerceptorWeatherDotCom that connected to the Weather.com website
and issued a request to obtain the current weather as well as the
forecast for the next hours about the current location. The information
was obtained in an XML-based language provided by Weather.com

and dynamically transformed into a semantic form using the weather
ontology designed for this purpose. This information was made
available to other existing smobjects in the environment, including
the umbrella.

• Crossbow Motes wireless nodes emulating rain sensors and proximity
sensors to detect when the umbrella was taken from the umbrella
stand or the user was leaving home.

253



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Appropriate behavioural profiles for the umbrella to be aware of
current and future weather conditions, its location, or whether the
user was leaving home, in order to suggest the user to take it.

Figure 6.18: The smobject prototype in the umbrella.

Example Listing 6.5 illustrates a native behavioural profile for the
umbrella: the umbrella suggests the user to be taken when the following
(pre-)conditions occur:

• The umbrella has not been taken from the umbrella stand (it remains
there, lines 6–8).

• The main door is open, this information can be provided by the door
itself, based on the value obtained from a proximity sensor located at
the main door (lines 18–20).

• The weather forecast announces rain (lines 26–28).

254



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

Listing 6.5: Example of native behavioural profile for the aware umbrella.
1 <behavioralProfile id="urn:uuid:prof_umbrella2" expires="PT20M"

requester="urn:uuid:umbrella">
2

3 <variable xml:id="maindoor"/>
4 <variable xml:id="area"/>
5

6 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#isLocatedIn" subject="urn:uuid:umbrella
">

7 <objectResource resource="urn:uuid:umbrella_stand1"/>
8 </precondition>
9

10 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#isLocatedIn" subject="#maindoor">

11 <objectResource resource="http://www.awareit.com/onto
/2005/12/location#ThisLocation"/>

12 </precondition>
13

14 <precondition id="" predicate="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" subject="#maindoor">

15 <objectResource resource="http://www.awareit.com/onto
/2005/12/door#MainDoor"/>

16 </precondition>
17

18 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/door#state" subject="#maindoor">

19 <objectResource resource="http://www.awareit.com/onto
/2005/12/door#Open"/>

20 </precondition>
21

22 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#isLocatedIn" subject="http://www.awareit
.com/onto/2005/12/location#ThisLocation">

23 <objectVariable ref="area"/>
24 </precondition>
25

26 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/weather#forecast" subject="#area">

27 <objectResource resource="http://www.awareit.com/onto
/2005/12/weather#Rain"/>

28 </precondition>
29

30 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#alertsAbout" subject="urn:uuid:umbrella
">

31 <objectResource resource="urn:uuid:prof0_alert"/>
32 </postcondition>
33

255



A Reactive Behavioural Model for Context-Aware Semantic Devices

34 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#level" subject="urn:uuid:prof0_alert">

35 <objectResource resource="http://www.awareit.com/onto
/2005/12/alerting#information"/>

36 </postcondition>
37

38 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#message" subject="urn:uuid:prof0_alert">

39 <objectLiteral>Please, take me, it is going to rain.</
objectLiteral>

40 </postcondition>
41

42 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#title" subject="urn:uuid:prof0_alert">

43 <objectLiteral>Information</objectLiteral>
44 </postcondition>
45

46 </behavioralProfile>

Whenever all these conditions happen the umbrella built-in voice
synthesiser recommends the user to take it (lines 30–44, and especially 38–
40).

An excerpt of integrated context information that provokes this situation
is represented in Listing 6.6.

Listing 6.6: Excerpt of integrated context information obtained from several
sources by the aware umbrella.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns="http://www.awareit.com/example#"
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:owl="http://www.w3.org/2002/07/owl#"
6 xmlns:door="http://www.awareit.com/onto/2005/12/door#"
7 xmlns:loc="http://www.awareit.com/onto/2005/12/location#"
8 xmlns:weather="http://www.awareit.com/onto/2005/12/weather#"
9 xml:base="http://www.awareit.com/example">

10

11 <rdf:Description rdf:about="urn:uuid:maindoor">
12 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/door#

MainDoor"/>
13 <door:state rdf:resource="http://www.awareit.com/onto/2005/12/door

#Open"/>
14 <loc:isLocatedIn rdf:resource="urn:uuid:home"/>
15 </rdf:Description>
16

17 <rdf:Description rdf:about="urn:uuid:umbrella">
18 <loc:isLocatedIn rdf:resource="urn:uuid:umbrella_stand1"/>
19 </rdf:Description>

256



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

20

21 <rdf:Description rdf:about="urn:uuid:home">
22 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/

location#Building"/>
23 <owl:sameAs rdf:resource="http://www.awareit.com/onto/2005/12/

location#ThisLocation"/>
24 <loc:isLocatedIn rdf:resource="urn:uuid:bilbao"/>
25 </rdf:Description>
26

27 <rdf:Description rdf:about="urn:loccode:SPXX0016">
28 <rdf:type rdf:resource="http://www.awareit.com/onto/2005/12/

location#Town"/>
29 <owl:sameAs rdf:resource="urn:uuid:bilbao"/>
30 <weather:acurrent rdf:resource="http://www.awareit.com/onto

/2005/12/weather#Rain"/>
31 </rdf:Description>
32

33 </rdf:RDF>

Lines 11–15 are provided by the smobject at the main door; lines 17–
19 are provided by the smobject connected to the wireless sensor network
and particularly to the proximity sensor at the umbrella stand; lines 21–
25 and 27–29 are provided by the room, while line 30 is provided by the
PerceptorWeatherDotCom located at the umbrella, but could be located at the
room’s smobject as well3.

We can notice how the owl:sameAs predicate and the location
relationships between the main door, the building and the town contribute
to the proper identification of the place and the associated weather forecast,
so the behavioural profile is positively evaluated and the postconditions
executed.

WorkSafe: a protective working agent enforcing user care in dangerous
environments

We also wanted to demonstrate how SoaM could be used in heterogeneous
working environments to provide workers with intelligent safety measures.
We designed an scenario populated with different electrical tools, a number
of containers filled with flammable and chemical products and sensorised
workwear. All these objects were transformed into smobjects, so they were
able to exchange information about themselves and their perceptions.

3SPXX0016 is the Weather.com code for Bilbao.

257



A Reactive Behavioural Model for Context-Aware Semantic Devices

The workwear jacket (see Figure 6.19) included a built-in prototyped
BPinjector that disseminated several profiles trough the environment with
the purpose of alerting the user whenever some dangerous situation
happened.

Figure 6.19: The workwear jacket with two wireless accelerometers to
detect body orientation, and the smobject prototype (covered by fabric) with
the BPinjector software.

For this scenario we developed the following components:

• Ontologies and vocabularies for danger, electrical, flammable and
chemical domains.

• Domain rules for the above domains.

• Wireless sensor nodes to detect manipulation of flammable and
chemical containers (via accelerometers or proximity sensors in the
lid).

• A sensorised jacket with wireless sensor nodes to detect whether the
user was laying in the ground, using accelerometers, and a built-in
BPinjector.

• A number of behavioural profiles representing different kinds of
reactivity when some dangerous situation happened. For example, if a

258



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

container with flammable products was opened while an electrical tool
was being used (see Listing 6.7), the tool switched off automatically,
or if a user fell down in a dangerous environment (e.g. while
manipulating chemical products), an alarm was issued to a monitoring
centre.

• An EffectorSmsAlerter that was able to send SMS messages to a
remote monitoring service to alert about possible harms to workers.
Alternatively, a EffectorTrayAlerter was also provided.

This kind of intelligent environment works in the periphery of attention
to preserve workers’ safety, not only alerting about possible dangerous
situations but also actively reacting as the case with flammable and electrical
tools.

Example Listing 6.7 illustrates a behavioural profile that makes an
electrical tool to switch off when a flammable product is located nearby.

Listing 6.7: Example of a native behavioural profile for an electrical tool.
1 <behavioralProfile id="urn:uuid:prof_discon_electric_app1" expires

="PT20M" requester="http://people.com/bobby">
2

3 <variable xml:id="material"/>
4

5 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#nearby" subject="urn:uuid:electric_tool
">

6 <objectVariable ref="material"/>
7 </precondition>
8

9 <precondition id="" predicate="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" subject="#material">

10 <objectResource resource="http://www.awareit.com/onto
/2005/12/danger#InflammableMaterial"/>

11 </precondition>
12

13 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/device#state" subject="urn:uuid:electric_tool">

14 <objectResource resource="http://www.awareit.com/onto
/2005/12/device#StateOff"/>

15 </postcondition>
16

17 </behavioralProfile>

A fine-grained location system must be available in the environment for
generating facts containing the loc:nearby predicate.

259



A Reactive Behavioural Model for Context-Aware Semantic Devices

The behavioural profile shown in Listing 6.8 represents the reactivity to
carry out when a worker is laying on the floor and a chemical product was
being manipulated. It is noteworthy the relative complexity of this profile,
and the need for five variables, some of them used to compose the alarm
message (lines 53–55).

Listing 6.8: Example of a behavioural profile for sending an alarm whenever
a worker collapsed in a dangerous environment.

1 <behavioralProfile id="urn:uuid:profa1" expires="PT20M" requester
="http://people.com/bobby">

2

3 <variable xml:id="alerter"/>
4 <variable xml:id="risk"/>
5 <variable xml:id="riskLabel"/>
6 <variable xml:id="worker"/>
7 <variable xml:id="workerLabel"/>
8

9 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#isLocatedIn" subject="#alerter">

10 <objectResource resource="http://www.awareit.com/onto
/2005/12/location#ThisLocation"/>

11 </precondition>
12

13 <precondition id="" predicate="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" subject="#alerter">

14 <objectResource resource="http://www.awareit.com/onto
/2005/12/alerting#Alerter"/>

15 </precondition>
16

17 <precondition id="" predicate="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" subject="http://www.awareit.com/onto
/2005/12/location#ThisLocation">

18 <objectResource resource="http://www.awareit.com/onto
/2005/12/danger#DangerousLocation"/>

19 </precondition>
20

21 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/danger#healthRiskLevel" subject="http://www.
awareit.com/onto/2005/12/location#ThisLocation">

22 <objectVariable ref="risk"/>
23 </precondition>
24

25 <precondition id="" predicate="http://www.w3.org/2000/01/rdf-
schema#label" subject="#risk">

26 <objectVariable ref="riskLabel"/>
27 </precondition>
28

29 <precondition id="" predicate="http://www.w3.org/1999/02/22-
rdf-syntax-ns#type" subject="#worker">

260



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

30 <objectResource resource="http://pervasive.semanticweb.org
/ont/2004/06/person#Person"/>

31 </precondition>
32

33 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#isLocatedIn" subject="#worker">

34 <objectResource resource="http://www.awareit.com/onto
/2005/12/location#ThisLocation"/>

35 </precondition>
36

37 <precondition id="" predicate="http://www.awareit.com/onto
/2005/12/location#position" subject="#worker">

38 <objectResource resource="http://www.awareit.com/onto
/2005/12/location#Laying"/>

39 </precondition>
40

41 <precondition id="" predicate="http://www.w3.org/2000/01/rdf-
schema#label" subject="#worker">

42 <objectVariable ref="workerLabel"/>
43 </precondition>
44

45 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#alertsAbout" subject="#alerter">

46 <objectResource resource="urn:uuid:prof0_alert"/>
47 </postcondition>
48

49 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#level" subject="urn:uuid:prof0_alert">

50 <objectResource resource="http://www.awareit.com/onto
/2005/12/alerting#critical"/>

51 </postcondition>
52

53 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#message" subject="urn:uuid:prof0_alert">

54 <objectLiteral>Warning: the worker ?(workerLabel) is
laying on the ground at a location with a ’?(riskLabel
)’ risk level.</objectLiteral>

55 </postcondition>
56

57 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#title" subject="urn:uuid:prof0_alert">

58 <objectLiteral>Alarm</objectLiteral>
59 </postcondition>
60

61 <postcondition id="" predicate="http://www.awareit.com/onto
/2005/12/alerting#frequency" subject="urn:uuid:prof0_alert
">

62 <objectLiteral>30</objectLiteral>
63 </postcondition>

261



A Reactive Behavioural Model for Context-Aware Semantic Devices

64

65 </behavioralProfile>

For this scenario we chose to deploy an EffectorSmsAlerter so the alert
could reach a remote monitoring facility. Alternatively, we also deployed an
EffectorTrayAlerter that displayed a message in a screen at the monitoring
centre4 (see Figure 6.20).

Figure 6.20: An EffectorTrayAlerter at a monitoring centre that generates
an alarm if a worker collapsed in a dangerous environment.

Several domain rules about dangerous situations provided higher level
information to evaluate context knowledge. For example, a domain rule
related a concrete range in the workwear jacket’s accelerometers to the
worker’s position, and the risk level of a room was inferred based on
a contained material or the nature of the tasks taking place there, as
illustrated in Listing 6.9.

Listing 6.9: Domain rules associating risk levels of task and materials to
their location.

1 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/location#Room> .

2 ?person <http://www.awareit.com/onto/2005/12/location#isLocatedIn> ?
place .

3 ?person <http://www.awareit.com/onto/2005/12/task#isDoing> ?task .
4 ?task <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.

awareit.com/onto/2005/12/danger#DangerousTask> .
5 ?task <http://www.awareit.com/onto/2005/12/danger#healthRiskLevel> ?

risk .
6 ->
7 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.

awareit.com/onto/2005/12/danger#DangerousLocation> .
8 ?place <http://www.awareit.com/onto/2005/12/danger#healthRiskLevel> ?

risk .
9

10 ****
11

4The location’s id was not included in this example to facilitate reading.

262



Juan Ignacio Vázquez Chapter 6. Prototypes and Evaluation

12 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.
awareit.com/onto/2005/12/location#Room> .

13 ?material <http://www.awareit.com/onto/2005/12/location#isLocatedIn> ?
place .

14 ?material <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://
www.awareit.com/onto/2005/12/danger#DangerousMaterial> .

15 ?material <http://www.awareit.com/onto/2005/12/danger#healthRiskLevel>
?risk .

16 ->
17 ?place <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.

awareit.com/onto/2005/12/danger#DangerousLocation> .
18 ?place <http://www.awareit.com/onto/2005/12/danger#healthRiskLevel> ?

risk .

Other scenarios

We also created some other simpler scenarios such as:

• Souvenir-aware Google Earth: we designed an application that
showed a place somehow related to an object (usually a souvenir),
whenever the object was placed in a stand near the screen. The system
included a Google Earth browser controlled (via an effector) by an
smobject that was aware of the objects placed nearby; this perception
was provided by another smobject connected to an RFID reader in the
stand, and the objects were tagged using RFID tags (see Figure 6.21).

• Gesture–enabled Web browser: we placed several wireless
accelerometers in shirt sleeves in such a way that a user could make
certain information to appear in a computer, depending on his arms
gestures. The system was designed using a smobject connected to
the Crossbow Motes wireless sensor network and an effector that
controlled the Web browser.

These examples do not deal with high amounts of data or reasoning
processes; however they illustrate how even simple reactive systems can be
easily designed and deployed with SoaM, so that objects in the environment
can be aware of each other.

6.3 Conclusions

A complete evaluation process was carried out involving the creation of
prototypes and their deployment in experimental scenarios demanding
Ambient Intelligence capabilities in order to validate the hypothesis.

263



A Reactive Behavioural Model for Context-Aware Semantic Devices

Figure 6.21: The souvenir-aware Google Earth display (the RFID reader and
a tagged souvenir).

Managing the SoaM components to work in the limited ConnectCore
7U was specially difficult. However, the economy and compactness of the
developed middleware contributed to easy porting and higher performance
results in more powerful platforms, as it turned out in the last prototypes.

The most advanced smobject prototype was built upon the Gumstix
platform and featured Wi-Fi connectivity and autonomous batteries. We
consider that the next platform evolution should feature integrated semantic
capabilities optimised for the platform (mRDP as a native platform protocol
and a built-in semantic reasoner), so that performance will be remarkably
increased.

Intensive testing and evaluation was carried out in the above described
and other similar scenarios to demonstrate how the SoaM architecture
could be applied to satisfy a broad range of requirements involving
intelligent behaviour from surrounding objects and the environment. We
also considered the advantages of the different deployment topologies for
SoaM depending on the type and constraints of the scenario.

For evaluation, we tried to choose real world -like scenarios
where intelligent behaviour from existing objects could boost perceived
intelligence at the users’ service, thus fulfilling the fundamental ideas
underlaying the hypothesis.

Designing these scenarios involved a mixture of hardware and software
prototyping as well as integration of complementary technologies, such as
wireless sensor networks or XML Web Services, which may behave as “raw
information” sources for SoaM-provided semantic processes.

264



Chapter

7
Conclusion

“When the industrial revolution came, we didn’t go to motorspace.
The motors came to us as refrigerators to store our food and cars

to transport us. This kind of transition is exactly what I expect
will happen with computers and communications: they will come

into our lives, and their identities will become synonymous with
the useful tasks they perform.”

Michael L. Dertouzos
The Future of Computing, Scientific American, 1999

AFTER presenting our work and the evaluation results, it is now time
to revisit once again our initial hypothesis:

To prove that devices based on semantic technologies provide the
level of context-awareness, intelligence and adaptability required
in smart environments.

We consider that the functional evaluation of the experimental scenarios
carried out by deploying the SoaM architecture validates this hypothesis
entirely. Smobjects, as semantic devices, provide the level of context-
awareness, intelligence and adaptability required for Ubiquitous Computing
/ Ambient Intelligence environments:

• Context-awareness: smobjects are context-aware entities. They re-
present and exchange context information with fellow devices in a
natural way, extending their own individual perception capabilities.
They react accordingly to changes in the environment honouring their
behavioural profiles.

265



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Intelligence: smobjects are able to perform reasoning through
ontologies and domain inference rules. This feature empowers them
with the ability to augment and interpret context information in a
more advanced way than other alternatives.

• Adaptability: smobjects’s behaviour can be dynamically modified to
make them aware of new perceptions and reactive to different stimuli.

Moreover, smobjects feature a high degree of autonomy: they can
spontaneously discover each other, share context information and develop
their reactive behaviour in a completely unattended manner and with no
central component required.

SoaM is a decentralised architecture with spontaneous collaboration by
context-aware reactive entities that exhibit semantic reasoning mechanisms.
Moreover, it can be further powered with an orchestrator at the environment
for better performance and higher intelligence, while smobjects still remain
simple enough for implementation in limited devices.

Figure 7.1 graphically illustrates a comparison of the two SoaM
topologies and the other architectures.

%
DO
DQ
FH

6RD0�6PREMHFWV�

RQO\

&R%U$�

6283$

62&$0

7DVN�

&RPSXWLQJ *DLD

,QWHOOLJHQFH

�5HDVRQDELOLW\���&RQWH[W�DZDUHQHVV�

'
H
F
H
Q
WU
D
OL
V
D
WL
R
Q

83Q3

6RD0�

RUFKHVWUDWRU�

SRZHUHG

6XLWDELOLW\�IRU

HPEHGGHG

SODWIRUPV

id285690140 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure 7.1: Graphical comparison of SoaM and other architectures.

266



Juan Ignacio Vázquez Chapter 7. Conclusion

While the orchestrator-powered topology ranks in a similar way to other
centralised architectures, the smobjects-only topology exhibits the more
balanced degree among decentralisation, intelligence and suitability for
being implemented in embedded platforms. This approach fully leverages
the concepts of serendipity and autonomic computing promoted by semantic
devices.

Not only the goals have been accomplished, but SoaM also features a
number of remarkable characteristics:

Use of the web model (URI, HTTP, HTTPS) for communication

SoaM heavily relies on the web information model: the URI as identification
mechanism for concepts, entities and other resources; HTTP as underlying
communication protocol, allowing extensibility through additional headers,
or HTTPS for secure communication; and XML as the language for
serialising the information and data structures during transmission.

The only phase where HTTP does not comply with SoaM requirements
is during the process of discovery, where multicast capabilities are required.
Our proposal to fill this gap, mRDP, takes advantage of HTTP, by using it for
the callbacks.

These features make SoaM a projection of the web communication
model into the Ubiquitous Computing world, further than simply using
HTTP or browsing, but at a deeper level: creating an ambient-scale web
of knowledge populated by cooperative devices.

Use of Semantic Web technologies for context interpretation and
reasoning (RDF, OWL)

All the knowledge representation techniques rely on Semantic Web
technologies: RDF is used for context information representation, while
OWL is used for ontologies and vocabularies. In SoaM we used a customised
representation for domain rules since the work of the World Wide Web
Consortium on creating a standardised language for rules (Rule Interchange
Format) is still on its way.

Our research extends current knowledge by incorporating novel
elements, such as a lightweight query language for discovery in networks
populated by limited devices: Plant. Plant and ReDEL provide a convenient
means for issuing semantic search requests throughout an environment in
order to find the devices or resources that match certain conditions.

267



A Reactive Behavioural Model for Context-Aware Semantic Devices

The exclusive use of Semantic Web technologies in SoaM provides
seamless integration with the other web standards (previous initiatives
lacked of this integration as discussed in chapter 2), and they are considered
one of the most potential technologies for representing and exchanging
knowledge in distributed computing networks.

Seamless integration of local and global information sources

The possibility of accessing external information sources by environmental
devices, integrating and exchanging this knowledge among them enables
SoaM to extend the context-awareness concept beyond the local scope,
promoting the concept of social devices.

Architecturally, there is no much difference in smobject perceptors
providing semantic information obtained from local sensors or global
Internet sources. Thus, integration of traffic data, weather information, TV
guides, local news, and so forth, is absolutely natural in SoaM and smobject-
enabled devices can share and react appropriately to context changes.

Decentralised architecture and spontaneous adaptability to a highly
variable number of devices

While some real world environments are relatively static from the point of
view of its constituent elements, some other environments are definitely
highly dynamic with objects and devices joining and leaving the digital
ecosystem continuously.

We faced this challenge in SoaM and tried to create an architectural
model that allowed devices to discover the semantic capabilities provided
by their neighbours at any time. The smobjects-only topology is a fully
decentralised architecture that makes the whole system self-manageable
and self-configuring, without user intervention.

We think that our approach entirely complies with the spontaneous
nature of Ubiquitous Computing, which was one of the main features that
previous initiatives lacked.

Flexible and suitable semantic discovery mechanism

The problem of discovery has been a hot topic in Ubiquitous Computing for
many years. None of the current discovery mechanisms seemed suitable for
supporting the intelligent features required by SoaM.

268



Juan Ignacio Vázquez Chapter 7. Conclusion

We even adapted a popular discovery protocol, such as SSDP, to support
semantic features, but finally we decided to face the challenge of designing
a lightweight semantic discovery protocol: mRDP.

We consider the design of mRDP as a remarkable result of our research.
It has been conceived for being used not only in Ubiquitous Computing
scenarios, but also in more general traditional computing networks for the
semantic discovery of resources.

mRDP enables smobjects to search for fellow devices that honour
complex queries involving semantic relationships in their descriptions, while
featuring a small footprint suitable for embedded devices.

Behavioural programming model based on documents, not on code,
along with mechanisms to modify this behaviour dynamically according
to the context

One of the strengths and main differences of SoaM compared to other
approaches is the semantic-based behavioural model. Smobjects can adapt
their behaviour dynamically as required by users or other clients, even
smobjects, based on the concept of behavioural profiles.

This approach strengthen the vision of devices whose behaviour is
not completely determined statically from the beginning, but they can be
adapted to perceive (indirectly, via other devices) new sets of stimuli and
react to them in an appropriate manner.

Thus, a user can make its umbrella not only “weather-aware” but also
“main door-aware” or “car state-aware” in order to get a visual clue about
the need to take the umbrella; a different user can make its wrist watch
“location-aware” or “activity-aware” in order to deactivate a preconfigured
alarm, and so forth.

Since there are no constraints about what a smobject-powered device
can perceive, there are no limits about the perceptions to which the device
can autonomously react, as long as the appropriate behavioural profiles are
provided.

Dynamic mechanism to allow users to influence devices’ behaviour, as
well as for devices to influence each other’s behaviour

The behavioural profiles model enables environmental agents to influence
each other and dynamically adapt the behaviour of existing entities to their
requirements (as long as they have the appropriate credentials if a security
model is used).

269



A Reactive Behavioural Model for Context-Aware Semantic Devices

Profile injection is the basic mechanism provided in SoaM to make
entities to influence each other. This process conceptually represents
something similar to a “firmware update” on smobjects, updating their
behaviour to make them more aware and reactive to different perceptions.

In the experimental scenarios, we have not only explored the more
traditional situation involving a user influencing his surrounding devices,
but also a case where smart plants influenced their location to meet their
requirements.

We think that intelligent devices will become first-class actors in our
environments in very similar ways.

Distributed reasoning among several participating entities

A form of OWL reasoning, a subset of OWL Lite, is performed at
the smobjects, both for resolving Plant queries and analysing context
information prior to behavioural profiles resolution. As described earlier,
this subset of OWL is enough for most of the situations that occur in
Ubiquitous Computing scenarios. In other cases, where more powerful
reasoning processes are required, the SoaM architecture allows an
orchestrator to be deployed in the environment in order to provide OWL
DL or a larger subset of OWL Full reasoning.

While OWL reasoning at the smobjects is more limited than at the
orchestrator, we consider it to better represent the philosophy of distributed
reasoning: no central elements, but individual entities sharing and
reasoning over a set of context information in order to take their decisions
in an autonomous manner and react intelligently.

Reuse existing and future ontologies conveying knowledge about
different domains as well as a means for discovering this knowledge

We wanted SoaM not only to be extensible, but also to take advantage of
existing work already carried out in the area of applying Semantic Web
technologies, specially ontologies, in Ubiquitous Computing.

We have designed SoaMonto as a support ontology for SoaM but
any domain ontology for particular applications and scenarios can be
reused. We proved this point both reusing existing ontologies, such as
SOUPA [CPFJ04] or Time-OWL[PH05], and designing specific ones for our
evaluation scenarios, such as the basic weather ontology.

270



Juan Ignacio Vázquez Chapter 7. Conclusion

We have also designed a mechanism, based on mRDP and SoaMonto, for
dynamic discovery and retrieval of ontologies and domain rules from other
entities in the environment.

Feasible for implementation in embedded platforms, attachable to
everyday objects

Our work would not have been successful if after developing the
theoretical basis, designing the architectural elements and the protocols,
and implementing the designs in a programming language, we had found
the platform requirements to be unacceptable for the aimed embedded
platforms.

In order to overcome this problem, the prototyping phase was carried
out in iterative steps, where increasingly more complex prototypes were
built on the most limited platform (ConnectCore 7U) to guarantee its
portability to most powerful ones. The algorithms and modules were
checked and redesigned several times to improve their performance and
to reduce their size.

The result of the process is that we successfully deployed the smobject
middleware in different commercial embedded computing platforms. The
separation of SmobjectBase and SmobjectAware components makes even
easier the task of selecting the appropriate level of intelligence to embed
into a platform depending on its computing power.

We consider feasibility for embedded computing platforms as an
important issue not covered in previous initiatives that generally required
a central server to perform reasoning and coordination tasks.

On the other hand, SoaM takes a more difficult but also more powerful
approach: to delegate these tasks to the objects populating the environment,
since they are now powered with a basic level of intelligence.

7.1 Contributions

We would like to remark again the four main outcomes of our research:

• mRDP and Plant: a semantic discovery protocol that can be applied in
Ubiquitous Computing and local networking scenarios.

• The SoaM theoretical model: a technology-independent model on
how entities influence each other and how required behaviours are
honoured.

271



A Reactive Behavioural Model for Context-Aware Semantic Devices

• The SoaM architecture: a theoretical model -based design featuring
different entities, namely smobjects, orchestrators and BPinjectors, in
order to create intelligent devices and environments.

• Prototypes and evaluation results of the SoaM model and architecture
based on real world -like scenarios.

The first three outcomes are aligned with the specific goals of our
research, satisfying the general goal, while the fourth outcome is built upon
them in order to validate the hypothesis.

The modular architecture, formed by the triad SmobjectBase,
SmobjectAware and orchestrator, enables the Ambient Intelligence architect
to place the intelligent mechanisms at the convenient entity, depending on
the circumstances.

It is even possible to have some devices hosting only the SmobjectBase
component. These devices do not carry out any adaptive behaviour;
they just act as semantic information providers for other smobjects.
Devices featuring sensors but not actuators are suitable candidates to host
the SmobjectBase component alone, thus resulting in reduced platform
requirements.

SoaM also empowers designers with a flexible framework to create the
solution that best fits a concrete scenario, depending on available computing
platforms. Moreover, the spontaneous discovery and operation features of
SoaM makes deployment and configuration completely automatic.

We would also like to note again the concept of semantic device as an
important outcome for facing the design of intelligent ubiquitous objects.

7.1.1 Discussion

We believe that a scientific research must also be self-critic. One of the most
important issues we faced throughout the research process was to keep a
proper balance between intelligence and simplicity in smobjects: too much
intelligence is not feasible in limited devices, while too much simplicity may
result in a worthless system.

Below, there is some discussion about several aspects of our architecture.

Security issues

Although we have not focused our research on any specific security
mechanism, we were continually concerned about this issue. As explained

272



Juan Ignacio Vázquez Chapter 7. Conclusion

thoroughly, SoaM applies the web communication model in all the exchange
flows among participating entities; therefore, both HTTP [FGM+99] and
HTTPS [Res00] can be used for information transfer.

The only point where secure communications cannot be applied is in
the initial multicast packet of mRDP discovery, which anyway is intended to
reach every host, and thus security is not a concern at that stage. Moreover,
the callback address contained in the packet can be an HTTPS URL, thus
enabling a secure channel for the replies.

For the sake of simplicity we have represented all the previous examples
as HTTP interactions. However, HTTPS can seamlessly replace HTTP and
provide authentication via client and server certificates, authorisation and
secure communication.

Device manufacturers can provide smobjects with built-in certificates
containing the smobject UUID among other data. Smobjects exchange the
certificates during the negotiating phase of TLS [DR06] in order to obtain a
symmetric key to encrypt further transmissions. The process is very similar
to how traditional HTTPS is used nowadays in the Web, except that client
certificates should also be used here to validate the requesting party1, and
those certificates should use the smobject UUID as the name instead of IP
address or hostname, since the latter are dynamic.

In fact, this scheme is supported in HTTPS [Res00]:

For instance, a client may be connecting to a machine whose
address and hostname are dynamic but the client knows the
certificate that the server will present.

Authorisation can be easily implemented using ACL (Access Control
Lists) at the smobjects. Once the other party’s certificate has been obtained,
the smobject can check whether it is allowed to operate or not.

In this way, SoaM could support the following security services among
others:

• Only accepting behavioural profiles from authorised parties.

• Only accepting constraints issued by authorised parties.

• Only providing context information to authorised parties.

In any case, further prototyping must be carried out to validate this
security model and identify further implications.

1Something that is carried out in the traditional web using the user / password
mechanism.

273



A Reactive Behavioural Model for Context-Aware Semantic Devices

Network traffic optimisation in the smobjects-only topology

The smobjects-only topology is completely decentralised, where each
smobject creates the required information flows with others in order to
evaluate its behavioural profiles. We already carried out some optimisations
such as selective smobject polling and information caching.

However, at the initial stages of design, we considered subscription
systems instead of polling, so that smobjects could subscribe to changes in
information managed by others. We finally rejected this alternative due to
several reasons:

• Subscriptions management would add even more complexity to the
tasks already performed by smobjects, both at the subscriber and
notifier sides. Two extra modules would be required at every smobject
for managing its subscriptions on others, as well as others’ subscription
on the smobject.

• Evaluation of conditions adds an additional workload in smobjects
who are not responsible for honouring a concrete behavioural
profile. Using eventing, context conditions would be evaluated at the
information providers, not at the reactivity providers. This situation
leads to unbalanced responsibilities. For example, a simple sensor
system without any reactivity (no SmobjectAware component) may
have to evaluate a lot of conditions requested by other systems,
making it unnecessarily more complex than initially required.

• If the smobject features a reasoning mechanism, it cannot rely on
events provided by surrounding devices: it needs raw access to the
original information, in order to infer new data. In this case, eventing
could only be a valid solution if the notifier guarantees that is able to
perform an equivalent reasoning to that in the subscriber, adding even
a more unfair workload at its side.

Gap between design and available technology

There is a gap between our vision and available technology. We would have
preferred to have full computing platforms able to run the Jena Semantic
Framework featuring the size and power consumption of existing wireless
sensor network nodes.

Since this goal was a chimera, we tried to find a proper balance among
computing power, reasoning capabilities and platform lightness. We do
think that the platform sizes of ConnectCore 7U / 9U or the Gumstix are
small enough for prototyping semantic gadgets.

274



Juan Ignacio Vázquez Chapter 7. Conclusion

Moreover, the main challenge of SoaM was creating a model for the
collaboration of semantic devices. The SmobjectBase component can be
implemented in almost any architecture featuring TCP/IP communication,
while the SmobjectAware component, with semantic reasoning capabilities,
requires just a little more computing power.

Since the beginning of the age of computing, we have witnessed some
trends regarding computing platforms, such as:

• Platform size reduction.

• Improved power-saving technologies and longer battery life, even for
IP networking.

• Higher computing power and storage.

• Augmented communication capabilities.

• Price reduction.

These trends have been even more notable in the mobile computing
market during the last years, and there are no reasons to believe that they
are not going to continue in this way.

SoaM was not designed just for the short-term: we pretend to apply it
widely during the next years, adapting it to available platforms with reduced
size and price as well as improved capabilities, in order to create semantic-
powered Ambient Intelligence scenarios.

7.1.2 Publications

During the research process we tried both to collect feedback from other
prestigious researchers and groups related to our topic and to disseminate
our experiences by submitting obtained results to different conferences and
workshops.

A lot of effort was devoted to attending congresses and presenting papers
in order to obtain late-breaking results and feedback about different parts
of our architecture. A remarkable milestone was the W3C Workshop on
the Ubiquitous Web, held in Tokyo, Japan, in March 2006, where we were
invited to present a position paper about our vision for the Ubiquitous Web
and the synergies with the Semantic Web activity [VAL06].

Networking with colleagues and researchers was one of our main
concerns. For instance, as a result of some conversations during the
mentioned W3C workshop we were able to advance on the work on the
semantic discovery protocol.

275



A Reactive Behavioural Model for Context-Aware Semantic Devices

One of the first practical results of our research was a theoretical model
for context-aware reactivity, so that we could design a whole architecture
complying with it.

The design process was carried out using an iterative approach, highly
linked with the implementation activity, during which increasingly more
complete versions of the prototypes were implemented and tested, thus
validating both the theoretical model and the architecture.

We designed and created prototype implementations in order to evaluate
our results and deployed real world -like scenarios. This phase was
exceptionally time and resource consuming but, of course, absolutely
necessary for the validation of the hypothesis.

Feedback about the research results were obtained from different
sources:

1. We obtained quantitative measures of different aspects during
the evaluation and tried to improve the designs until acceptable
performance was achieved.

2. We designed challenging scenarios based on our architecture in order
to evaluate its suitability for real world deployment.

3. We presented partial and final results in congresses, workshops,
other scientific events, publications and even a blog2 in order to get
comments from the research community.

We consider all of them necessary and important in order to get
complementary feedback about SoaM.

Our publications also represent the outcomes and contribution of our
research, illustrating in some way the evolution of the process from the very
initial steps to its final form:

• Juan Ignacio Vazquez, López de Ipiña, and Iñigo Sedano. SoaM:
A Web-powered architecture for designing and deploying pervasive
semantic devices. IJWIS - International Journal of Web Information
Systems, (to be published), 2007.

• Juan Ignacio Vazquez, Iñigo Sedano, and Diego López de Ipiña.
Evaluation of orchestrated reactivity of smart objects in pervasive
Semantic Web scenarios. In Proceedings of The Second International
Workshop on Semantic Web Technology For Ubiquitous and Mobile

2http://www.awareit.com/blog

276



Juan Ignacio Vázquez Chapter 7. Conclusion

Applications (SWUMA’06) at the 17th European Conference of Artificial
Inteligence (ECAI 2006), August 2006.

• Juan Ignacio Vazquez, Diego López de Ipiña, and Iñigo Sedano. SoaM:
An environment adaptation model for the Pervasive Semantic Web.
In Proceedings of the 2nd Ubiquitous Web Systems and Intelligence
Workshop (UWSI 2006), colocated with ICCSA 2006. Lecture Notes in
Computer Science - LNCS, volume 3983, pages 108117, May 2006.

• Juan Ignacio Vazquez, López de Ipiña, and Iñigo Sedano. A
passive influence model for adapting environments based on semantic
preferences. In Proceedings of the International Workshop on
Combining Theory and Systems Building in Pervasive Computing (CTSB
2006), at Pervasive 2006, May 2006.

• Juan Ignacio Vazquez, Joseba Abaitua, and Diego López de Ipiña. The
Ubiquitous Web as a model to lead our environments to their full
potential. In Proceedings of the W3C Workshop on the Ubiquitous Web.
World Wide Web Consortium, 2006. Position paper.

• Juan Ignacio Vazquez and Diego López de Ipiña. Empowering wireless
UPnP devices with WebProfiles. In Proceedings of the 10th IFIP
International Conference on Personal Wireless Communications, 2005.

• Juan Ignacio Vazquez and Diego López de Ipiña. Webprofiles: A
negotiation model for user awareness in personal area networks. In
Proceedings of MobiQuitous 2005 - The Second Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services,
pages 373-383, 2005.

• Juan Ignacio Vazquez and Diego López de Ipiña. Environment
adaptation meeting user preferences. In Proceedings of Ambient
Intelligence and (Everyday) Life, 2005.

• Juan Ignacio Vazquez and Diego López de Ipiña. An HTTP-based
context negotiation model for realizing the user-aware Web. In
Proceedings of the 1st International Workshop on Innovations in Web
Infrastructure at the 14th International World Wide Web Conference
(WWW2005), 2005.

• Juan Ignacio Vazquez and Diego López de Ipiña. A language for
expressing user-context preferences in the Web. In WWW’05: Special
interest tracks and posters of the 14th international conference on World
Wide Web, pages 904-905, New York, NY, USA, 2005. ACM Press.

• Juan Ignacio Vazquez and Diego López de Ipiña. An interaction model
for passively influencing the environment. In Adjunct Proceedings of

277



A Reactive Behavioural Model for Context-Aware Semantic Devices

EUSAI 2004: the 2nd European Symposium on Ambient Intelligence,
2004.

7.2 Future research and challenges

We have explored the possibility of integrating Ubiquitous Computing and
Semantic Web technologies in order to create an architecture populated by
semantic devices and realising the Ambient Intelligence vision.

From our point of view, there are at least two main pathways for research
communities interested in continuing experimenting with these approaches:

1. Exploring other forms of semantic devices.

2. Exploring and extending the SoaM model and architecture.

During the next subsections we briefly explain and suggest different
potential research activities to carry out in these areas.

7.2.1 Exploring other forms of semantic devices

Regarding the first approach, there are several possibilities we can
anticipate:

Semantic Sensor Networks

We have already integrated wireless sensor networks (WSN) into our model
by creating a suitable perceptor connected to a Crossbow Motes WSN.
However, the real challenge would be to enable existing WSN technologies
to work directly with RDF representation of captured data, and provide
these data to requesting parties.

This possibility is being explored by Ni et al. [NZM+05], although no
further improvements seem to have been made so far. Obviously, platform
constraints are even more important in WSN nodes than in other ubiquitous
artifacts, thus making the implementation very challenging.

Moreover, if it is possible to implement it, how will other aspects of
such crucial importance at these nodes, such as battery life or operational
simplicity, be affected?

278



Juan Ignacio Vázquez Chapter 7. Conclusion

Semantic Web Services

Semantic Web Services (SWS) and recommendations such as OWL-S
[Wor04b] are also a hot topic in coordination and orchestration of multiple
processes, especially in the business domain. There have been several
attempts to apply SWS to Ubiquitous Computing, such as Task Computing
described in section 2.3, but they all require a central traditional computer
in order to perform all the processing.

Embedding SWS in devices could enable workflows of carefully planned
and coordinated activities in a serendipitous way among all participating
devices. Service composition and synchronisation of activities are hot issues
here.

But again, platform limitations need to be considered when exploring
these opportunities. The use of Semantic Web Services adds an extra layer
above reasoning, which makes it even more difficult to implement in limited
devices.

7.2.2 Exploring and extending the SoaM model and architecture

Regarding the second approach, during our research we identified some
possible evolutions of SoaM that can be explored in the near future:

• Investigate more deeply the possibilities and consequences resulting
from using the management information, annotated via SoaMonto,
for reactivity purposes. That is, using SoaM internal information as
part of the context information. Is it possible to perform coordination
or choreographic reactivity without any further extension, just using
SoaMonto?

• Smobjects and orchestrators retrieve context information from other
smobjects. Although they are not intended to provide large amounts
of data, a query mechanism to retrieve only particular chunks of
context information would reduce the network traffic. How can this
scheme impact in smobjects’ performance? Is it feasible to use SPARQL
for querying context information in resource-limited smobjects? Is it
possible to extend Plant and use it not only for discovery but also for
context information retrieval?

• Semantic devices will be fully realised when they feature a full-
powered reasoning engine. This statement brings back the previous
discussion about the balance between computing power and resource-
constrained devices. Is it possible to overcome these limitations?

279



A Reactive Behavioural Model for Context-Aware Semantic Devices

• Interactions with wearable computing: is it possible for users to
embody their profiles in wearable objects, such as watches, jewels
or clothes, and disseminate them in order to achieve personalised
environmental behaviour?

• Integration of RFID for profile or context information dissemination.
Is it possible to substitute profile dissemination for “profile sensing”,
storing the profiles in RFID tags?

• Extend the expressiveness of SoaM XML Datatypes to create richer
and more powerful behavioural profiles, while still trying to keep the
resolution process simple enough. At the same time, profile creation
and editing should be very easy for users via friendly user-interfaces
(end-user programming).

• Design and evaluate a security model as the one explained in
subsection 7.1.1 in order to validate it and identify other implications.

• Automatic generation of behavioural profiles by analysing previous
interactions. In this way, behaviours do not need to be manually
created by humans, but devices can identify patterns by exploiting
information from past interactions and anticipate the behaviour
required by users.

• Dynamically adjustable polling period when retrieving context
information: depending on available network bandwidth and
surrounding smobjects performance.

7.3 Final remarks

At the beginning of our research we faced several ambitious challenges. We
have already mentioned them in this chapter and they are represented in
our research goals.

We have designed a model and an architecture for creating semantic
devices, which are social electronic objects willing to collaborate with others
in order to help users in their everyday activities.

From the results of our work, its future challenges, discussions with
leading organisations, and the research agendas of technology platforms
such as ARTEMIS and PROMETEO3, we foresee that new paths will be

3ARTEMIS is the European Technology Platform for Embedded Systems, while
PROMETEO is its Spanish “mirror”.

280



Juan Ignacio Vázquez Chapter 7. Conclusion

opened during the next years to explore the implications of embedded
intelligence, specially semantics, in Ambient Intelligence scenarios.

We expect the results of our research to lay a significant basis and an
experience for designing semantic devices as first–class citizens of next–
generation intelligent environments.

281





Bibliography

[Aar02] Emile Aarts. Ambient Intelligence in HomeLab. Philips
Research, 2002.

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel
Davies, Mark Smith, and Pete Steggles. Towards a better
understanding of context and context-awareness. In HUC ’99:
Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, pages 304–307, London, UK,
1999. Springer-Verlag.

[App05] Apple Computer, Inc. Bonjour: Connect computers and
electronic devices automatically, without any configuration,
April 2005. Technology Brief.

[Bec04] Dave Beckett. Swad-europe deliverable 3.11: Developer
workshop report 4 - workshop on semantic web storage and
retrieval. Technical report, World Wide Web Consortium,
2004.

[BEP06] François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan.
Querying composite events for reactivity on the web. In
Proceedings of the International Workshop on XML Research
and Applications (XRA) in conjunction with Asia-Pacific Web
Conference, volume 3842 of LNCS, 2006.

[Ber06] Tim Berners-Lee. Notation 3: An readable language for data on
the Web. World Wide Web Consortium, March 2006. Online
ar http://www.w3.org/DesignIssues/Notation3.html.

[BHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The
semantic web: A new form of web content that is meaningful
to computers will unleash a revolution of new possibilities.
Scientific American, 284(5):28–37, May 2001.

283



A Reactive Behavioural Model for Context-Aware Semantic Devices

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description
logics as ontology languages for the semantic web. Lecture
Notes in Artificial Intelligence, 2605:228–248, January 2005.

[BK01] John Barton and Tim Kindberg. The cooltown user experience.
Hewlett-Packard, 2001. Technical Report HPL-2001-22.

[BKK+05] Chris Bussler, Edward Kilgarriff, Reto Krummenacher,
Francisco Martin-Recuerda, Ioan Toma, and Brahmananda
Sapkota. WSMX Triple-Space Computing. DERI - Digital
Enterprise Research Institute, June 2005. WSMO Working
Draft D21.v0.1.

[BL99] Tim Berners-Lee. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Harper
San Francisco, 1999.

[BLFM98] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform
Resource Identifiers (URI): Generic Syntax, 1998. IETF RFC
2396.

[BMK+00] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern,
and Steven A. Shafer. Easyliving: Technologies for intelligent
environments. In Proceedings of HUC ’00: the 2nd international
symposium on Handheld and Ubiquitous Computing, pages 12–
29, London, UK, 2000. Springer-Verlag.

[Bon05] Elena Paslaru Bontas. Using context information to improve
ontology reuse. In Proceedings of the Doctoral Workshop at the
17th Conference on Advanced Information Systems Engineering
CAiSE’05, 2005.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
JADE - a FIPA-compliant agent framework. In Proceedings of
the Practical Applications of Intelligent Agents, 1999.

[BTW01] Harold Boley, Said Tabet, and Gerd Wagner. Design rationale
for ruleml: A markup language for semantic web rules.
In Proceedings of SWWS’01, The first Semantic Web Working
Symposium, pages 381–401, 2001.

[Bus05] Christoph Bussler. A minimal triple space computing
architecture. In Proceedings of the 2nd WSMO Implementation
Workshop, 2005.

[CAG00] J. Cohen, S. Aggarwal, and Y. Y. Goland. General Event
Notification Architecture Base: Client to Arbiter, 2000. Internet
Draft.

284



Juan Ignacio Vázquez Bibliography

[CF02] Harry Chen and Tim Finin. Beyond distributed ai, agent
teamwork in ubiquitous computing. In Workshop on
Ubiquitous Agents on Embedded, Wearable, and Mobile Devices,
AAMAS-2002, Bologna, Italy, July 2002.

[CFJ01] Harry Chen, Tim Finin, and Anupam Joshi. Dynamic service
discovery for mobile computing: Intelligent agents meet jini
in the aether. Baltzer Science Journal on Cluster Computing,
pages 343–354, February 2001.

[CFJ03a] Harry Chen, Tim Finin, and Anupam Joshi. An intelligent
broker for context-aware systems. In Adjunct Proceedings of
Ubicomp 2003, pages 183–184. UbiComp, UbiComp, October
2003.

[CFJ03b] Harry Chen, Tim Finin, and Anupam Joshi. An ontology
for context-aware pervasive computing environments. In
Workshop on Ontologies and Distributed Systems. IJCAI-2003,
August 2003.

[CFJ03c] Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in a
pervasive context-aware architecture. Artificial Intelligence in
Mobile System 2003, pages 33–40, October 2003.

[CFJ03d] Harry Chen, Tim Finin, and Anupam Joshi. Using owl in
a pervasive computing broker. In Workshop on Ontologies
in Agent Systems, AAMAS-2003, Melbourne, Australia, July
2003.

[CFJ04a] Harry Chen, Tim Finin, and Anupam Joshi. A context
broker for building smart meeting rooms. In Craig
Schlenoff and Michael Uschold, editors, Proceedings of
the Knowledge Representation and Ontology for Autonomous
Systems Symposium, 2004 AAAI Spring Symposium, pages
53–60, Stanford, California, March 2004. AAAI, AAAI Press,
Menlo Park, CA.

[CFJ04b] Harry Chen, Tim Finin, and Anupam Joshi. An ontology
for context-aware pervasive computing environments. Special
Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, 18(3):197–207, May 2004.

[CFJ04c] Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in in
the context broker architecture. In Proceedings of the Second
Annual IEEE International Conference on Pervasive Computer
and Communications. IEEE Computer Society, March 2004.

285



A Reactive Behavioural Model for Context-Aware Semantic Devices

[CFJ+04d] Harry Chen, Tim Finin, Anupam Joshi, Filip Perich, Dipanjan
Chakraborty, and Lalana Kagal. Intelligent agents meet the
semantic web in smart spaces. IEEE Internet Computing, 8(6),
November 2004.

[CFJ05] Harry Chen, Tim Finin, and Anupam Joshi. Ontologies for
Agents: Theory and Experiences, chapter The SOUPA Ontology
for Pervasive Computing. Whitestein Series in Software Agent
Technologies. Springer, July 2005.

[CGK05] Eleni Christopoulou, Christos Goumopoulos, and Achilles
Kameas. An ontology-based context management and
reasoning process for ubicomp applications. In sOc-EUSAI
’05: Proceedings of the 2005 joint conference on Smart objects
and Ambient Intelligence, pages 265–270, New York, NY, USA,
2005. ACM Press.

[CGZK04] Eleni Christopoulou, Christos Goumopoulos,
Ioannis Zaharakis, and Achilles Kameas. An ontology-based
conceptual model for composing context-aware applications.
In Proceedings of the Workshop on Advanced Context Modelling,
Reasoning and Management colocated with Ubicomp 2004: the
Sixth International Conference on Ubiquitous Computing, 2004.

[Che04] Harry Chen. An Intelligent Broker Architecture for Pervasive
Context-Aware Systems. PhD thesis, University of Maryland,
Baltimore County, December 2004.

[CK04] Eleni Christopoulou and Achilles Kameas. Using ontologies to
address key issues in ubiquitous computing systems. In EUSAI,
volume 3295 of Lecture Notes in Computer Science, pages 13–
24. Springer, 2004.

[CK05] Eleni Christopoulou and Achilles Kameas. Gas ontology:
an ontology for collaboration among ubiquitous computing
devices. International Journal of Human-Computer Studies,
62(5):664–685, 2005.

[CK06a] Stuart Cheshire and Marc Krochmal. DNS-Based Service
Discovery, August 2006. IETF Draft draft-cheshire-dnsext-dns-
sd-04.txt.

[CK06b] Stuart Cheshire and Marc Krochmal. Multicast DNS, August
2006. IETF Draft draft-cheshire-dnsext-multicastdns-06.txt.

[CO05] Dave Crocker and Paul Overell. Augmented BNF for Syntax
Specifications: ABNF, October 2005. IETF RFC 4234.

286



Juan Ignacio Vázquez Bibliography

[CPC+04] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin,
and Anupam Joshi. Intelligent agents meet semantic web in a
smart meeting room. In Proceedings of the Third International
Joint Conference on Autonomous Agents & Multi Agent Systems
(AAMAS 2004), New York City, NY, July 2004.

[CPFJ04] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi.
Soupa: Standard ontology for ubiquitous and pervasive
applications. In First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous’04), Boston, MA, August 2004.

[CPJ+02] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Tim Finin,
and Yelena Yesha. A reactive service composition architecture
for pervasive computing environments. Technical report,
University of Maryland, Baltimore County, March 2002.

[CTS+01] Harry Chen, Sovrin Tolia, Craig Sayers, Tim Finin, and
Anupam Joshi. Creating context-aware software agents.
In First GSFC/JPL Workshop on Radical Agent Concepts,
Greenbelt, MD, USA., September 2001. NASA Goddard Space
Flight Center.

[DAM02] DAML Services Coalition. DAML-S: Semantic Markup for Web
Services. DARPA, 2002. Whitepaper.

[DAS99] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A
context-based infrastructure for smart environments. In
Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE ’99), pages 114–
128, 1999.

[DAS01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-Computer
Interaction, 16:97–166, 2001.

[Den02] Peter J. Denning, editor. The invisible future: the seamless
integration of technology into everyday life. McGraw-Hill, Inc.,
New York, NY, USA, 2002.

[Der99] Michael L. Dertouzos. The future of computing. Scientific
American, August 1999.

[Dey00] Anind K. Dey. Enabling the use of context in interactive
applications. In CHI ’00: Extended abstracts on Human factors
in computing systems, pages 79–80, New York, NY, USA, 2000.
ACM Press.

287



A Reactive Behavioural Model for Context-Aware Semantic Devices

[Dey01] Anind K. Dey. Understanding and using context. Personal
Ubiquitous Computing, 5(1):4–7, 2001.

[DR06] Tim Dierks and Eric Rescorla. The Transport Layer Security
(TLS) Protocol. Version 1.1, April 2006. IETF RFC 4346.

[DS05] Martin Duerst and Michel Suignard. Internationalized
Resource Identifiers (IRIs), 2005. IETF RFC 3987.

[DZFJ05] Li Ding, Lina Zhou, Tim Finin, and Anupam Joshi. How the
semantic web is being used:an analysis of foaf documents.
In Proceedings of the 38th International Conference on System
Sciences, January 2005.

[Edw06] W. Keith Edwards. Discovery systems in ubiquitous
computing. IEEE Pervasive Computing, 5(2):70–77, 2006.

[Eur01] European Commission IST Advisory Group (ISTAG). Scena-
rios for ambient intelligence in 2010. Technical report, EU
Commission, 2001.

[Eur03a] European Commission IST Advisory Group (ISTAG). Ambient
intelligence: from vision to reality. Technical report, EU
Commission, 2003.

[Eur03b] European Commission IST Advisory Group (ISTAG). IST
research content. Technical report, EU Commission, 2003.

[FDW+04] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catterall,
and Stephen Pink. Supporting service discovery, querying and
interaction in ubiquitous computing environments. Wireless
Networks, 10(6):631 – 641, November 2004.

[Fen04] Dieter Fensel. Triple-space computing: Semantic web services
based on persistent publication of information. In Finn Arve
Aagesen, Chutiporn Anutariya, and Vilas Wuwongse, editors,
Proceedings of the IFIP International Conference on Intelligence
in Communication Systems, volume 3283 of Lecture Notes in
Computer Science, pages 43–53. Springer-Verlag, November
2004.

[FGM+99] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik
Frystyk, Larry Masinter, Paul J. Leach, and Tim Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1, 1999. IETF RFC 2616.

[FHBH+99] John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler,
Scott D. Lawrence, Paul J. Leach, Ari Luotonen, and
Lawrence C. Stewart. HTTP Authentication: Basic and Digest
Access Authentication, June 1999. IETF RFC 2617.

288



Juan Ignacio Vázquez Bibliography

[FHH03] Richard Fikes, Pat Hayes, and Ian Horrocks. DAML Query
Language (DQL) Abstract Specification, 2003.

[fIPA02] Foundation for Intelligent Physical Agents. FIPA ACL Message
Structure Specification. Foundation for Intelligent Physical
Agents, 2002.

[FK05] Ned Freed and John C. Klensin. Media Type Specifications and
Registration Procedures, December 2005. IETF RFC 4288.

[FRP+05] Cristina Feier, Dumitru Roman, Axel Polleres, John Domingue,
Michael Stollberg, and Dieter Fensel. Towards intelligent web
services: Web service modeling ontology (wsmo). In Proc. of
the Int’al Conf on Intelligent Computing (ICIC) 2005, 2005.

[GBPK06] Bernardo Cuenca Grau, Evren Sirin Bijan Parsia, and Aditya
Kalyanpur. Modularity and web ontologies. In Proceedings of
the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR2006), 2006.

[GC+99] Yaron Y. Goland, Ting Cai, et al. Simple Service Discovery
Protocol/1.0. Operating without an Arbiter, 1999. Internet
Draft.

[GPVD99] Erik Guttman, Charles Perkins, John Veizades, and Michael
Day. Service Location Protocol, Version 2, June 1999. IETF RFC
2608.

[GPZ04a] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A bayesian
approach for dealing with uncertain contexts. In G. Kotsis,
editor, Proceedings of the 2nd International Conference on
Pervasive Computing. Austrian Computer Society, 2004.

[GPZ04b] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A middleware
for building context-aware mobile services. In Proceedings of
IEEE Vehicular Technology Conference, 2004.

[GPZ04c] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an
osgi-based infrastructure for context-aware applications. IEEE
Pervasive Computing, 3(4):66–74, 2004.

[GPZ05] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-
oriented middleware for building context-aware services.
Journal of Network and Computer Applications, 28(1):1–18,
2005.

[Gre06] Adam Greenfield. Everyware: The Dawning Age of Ubiquitous
Computing. Peachpit Press, 2006.

289



A Reactive Behavioural Model for Context-Aware Semantic Devices

[GS00] Yaron Y. Goland and Jeffrey C. Schlimmer. Multicast and
Unicast UDP HTTP Messages, 2000. Internet Draft.

[GSSS02] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter
Steenkiste. Project aura: Toward distraction-free pervasive
computing. IEEE Pervasive Computing, 1(2):22–31, 2002.

[GTPZ05a] Tao Gu, Edmond Tan, Hung Keng Pung, and Daqing
Zhang. Contextpeers: Scalable peer-to-peer search for context
information. In Proceedings of the International Workshop on
Innovations in Web Infrastructure (IWI 2005), in conjunction
with the 14th World Wide Web Conference (WWW 2005), 2005.

[GTPZ05b] Tao Gu, Edmond Tan, Hung Keng Pung, and Daqing Zhang. A
peer-to-peer architecture for context lookup. In 2nd Annual
International Conference on Mobile and Ubiquitous Systems
(MobiQuitous 2005), pages 333–341. IEEE Computer Society,
2005.

[GWPZ04] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing
Zhang. An ontology-based context model in intelligent
environments. In Proceedings of Communication Networks
and Distributed Systems Modeling and Simulation Conference,
2004.

[HM01] Volker Haarslev and Ralf Mller. Racer system description.
In IJCAR ’01: Proceedings of the First International Joint
Conference on Automated Reasoning, pages 701–706, London,
UK, 2001. Springer-Verlag.

[HP04] Jerry R. Hobbs and Feng Pan. An ontology of time for
the semantic web. ACM Transactions on Asian Language
Information Processing (TALIP), 3(1):66–85, 2004.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: A Semantic
Web Rule Language Combining OWL and RuleML. World Wide
Web Consortium, May 2004. W3C Member Submission.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
reasoning for expressive description logics. In LPAR ’99:
Proceedings of the 6th International Conference on Logic
Programming and Automated Reasoning, pages 161–180,
London, UK, 1999. Springer-Verlag.

[IAN02] IANA. Special-Use IPv4 Addresses, September 2002. IETF RFC
3330.

290



Juan Ignacio Vázquez Bibliography

[Int04] International Standards Organization. ISO 8601:2004: Data
elements and interchange formats - Information interchange -
Representation of dates and times. International Standards
Organization, 2004. ISO 8601:2004.

[IST+05] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise
Sailhan, Rafik Chibout, Nicole Levy, and Angel Talamona.
Developing ambient intelligence systems: A solution based
on web services. Automated Software Engineering, 12(1):101–
137, 2005.

[JW03] Michael Jeronimo and Jack Weast. UPnP design by example:
a software developer’s guide to Universal Plug and Play. Intel
Press, Hillsboro, Oregon, USA, 2003.

[KB01] Tim Kindberg and John Barton. A web-based nomadic
computing system. Computer Networks: The International
Journal of Computer and Telecommunications Networking,
35(4):443–456, 2001.

[KBM+02] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky
Krishnan, Howard Morris, John Schettino, Bill Serra, and
Mirjana Spasojevic. People, places, things: web presence for
the real world. Mobile Networks and Applications, 7(5):365–
376, 2002.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[KF02] Tim Kindberg and Armando Fox. System software for
ubiquitous computing. IEEE Pervasive Computing, 1(1):70–81,
2002.

[KFJ03a] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy
language for a pervasive computing environment. In POLICY
’03: Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks, page 63,
Washington, DC, USA, 2003. IEEE Computer Society.

[KFJ03b] Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A
policy based approach to security for the semantic web. In
Proceedings of ISWC 200 - The Second International Semantic
Web Conference, pages 402–418, 2003.

[KKS05] Reto Krummenacher, Jacek Kopecky, and Thomas Strang.
Sharing context information in semantic spaces. In OTM

291



A Reactive Behavioural Model for Context-Aware Semantic Devices

Workshops: Proceeding of the Workshop on Context-Aware
Mobile Systems (CAMS’05), volume 3762 of Lecture Notes in
Computer Science, pages 229–232. Springer, 2005.

[KLF04] Deepali Khushraj, Ora Lassila, and Tim Finin. stuples:
Semantic tuple spaces. In Proceedings of Mobiquitous 2004:
The First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services, pages 268–277,
2004.

[KMRMR06] Reto Krummenacher, Francisco J. Martin-Recuerda, Martin
Murth, and Johannes Riemer. TSC Framework, July 2006.
D1.2 v1.1 Final draft.

[KQ04] David R. Karger and Dennis Quan. Haystack: a user
interface for creating, browsing, and organizing arbitrary
semistructured information. In CHI ’04: Extended abstracts
on Human factors in computing systems, pages 777–778, New
York, NY, USA, 2004. ACM Press.

[KS05] Reto Krummenacher and Thomas Strang. Ubiquitous
semantic spaces. In Conference Supplement to the 7th
Internationall Conference on Ubiquitous Computing (UbiComp
2005), 2005.

[KSF06] Reto Krummenacher, Thomas Strang, and Dieter Fensel. Triple
Spaces for an Ubiquitous Web of Services. DERI - Digital
Enterprise Research Institute, 2006. Position Paper of the W3C
Workshop on the Ubiquitous Web.

[LA03] Ora Lassila and Mark Adler. Semantic gadgets: Ubiquitous
computing meets the semantic web. In Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential, pages
363–376, 2003.

[Las06] Ora Lassila. Semantic Web, Quo Vadis?, October 2006.
Keynote of the Ninth Scandinavian Conference on Artificial
Intelligence (SCAI 2006).

[Lau98] Simon St Laurent. Cookies. McGraw-Hill, Inc., New York, NY,
USA, 1998.

[LH02] Choonhwa Lee and Sumi Helal. Protocols for service discovery
in dynamic and mobile networks. International Journal of
Computer Research, 11(1):1–12, 2002.

292



Juan Ignacio Vázquez Bibliography

[LK01] Diego López de Ipiña and Eleftheria Katsir. An ECA
rule-matching service for simpler development of reactive
applications. In Supplement to the Proceedings of Middleware
2001 at IEEE Distributed Systems Online, Vol. 2, No. 7, 2001.

[LMH02] Diego López de Ipiña, Paulo Mendonça, and Andy
Hopper. TRIP: a Low-Cost Vision-Based Location System for
Ubiquitous Computing. Personal and Ubiquitous Computing
Journal, 6(3):206–219, May 2002.

[LMS05] Paul J. Leach, Michael Mealling, and Rich Salz. A Universally
Unique IDentifier (UUID) URN Namespace, July 2005. IETF
RFC 4122.

[LVG+06] Diego López de Ipiña, Juan Ignacio Vázquez, Daniel Garćıa,
Javier Fernández, Iván Garćıa, David Sainz, and Aitor
Almeida. EMI2lets: A Reflective Framework for Enabling AmI.
Journal of Universal Computer Science, 12(3):297–314, 2006.

[MAA+04] Martin Modahl, Bikash Agarwalla, Gregory Abowd,
Umakishore Ramachandran, and T. Scott Saponas. Toward
a standard ubiquitous computing framework. In Proceedings
of the 2nd workshop on Middleware for pervasive and ad-hoc
computing, pages 135–139, New York, NY, USA, 2004. ACM
Press.

[McG00] Robert E. McGrath. Discovery and Its Discontents: Discovery
Protocols for Ubiquitous Computing. University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 2000. Technical
Report UIUCDCS-R-2000-2154.

[McG05] Robert E. McGrath. Semantic Infrastructure for a Ubiquitous
Computing Environment. PhD thesis, School of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

[MK07] Daniel A. Menascé and Jeffrey O. Kephart. Guest
editorśıntroduction: Autonomic computing. IEEE Internet
Computing, 11(1):18–21, 2007.

[MLPS03] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren
Sirin. Ontology-enabled pervasive computing applications.
IEEE Intelligent Systems, 18(5):68–72, September-October
2003.

[MMS+05] Ryusuke Masuoka, MohinderChopra, Zhexuan Song, Yannis
Labrou, Lalana Kagal, and Tim Finin. Policy-based access
control fortask computing using rei. In Proceedings of the Policy

293



A Reactive Behavioural Model for Context-Aware Semantic Devices

Management for the Web Workshop, WWW 2005, pages 37–43.
W3C, May 2005.

[MPL03] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou. Task
computing - the semantic web meets pervasive computing.
In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

[MRCM03a] Robert E. McGrath, Anand Ranganathan, Roy H. Campbell,
and M. Dennis Mickunas. Incorporating ”semantic discovery”
into ubiquitous computing infrastructure. In Proceedings of
System Support for Ubiquitous Computing Workshop at the Fifth
Annual Conference on Ubiquitous Computing (UbiComp 2003),
2003.

[MRCM03b] Robert E. McGrath, Anand Ranganathan, Roy H. Campbell,
and M. Dennis Mickunas. Use of ontologies in pervasive
computing environments. Technical Report Technical Report
UIUCDCS-R-2003-2332, University of Illinois at Urbana-
Champaign, April 2003.

[MRMC03] Robert E. McGrath, Anand Ranganathan, M. Dennis
Mickunas, and Roy H. Campbell. Investigations of semantic
interoperability in ubiquitous computing environments. In
Proceedings of the 15th International Conference Parallel and
Distributed Computing and Systems (PDCS), 2003.

[NZM+05] Lionel M. Ni, Yanmin Zhu, Jian Ma, Minglu Li, Qiong Luo,
Yunhao Liuand, Shing-Chi Cheung, and Qiang Yang. Semantic
sensor net: an extensible framework. In Proceedings of
the Third International Conference on Computer Networks and
Mobile Computing, 2005.

[OAS04] OASIS. UDDI Version 3.0.2. OASIS, 2004. UDDI Spec
Technical Committee Draft.

[O’R05] Tim O’Reilly. What Is Web 2.0. Design Patterns and Business
Models for the Next Generation of Software, September
2005. http://www.oreillynet.com/pub/a/oreilly/tim/news-
/2005/09/30/what-is-web-20.html. Retrieved on January
2007.

[PB04] Davy Preuveneers and Yolande Berbers. Suitability of existing
service discovery protocols for mobile users in an ambient
intelligence environent. In Proceedings of the International
Conference on Pervasive Computing and Communications,
pages 760–764. CSREA Press, June 2004.

294



Juan Ignacio Vázquez Bibliography

[PCB00] Nissanka B. Priyantha, Anit Chakraborty,
and Hari Balakrishnan. The cricket location-support system.
In MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 32–43,
New York, NY, USA, 2000. ACM Press.

[PH05] Feng Pan and Jerry R. Hobbs. Temporal aggregates
in owl-time. In In Proceedings of the Workshop on
Natural Language-based Knowledge Representations: New
Perspectives, Clearwater Beach, FL, USA, May 2005. At the
Florida Artificial Intelligence Research Society International
Conference (FLAIRS 2005).

[PJC05] Filip Perich, Anupam Joshi, and Rada Chirkova. Enabling
Technologies for Wireless e-Business Applications, chapter Data
Management for Mobile Ad-Hoc Networks. Springer, July
2005.

[PMBT01] Nissanka B. Priyantha, Allen K.L. Miu, Hari Balakrishnan, and
Seth Teller. The cricket compass for context-aware mobile
applications. In MobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking,
pages 1–14, New York, NY, USA, 2001. ACM Press.

[QK04] Dennis Quan and David R. Karger. How to make a semantic
web browser. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages 255–265,
New York, NY, USA, 2004. ACM Press.

[RAMC04] Anand Ranganathan, Jalal Al-Muhtadi, and Roy H. Campbell.
Reasoning about uncertain contexts in pervasive computing
environments. IEEE Pervasive Computing, 03(2):62–70, 2004.

[Ran05] Anand Ranganathan. A Task Execution Framework for
Autonomic Ubiquitous Computing. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[RC00] Manuel Román and Roy H. Campbell. Gaia: enabling active
spaces. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop, pages 229–234, New York, NY, USA,
2000. ACM Press.

[RC03a] Anand Ranganathan and Roy H. Campbell. An infrastructure
for context-awareness based on first order logic. Personal and
Ubiquitous Computing, 7(6):353–364, 2003.

295



A Reactive Behavioural Model for Context-Aware Semantic Devices

[RC03b] Anand Ranganathan and Roy H. Campbell. A middleware for
context-aware agents in ubiquitous computing environments.
In Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, 2003.

[RCAM+05] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H.
Campbell, and M. Dennis Mickunas. Olympus: A high-level
programming model for pervasive computing environments.
In Proceedings of the 3rd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2005),
pages 7–16. IEEE Computer Society, 2005.

[Res00] Eric Rescorla. HTTP Over TLS, May 2000. IETF RFC 2818.

[Rey01] Franklin Reynolds. An RDF Framework for Resource
Discovery. In Proceedings of SemWeb 2001: The Second
International Workshop on the Semantic Web, May 2001.

[RHC+02a] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia:
a middleware platform for active spaces. SIGMOBILE Mob.
Comput. Commun. Rev., 6(4):65–67, 2002.

[RHC+02b] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, and Klara Nahrstedt. A
middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74–83, 2002.

[RMCM03] Anand Ranganathan, Robert E. McGrath, Roy H. Campbell,
and M. Dennis Mickunas. Ontologies in a pervasive computing
environment. In Eighteenth International Joint Conference
On Artificial Intelligence (IJCAI’03), Workshop on Information
Integration on the Web (IIWeb’03). Academic University Press,
August 2003.

[RSCl+02] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camari-
llo, Alan Johnston, Jon Peterson, Robert Sparks, Mark
Handley, and Eve Schooler. SIP: Session Initiation Protocol,
June 2002. IETF RFC 3261.

[SBM00] Steven Shafer, Barry Brummit, and Brian Meyers. The
easyliving intelligent environment system. In CHI Workshop
on Research Directions in Situated Computing, April 2000.

[SD02] Michael Sintek and Stefan Decker. Triple - a query, inference,
and transformation language for the semantic web. In
ISWC ’02: Proceedings of the First International Semantic Web

296



Juan Ignacio Vázquez Bibliography

Conference on The Semantic Web, pages 364–378, London, UK,
2002. Springer-Verlag.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The
context toolkit: aiding the development of context-enabled
applications. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 434–441, New
York, NY, USA, 1999. ACM Press.

[SG02] Joo Pedro Sousa and David Garlan. Aura: an architectural
framework for user mobility in ubiquitous computing
environments. In Proceedings of WICAS3: the IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture, pages 29–43, Deventer,
The Netherlands, The Netherlands, 2002. Kluwer, B.V.

[SG03] Joo Sousa and David Garlan. The Aura Software Architecture:
an Infrastructure for Ubiquitous Computing, 2003. Carnegie
Mellon Technical Report, CMU-CS-03-183.

[SHP03] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic
composition of web services using semantic descriptions.
In Web Services: Modeling, Architecture and Infrastructure
workshop in ICEIS 2003, Angers, France, April 2003.

[SKB06] Brahmananda Sapkota, Edward Kilgarriff, and Christoph
Bussler. Role of triple space computing in semantic web
services. In Frontiers of WWW Research and Development -
APWeb 2006, 8th Asia-Pacific Web Conference, Harbin, volume
3841 of Lecture Notes in Computer Science, pages 714–719.
Springer, 2006.

[SLM04] Zhexuan Song, Yannis Labrou, and Ryusuke Masuoka.
Dynamic service discovery and management in task
computing. In First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous’04), pages 310–318, 2004.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A context
modeling survey. In Proceedings of the Workshop on Advanced
Context Modelling, Reasoning and Management as part of
UbiComp 2004 - The Sixth International Conference on
Ubiquitous Computing, 2004.

[SLPF03a] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian
Frank. Applications of a context ontology language.

297



A Reactive Behavioural Model for Context-Aware Semantic Devices

In SoftCOM 2003: International Conference on Software,
Telecommunications and Computer Networks, 2003.

[SLPF03b] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian
Frank. Cool: A context ontology language to enable
contextual interoperability. In Proceedings of DAIS 2003: 4th
IFIP International Conference on Distributed Applications and
Interoperable Systems, volume LNCS 2893. Springer, 2003.

[SLPF03c] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian
Frank. Integration issues of an ontology based context
modelling approach. In Proceedings of ICWI 2003: IADIS
International Conference WWW/Internet, 2003.

[SMAL04] Zhexuan Song, Ryusuke Masuoka, Jonathan Agre, and Yannis
Labrou. Task computing for ubiquitous multimedia services.
In MUM ’04: Proceedings of the 3rd international conference on
Mobile and ubiquitous multimedia, pages 257–262, New York,
NY, USA, 2004. ACM Press.

[SRC05] Chetan Shiva Shankar, Anand Ranganathan, and Roy
Campbell. An eca-p policy-based framework for managing
ubiquitous computing environments. In MOBIQUITOUS ’05:
Proceedings of the The Second Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services,
pages 33–44, Washington, DC, USA, 2005. IEEE Computer
Society.

[SRL98] Henning Schulzrinne, Anup Rao, and Robert Lanphier. Real
Time Streaming Protocol (RTSP), April 1998. IETF RFC 2326.

[STK+06] Omair Shafiq, Ioan Toma, Reto Krummenacher, Thomas
Strang, and Dieter Fensel. Using triple space computing
for communication and coordination in semantic grid. In
Proceedings of the 3rd Semantic Grid Workshop colocated with
the 16th Global Grid Forum, 2006.

[Sun99] Sun Microsystems. Jini architectural overview. Technical
report, Sun Microsystems, 1999.

[TZWC05] Joo Geok Tan, Daqing Zhang, Xiaohang Wang, and Heng Seng
Cheng. Enhancing semantic spaces with event-driven context
interpretation. In Proceedings of Pervasive 2005: Third
International Conference on Pervasive Computing, volume 3468
of Lecture Notes in Computer Science, pages 80–97. Springer,
2005.

298



Juan Ignacio Vázquez Bibliography

[UPn03] UPnP Forum. UPnP Device Architecture v.1.0.1 Draft, 2003.

[VAL06] Juan Ignacio Vazquez, Joseba Abaitua, and Diego López
de Ipiña. The Ubiquitous Web as a model to lead our
environments to their full potential. In Proceedings of the
W3C Workshop on the Ubiquitous Web. World Wide Web
Consortium, 2006. Position paper.

[vBYM05] Albert van Breemen, Xue Yan, and Bernt Meerbeek. icat: an
animated user-interface robot with personality. In AAMAS
’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 143–144,
New York, NY, USA, 2005. ACM Press.

[VL04] Juan Ignacio Vazquez and Diego López de Ipiña. An
interaction model for passively influencing the environment.
In Adjunct Proceedings of EUSAI 2004: the 2nd European
Symposium on Ambient Intelligence, 2004.

[VL05] Juan Ignacio Vazquez and Diego López de Ipiña. A language
for expressing user-context preferences in the Web. In WWW
’05: Special interest tracks and posters of the 14th international
conference on World Wide Web, pages 904–905, New York, NY,
USA, 2005. ACM Press.

[VLnS06] Juan Ignacio Vazquez, Diego López de Ipiña, and Iñigo
Sedano. SoaM: An environment adaptation model for the
Pervasive Semantic Web. In Proceedings of the 2nd Ubiquitous
Web Systems and Intelligence Workshop (UWSI 2006), colocated
with ICCSA 2006. Lecture Notes in Computer Science - LNCS,
volume 3983, pages 108–117, May 2006.

[WDC+04] Xiaohang Wang, Jin Song Dong, Chung Yau Chin,
Sanka Ravipriya Hettiarachchi, and Daqing Zhang. Semantic
space: An infrastructure for smart spaces. IEEE Pervasive
Computing, 3(3):32–39, 2004.

[Wei96] Mark Weiser. Computer Science Challenges for the Next Ten
Years. Xerox PARC, 1996. Presentation slides.

[Wei99] Mark Weiser. The computer for the 21st century. SIGMOBILE
Mobile Computing and Communications Review, 3(3):3–11,
1999.

[WJ99] Michael Wooldridge and Nicholas R. Jennings. The
cooperative problem-solving process. Journal of Logic and
Computation, 9(4):563–592, 1999.

299



A Reactive Behavioural Model for Context-Aware Semantic Devices

[Wor01a] World Wide Web Consortium. Web Services Description
Language (WSDL) 1.1. World Wide Web Consortium, 2001.
W3C Note.

[Wor01b] World Wide Web Consortium. XML Base. World Wide Web
Consortium, June 2001. W3C Recommendation.

[Wor03] World Wide Web Consortium. SOAP Version 1.2 Part 0: Primer.
World Wide Web Consortium, 2003. W3C Recommendation.

[Wor04a] World Wide Web Consortium. Architecture of the World Wide
Web, Volume One. World Wide Web Consortium, December
2004. W3C Recommendation.

[Wor04b] World Wide Web Consortium. OWL-S: Semantic Markup for
Web Services. World Wide Web Consortium, 2004. W3C
Member Submission.

[Wor04c] World Wide Web Consortium. OWL Web Ontology Language
Guide. World Wide Web Consortium, February 2004. W3C
Recommendation.

[Wor04d] World Wide Web Consortium. OWL Web Ontology Language
Overview. World Wide Web Consortium, February 2004. W3C
Recommendation.

[Wor04e] World Wide Web Consortium. OWL Web Ontology Language
Reference. World Wide Web Consortium, February 2004. W3C
Recommendation.

[Wor04f] World Wide Web Consortium. RDF Primer. World Wide Web
Consortium, February 2004. W3C Recommendation.

[Wor04g] World Wide Web Consortium. RDF Test Cases. World Wide
Web Consortium, February 2004. W3C Recommendation.

[Wor04h] World Wide Web Consortium. RDF Vocabulary Description
Language 1.0: RDF Schema. World Wide Web Consortium,
February 2004. W3C Recommendation.

[Wor04i] World Wide Web Consortium. RDF/XML Syntax Specification
(Revised). World Wide Web Consortium, February 2004. W3C
Recommendation.

[Wor04j] World Wide Web Consortium. Resource Description Framework
(RDF): Concepts and Abstract Syntax. World Wide Web
Consortium, February 2004. W3C Recommendation.

300



Juan Ignacio Vázquez Bibliography

[Wor04k] World Wide Web Consortium. XML Schema Part 2: Datatypes
Second Edition. World Wide Web Consortium, October 2004.
W3C Recommendation.

[Wor05a] World Wide Web Consortium. Web Services Choreography
Description Language Version 1.0. World Wide Web
Consortium, November 2005. W3C Candidate Recommen-
dation.

[Wor05b] World Wide Web Consortium. Rule Interchange Format
Working Group Charter. World Wide Web Consortium,
November 2005.

[Wor05c] World Wide Web Consortium. xml:id Version 1.0. World Wide
Web Consortium, September 2005. W3C Recommendation.

[Wor06a] World Wide Web Consortium. SPARQL Protocol for RDF.
World Wide Web Consortium, April 2006. W3C Candidate
Recommendation.

[Wor06b] World Wide Web Consortium. SPARQL Query Language for
RDF. World Wide Web Consortium, April 2006. W3C
Candidate Recommendation.

[Wor06c] World Wide Web Consortium. Time Ontology in OWL. World
Wide Web Consortium, September 2006. W3C Working Draft.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng
Pung. Ontology based context modeling and reasoning using
owl. In Proceedings of PERCOMW ’04: Second IEEE Annual
Conference on Pervasive Computing and Communications
Workshops, page 18, Washington, DC, USA, 2004. IEEE
Computer Society.

[ZMN05] Fen Zhu, Matt W. Mutka, and Lionel M. Ni. Service
discovery in pervasive computing environments. IEEE
Pervasive Computing, 04(4):81–90, 2005.

[ZS05] Weibin Zhao and Henning Schulzrinne. Enhancing service
location protocol for efficiency, scalabiliy and advanced
discovery. Journal of Systems and Software, 75(1-2):193–204,
February 2005.

301





Appendices

303





Appendix

A
Basic Semantic Web

technologies

A.1 Resource Description Framework

In the Semantic Web, RDF (Resource Description Framework) [Wor04j]
[Wor04i] [Wor04h] is the mechanism to model the knowledge and
relationships space: “The Resource Description Framework (RDF) is a
language for representing information about resources in the World Wide Web”
[Wor04f].

RDF represents knowledge as humans do, using statements with subject,
predicate and object. URIs are used to identify subjects and predicates,
while objects can be represented via URIs, if they refer to other resources,
or literal values.

Example A.1. Iñaki is currently staying in Bilbao (a
town in the Basque Country), and his email address is
ivazquez@eside.deusto.es. Iñaki’s car is a S24 of 1978, whose
plate number is 886579. Currently the car is in the garage.

Table A.1 contains the URIs used to identify the resources, including the
verbs. Thus, all the knowledge of Example A.1 can be represented in a set
of triples (subject predicate object), using these URIs.

For example, “Iñaki is currently staying in Bilbao” can be represented as:

• Subject: http://paginaspersonales.deusto.es/ivazquez

• Predicate:
http://www.awareit.com/onto/2005/12/location#isLocatedIn

• Object: http://placesoftheworld.com/towns/Bilbao

305



A Reactive Behavioural Model for Context-Aware Semantic Devices

Resource URI

Iñaki (person) http://paginaspersonales.deusto.es/ivazquez

Has first name (predicate) http://xmlns.com/foaf/0.1/name

Bilbao http://placesoftheworld.com/towns/Bilbao

Located in (predicate) http://www.awareit.com/onto/2005/12/location#isLocatedIn

Basque Country http://placesoftheworld.com/regions/BasqueCountry

Has Email (predicate) http://xmlns.com/foaf/0.1/mbox

Iñaki’s car urn:uuid:e20b8230-e9ad-11da-8ad9-0800200c9a66

Has owner (predicate) http://www.awareit.com/onto/2005/12/car#owner

Has model (predicate) http://www.awareit.com/onto/2005/12/car#model

Has plate (predicate) http://www.awareit.com/onto/2005/12/car#plate

Purchased in (predicate) http://www.awareit.com/onto/2005/12/car#purchasedIn

Iñaki’s garage urn:uuid:eff57010-e9ab-11da-8ad9-0800200c9a66

Table A.1: URIs assigned to identify the resources in Example A.1.

“The owner of the car is Iñaki”, as:

• Subject: urn:uuid:e20b8230-e9ad-11da-8ad9-0800200c9a66

• Predicate: http://www.awareit.com/onto/2005/12/car#owner

• Object: http://paginaspersonales.deusto.es/ivazquez

All the information can be visualised and navigated in a graph as
illustrated in Figure A.1. Standardised notation shapes resources as ellipses,
literal values as rectangles, while predicates are shaped as edges connecting
both. Resources and edges are identified by URIs. For the sake of clarity, we
have used the prefixes foaf: for http://http://xmlns.com/foaf/0.1/, car:

for http://www.awareit.com/onto/2005/12/car# and location: as a short for
http://www.awareit.com/onto/2005/12/location#.

RDF can be serialised over XML in what is known as RDF/XML [Wor04i].
Listing A.1 illustrates the RDF/XML serialisation of Example A.1.

Listing A.1: RDF/XML serialisation of Example A.1.
1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:dc="http://purl.org/dc/elements/1.1/"
4 xmlns:foaf="http://xmlns.com/foaf/0.1/"
5 xmlns:location="http://www.awareit.com/onto/2005/12/location#"
6 xmlns:car="http://www.awareit.com/onto/2005/12/car#">
7 <rdf:Description
8 rdf:about="http://paginaspersonales.deusto.es/ivazquez">
9 <foaf:name>Inaki</foaf:name>

10 <foaf:mbox>ivazquez@eside.deusto.es</foaf:mbox>
11 <location:isLocatedIn>

306



Juan Ignacio Vázquez Appendix A. Basic Semantic Web technologies

12 <rdf:Description
13 rdf:about="http://placesoftheworld.com/towns/Bilbao">
14 <location:isLocatedIn rdf:resource=
15 "http://placesoftheworld.com/regions/BasqueCountry"/>
16 </rdf:Description>
17 </location:isLocatedIn>
18 </rdf:Description>
19 <rdf:Description
20 rdf:about="urn:uuid:e20b8230-e9ad-11da-8ad9-0800200c9a66">
21 <car:owner
22 rdf:resource="http://paginaspersonales.deusto.es/ivazquez"/>
23 <car:model>S24</car:model>
24 <car:plate>886579</car:plate>
25 <car:purchasedIn>886579</car:purchasedIn>
26 <location:isLocatedIn
27 rdf:resource="urn:uuid:eff57010-e9ab-11da-8ad9-0800200c9a66"/>
28 </rdf:Description>
29 </rdf:RDF>

KWWS���SDJLQDVSHUVRQDOHV�GHXVWR�HV�

LYD]TXH]

LYD]TXH]#HVLGH�GHXVWR�HV
KWWS���SODFHVRIWKHZRUOG�FRP�WRZQV�

%LOEDR

XUQ�XXLG�H��E�����H�DG���GD��DG��

�������F�D��

KWWS���SODFHVRIWKHZRUOG�FRP�UHJLRQV�

%DVTXH&RXQWU\

XUQ�XXLG�HII������H�DE���GD��DG��

�������F�D��

,xDNL

������6������

IRDI�QDPH IRDI�PER[ ORFDWLRQ�LV/RFDWHG,Q

ORFDWLRQ�LV/RFDWHG,Q

ORFDWLRQ�LV/RFDWHG,Q

FDU�PRGHO FDU�SODWH

FDU�SXUFKDVHG,Q

FDU�RZQHU

id268974875 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Figure A.1: RDF graph representing the Example A.1.

RDF graphs are navigable knowledge models where multiple
vocabularies can be applied to represent concepts from disperse knowledge
domains as in the previous example.

307



A Reactive Behavioural Model for Context-Aware Semantic Devices

In order to help defining those vocabularies, a meta-vocabulary called
RDF Schema [Wor04h] has been created. RDF Schema includes concepts
such as rdfs:Resource, rdfs:Class, rdfs:Literal or rdf:Property, as well
as predicates such as rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range or
rdfs:domain.

RDF Schema provides a basic level of reasoning about categorisation.
For example, considering the RDF triples:

person:ivazquez rdf:type job:Lecturer

job:Lecturer rdfs:subClassOf job:AcademicStaff

A RDF Schema enabled reasoner could add a new triple to the
knowledge base:

person:ivazquez rdf:type job:AcademicStaff

However, RDF Schema still provides a limited reasoning capability.

A.2 Ontologies

OWL (Ontology Web Language) [Wor04d] [Wor04c] [Wor04e] provides an
additional vocabulary to represent meaning and semantics about resources
and relationships, as well as a formal semantics based on description logics
[BHS05].

OWL provides a framework for creating ontologies on different
knowledge domains. An ontology is a “a document or file that formally
defines the relations among terms” [BHL01]. Ontologies generally describe:

• Individuals: concrete instances of entities.

• Classes: groups of instances with similar features, similar type.

• Attributes: properties of entities.

• Relations: how entities are related.

OWL comes in three flavours, OWL Lite, OWL DL and OWL Full,
depending on the expressiveness and reasoning capabilities required. OWL
Full embraces OWL DL, which in turn embraces OWL Lite.

Some of the constructions provided by OWL are:
owl:sameAs, owl:inverseOf, owl:TransitiveProperty, owl:SymmetricProperty,
owl:equivalentClass or owl:equivalentProperty.

For example, considering the RDF triples:

person:ivazquez location:isLocatedIn places:room21

places:room21 location:isLocatedIn places:Bilbao

location:isLocatedIn rdf:type owl:TransitiveProperty

308



Juan Ignacio Vázquez Appendix A. Basic Semantic Web technologies

An OWL enabled reasoner could add a new triple to the knowledge base:

person:ivazquez location:isLocatedIn places:Bilbao

Since location:locationIn has been defined as a transitive property.
OWL is just one of the possible reasoning mechanisms (based on

description logics in this case) the Semantic Web can be augmented
with in order to increase intelligence. SWRL (Semantic Web Rules
Languages) [HPSB+04] is other mechanism (based on first order logics)
that is currently under development to create domain-specific rules that can
embody heuristic knowledge.

Figure A.2 illustrates the different layers in the Semantic Web, whose
ultimate goal is to achieve the Web of Trust.

Figure A.2: The Semantic Web stack. Source: World Wide Web Consortium.

A.3 SPARQL Protocol And RDF Query Language

SPARQL (SPARQL Protocol And RDF Query Language) [Wor06b] [Wor06a]
is a SQL-like language for querying RDF graphs about resources, values or
relations.

For instance, given the RDF graph of Figure A.1 a SPARQL query to
retrieve the email of http://paginaspersonales.deusto.es/ivazquez could
be:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?email

WHERE {

<http://paginaspersonales.deusto.es/ivazquez> foaf:mbox ?email

}

309



A Reactive Behavioural Model for Context-Aware Semantic Devices

An more complex SPARQL query to retrieve the name and current
location of the owner whose car’s plate is “886579”:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX car: <http://www.awareit.com/onto/2005/12/car#>

PREFIX location: <http://www.awareit.com/onto/2005/12/location#>

SELECT ?name ?location

WHERE {

?car car:plate "886579" .

?car car:owner ?owner .

?owner foaf:name ?name .

?owner location:isLocatedIn ?location .

}

Although the value of ?location is initially “Bilbao”, if an
OWL ontology is applied and location:isLocatedIn is declared as a
owl:TransitiveProperty, the SPARQL processor would have properly yielded
two values for ?location, “Bilbao” and “Basque Country”.

SPARQL and OWL is a powerful combination for querying information,
being able to produce results by reasoning over existing knowledge by
applying ontologies.

There are four query constructions in SPARQL [Wor06b]:

• SELECT: performs a query by resolving concrete variables.

• CONSTRUCT: returns an RDF graph by performing substitutions on
provided triple patterns.

• DESCRIBE: returns the RDF graph describing concrete resources that
match a query.

• ASK: returns a boolean value about some provided conditions.

The SPARQL query language is complemented with the SPARQL
Protocol: an HTTP interface for sending queries to RDF HTTP servers and
retrieving results. The SPARQL Protocol has both bindings for HTTP and
SOAP [Wor06a].

310



Appendix

B
SoaM Numbers, Ports and

Namespaces

mRDP IP Multicast Address
224.0.24.1

mRDP UDP Multicast Port
2773

Plant MIME Type
application/com.awareit.plant

ReDEL MIME Type
application/com.awareit.redel+xml

SoaM XML Datatypes MIME Type
application/com.awareit.soamdt+xml

SoaM XML Exchange Messages MIME Type
application/com.awareit.soammsg+xml

ReDEL XML Datatypes Namespace
http://www.awareit.com/soam/2006/04/redel

ReDEL Web Service Namespace
http://www.awareit.com/soam/2006/04/redelws

sRDF Web Service Namespace
http://www.awareit.com/soam/2006/04/srdfws

sRDF Web Service HTTP GET URI
http://www.awareit.com/soam/2006/04/srdfws#httpGet

311



A Reactive Behavioural Model for Context-Aware Semantic Devices

SoaM XML Datatypes Namespace
http://www.awareit.com/soam/2006/02/soamdt

SoaM XML Exchange Messages Namespace
http://www.awareit.com/soam/2006/02/soammsg

SoaM Entities Management API – HTTP Binding WSDL Namespace
http://www.awareit.com/soam/2006/02/soamws

SoaMonto Namespace
http://www.awareit.com/soam/2005/12/soamonto

312



Appendix

C
ReDEL: Resource Description

Endpoints Language

C.1 ReDEL XML Schema

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2

3 <!-- ReDEL XML Schema -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060429.1 -->
6

7 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:redel="
http://www.awareit.com/soam/2006/04/redel" targetNamespace="http
://www.awareit.com/soam/2006/04/redel" elementFormDefault="
qualified">

8

9 <xs:element name="location">
10 <xs:complexType>
11 <xs:attribute name="url" type="xs:anyURI" use="required"/>
12 <xs:attribute name="ifaceBinding" type="xs:anyURI" use="

optional" default="http://www.awareit.com/soam
/2006/04/srdfws#httpGet"/>

13 </xs:complexType>
14 </xs:element>
15

16 <xs:element name="resource">
17 <xs:complexType>
18 <xs:sequence>
19 <xs:element ref="redel:location" minOccurs="0"

maxOccurs="unbounded"/>
20 </xs:sequence>

313



A Reactive Behavioural Model for Context-Aware Semantic Devices

21 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
22 </xs:complexType>
23 </xs:element>
24

25 <xs:element name="redel">
26 <xs:complexType>
27 <xs:sequence>
28 <xs:element ref="redel:resource" maxOccurs="unbounded

"/>
29 </xs:sequence>
30 </xs:complexType>
31 </xs:element>
32

33 </xs:schema>

C.2 ReDEL Web Service

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <!-- ReDEL Web Service -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060429.1 -->
6

7 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http
://schemas.xmlsoap.org/wsdl/soap/" xmlns:http="http://schemas.
xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/
wsdl/mime/" xmlns:redelws="http://www.awareit.com/soam/2006/04/
redelws" xmlns:redel="http://www.awareit.com/soam/2006/04/redel"
targetNamespace="http://www.awareit.com/soam/2006/04/redelws">

8 <import namespace="http://www.awareit.com/soam/2006/04/redel"
location="http://www.awareit.com/soam/2006/04/redel.xsd"/>

9 <message name="redelContent">
10 <part name="content" element="redel:redel"/>
11 </message>
12 <portType name="redelSoapPort">
13 <operation name="SoapPostOp">
14 <input message="redelws:redelContent"/>
15 </operation>
16 </portType>
17 <portType name="redelHttpPostPort">
18 <operation name="httpPostOp">
19 <input message="redelws:redelContent"/>
20 </operation>
21 </portType>
22 <binding name="httpPost" type="redelws:redelHttpPostPort">
23 <http:binding verb="POST"/>
24 <operation name="httpPostOp">

314



Juan Ignacio VázquezAppendix C. ReDEL: Resource Description Endpoints Language

25 <http:operation location=""/>
26 <input>
27 <mime:mimeXml part="content"/>
28 </input>
29 </operation>
30 </binding>
31 <binding name="soapPost" type="redelws:redelSoapPort">
32 <soap:binding style="document" transport="http://schemas.

xmlsoap.org/soap/http"/>
33 - <operation name="SoapPostOp">
34 <soap:operation soapAction="#post" style="document"/>
35 - <input>
36 <soap:body use="literal"/>
37 </input>
38 </operation>
39 </binding>
40 <!-- Example services declaration for IP address 169.254.0.3 -->
41 <service name="redelService">
42 <port name="redelServiceSoap" binding="redelws:soapPost">
43 <soap:address location="http://169.254.0.3/mrdpcallback"/>
44 </port>
45 <port name="redelServiceHttpPost" binding="redelws:httpPost">
46 <http:address location="http://169.254.0.3/mrdpcallback"/>
47 </port>
48 </service>
49 </definitions>

C.3 Simple RDF Web Service

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <!-- Simple RDF Web Service -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060429.1 -->
6

7 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http
://schemas.xmlsoap.org/wsdl/soap/" xmlns:http="http://schemas.
xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/
wsdl/mime/" xmlns:srdfws="http://www.awareit.com/soam/2006/04/
srdfws" targetNamespace="http://www.awareit.com/soam/2006/04/
srdfws">

8 <message name="empty"/>
9 <message name="rdfContent">

10 <part name="content"/>
11 </message>
12 <portType name="rdfHttpGetService">
13 <operation name="httpGet">

315



A Reactive Behavioural Model for Context-Aware Semantic Devices

14 <input message="srdfws:empty"/>
15 <output message="srdfws:rdfContent"/>
16 </operation>
17 </portType>
18 <binding name="httpGet" type="srdfws:rdfHttpGetService">
19 <http:binding verb="GET"/>
20 <operation name="httpGet">
21 <http:operation location=""/>
22 <input/>
23 <output>
24 <mime:mimeXml part="content"/>
25 </output>
26 </operation>
27 </binding>
28 <!-- Example services declaration for IP address 169.254.0.3 -->
29 <service name="srdfService">
30 <port name="srdfGetService" binding="srdfws:httpGet">
31 <http:address location="http://169.254.0.3/information"/>
32 </port>
33 </service>
34 </definitions>

316



Appendix

D
SoaM XML Datatypes and

Exchange Messages

D.1 SoaM XML Datatypes

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2

3 <!-- SOAM XML Datatypes XML Schema -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060211.1 -->
6

7 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:soamdt="
http://www.awareit.com/soam/2006/02/soamdt" targetNamespace="http
://www.awareit.com/soam/2006/02/soamdt" elementFormDefault="
qualified" attributeFormDefault="unqualified">

8

9 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>

10

11 <xs:complexType name="statementBaseType">
12 <xs:annotation>
13 <xs:documentation>Utility type</xs:documentation>
14 </xs:annotation>
15 <xs:attribute name="subject" type="xs:anyURI" use="required"/>
16 <xs:attribute name="predicate" type="xs:anyURI" use="required

"/>
17 <xs:attribute name="operator" type="xs:anyURI" use="optional

"/>
18 <xs:attribute name="id" type="xs:anyURI" use="required"/>
19 </xs:complexType>
20

317



A Reactive Behavioural Model for Context-Aware Semantic Devices

21 <xs:element name="constraint">
22 <xs:complexType>
23 <xs:complexContent>
24 <xs:extension base="soamdt:statementBaseType">
25 <xs:choice>
26 <xs:element ref="soamdt:objectLiteral"/>
27 <xs:element ref="soamdt:objectResource"/>
28 </xs:choice>
29 <xs:attribute name="requester" type="xs:anyURI"

use="required"/>
30 <xs:attribute name="expires" type="xs:duration"

use="optional"/>
31 </xs:extension>
32 </xs:complexContent>
33 </xs:complexType>
34 </xs:element>
35

36 <xs:element name="behavioralProfile">
37 <xs:complexType>
38 <xs:sequence>
39 <xs:element ref="soamdt:variable" minOccurs="0"

maxOccurs="unbounded"/>
40 <xs:element ref="soamdt:precondition" minOccurs="0"

maxOccurs="unbounded"/>
41 <xs:element ref="soamdt:postcondition" maxOccurs="

unbounded"/>
42 </xs:sequence>
43 <xs:attribute name="id" type="xs:anyURI" use="required"/>
44 <xs:attribute name="expires" type="xs:duration" use="

optional"/>
45 <xs:attribute name="requester" type="xs:anyURI" use="

required"/>
46 </xs:complexType>
47 </xs:element>
48

49 <xs:element name="variable">
50 <xs:complexType>
51 <xs:annotation>
52 <xs:documentation>optional?</xs:documentation>
53 </xs:annotation>
54 <xs:attribute ref="xml:id" use="required"/>
55 </xs:complexType>
56 </xs:element>
57

58 <xs:element name="precondition" type="soamdt:statementPatternType
"/>

59

60 <xs:element name="postcondition">
61 <xs:complexType>

318



Juan Ignacio VázquezAppendix D. SoaM XML Datatypes and Exchange Messages

62 <xs:complexContent>
63 <xs:extension base="soamdt:statementPatternType">
64 <xs:attribute name="optional" type="xs:boolean"

use="optional" default="false"/>
65 </xs:extension>
66 </xs:complexContent>
67 </xs:complexType>
68 </xs:element>
69

70 <xs:element name="objectLiteral">
71 <xs:complexType>
72 <xs:simpleContent>
73 <xs:extension base="xs:string">
74 <xs:attribute name="datatype" type="xs:anyURI" use

="optional"/>
75 </xs:extension>
76 </xs:simpleContent>
77 </xs:complexType>
78 </xs:element>
79

80 <xs:element name="objectResource">
81 <xs:complexType>
82 <xs:attribute name="resource" type="xs:anyURI" use="

required"/>
83 </xs:complexType>
84 </xs:element>
85

86 <xs:element name="objectVariable">
87 <xs:complexType>
88 <xs:attribute name="ref" type="xs:IDREF" use="required"/>
89 </xs:complexType>
90 </xs:element>
91

92 <xs:complexType name="statementPatternType">
93 <xs:complexContent>
94 <xs:extension base="soamdt:statementBaseType">
95 <xs:choice>
96 <xs:element ref="soamdt:objectLiteral"/>
97 <xs:element ref="soamdt:objectResource"/>
98 <xs:element ref="soamdt:objectVariable"/>
99 </xs:choice>

100 </xs:extension>
101 </xs:complexContent>
102 </xs:complexType>
103

104 <xs:complexType name="capabilityType">
105 <xs:sequence>
106 <xs:element ref="soamdt:subject" minOccurs="0" maxOccurs="

unbounded"/>

319



A Reactive Behavioural Model for Context-Aware Semantic Devices

107 <xs:element ref="soamdt:ontology" minOccurs="0" maxOccurs
="unbounded"/>

108 <xs:element ref="soamdt:predicate" minOccurs="0" maxOccurs
="unbounded"/>

109 <xs:element ref="soamdt:objectResource" minOccurs="0"
maxOccurs="unbounded"/>

110 <xs:element ref="soamdt:objectLiteral" minOccurs="0"
maxOccurs="unbounded"/>

111 </xs:sequence>
112 <xs:attribute name="id" type="xs:anyURI" use="required"/>
113 </xs:complexType>
114

115 <xs:element name="subject">
116 <xs:complexType>
117 <xs:attribute name="resource" type="xs:anyURI" use="

required"/>
118 </xs:complexType>
119 </xs:element>
120

121 <xs:element name="ontology">
122 <xs:complexType>
123 <xs:attribute name="resource" type="xs:anyURI" use="

required"/>
124 </xs:complexType>
125 </xs:element>
126

127 <xs:element name="predicate" nillable="false">
128 <xs:complexType>
129 <xs:attribute name="resource" type="xs:anyURI" use="

required"/>
130 </xs:complexType>
131 </xs:element>
132

133 <xs:element name="capabilitiesCollection">
134 <xs:complexType>
135 <xs:choice maxOccurs="unbounded">
136 <xs:element ref="soamdt:perceptionCapability"/>
137 <xs:element ref="soamdt:operationCapability"/>
138 </xs:choice>
139 <xs:attribute name="owner" type="xs:anyURI" use="optional

"/>
140 </xs:complexType>
141 </xs:element>
142

143 <xs:element name="perceptionCapability">
144 <xs:complexType>
145 <xs:complexContent>
146 <xs:extension base="soamdt:capabilityType"/>
147 </xs:complexContent>

320



Juan Ignacio VázquezAppendix D. SoaM XML Datatypes and Exchange Messages

148 </xs:complexType>
149 </xs:element>
150

151 <xs:element name="operationCapability">
152 <xs:complexType>
153 <xs:complexContent>
154 <xs:extension base="soamdt:capabilityType"/>
155 </xs:complexContent>
156 </xs:complexType>
157 </xs:element>
158

159 <xs:element name="constraintsCollection">
160 <xs:complexType>
161 <xs:sequence>
162 <xs:element ref="soamdt:constraint" maxOccurs="

unbounded"/>
163 </xs:sequence>
164 <xs:attribute name="owner" type="xs:anyURI" use="optional

"/>
165 </xs:complexType>
166 </xs:element>
167

168 <xs:element name="behavioralProfilesCollection">
169 <xs:complexType>
170 <xs:sequence>
171 <xs:element ref="soamdt:behavioralProfile" maxOccurs="

unbounded"/>
172 </xs:sequence>
173 <xs:attribute name="owner" type="xs:anyURI" use="optional

"/>
174 </xs:complexType>
175 </xs:element>
176

177 </xs:schema>

D.2 SoaM XML Exchange Messages

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <!-- SoaM XML Exchange Messages -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060211.1 -->
6

7 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:soamdt="
http://www.awareit.com/soam/2006/02/soamdt" xmlns:soammsg="http://
www.awareit.com/soam/2006/02/soammsg" targetNamespace="http://www.

321



A Reactive Behavioural Model for Context-Aware Semantic Devices

awareit.com/soam/2006/02/soammsg" elementFormDefault="qualified"
attributeFormDefault="unqualified">

8 <xs:import namespace="http://www.awareit.com/soam/2006/02/soamdt"
schemaLocation="http://www.awareit.com/soam/2006/02/soamdt.xsd
"/>

9 <xs:element name="soamResult">
10 <xs:complexType>
11 <xs:simpleContent>
12 <xs:extension base="xs:string">
13 <xs:attribute name="code" type="xs:int" use="

required"/>
14 <xs:attribute name="expires" type="xs:duration"

use="optional"/>
15 <xs:attribute name="ref" type="xs:anyURI" use="

required"/>
16 </xs:extension>
17 </xs:simpleContent>
18 </xs:complexType>
19 </xs:element>
20 <xs:element name="soamEntityId">
21 <xs:complexType>
22 <xs:attribute name="ref" type="xs:anyURI" use="required"/>
23 </xs:complexType>
24 </xs:element>
25 <xs:element name="soamResultsCollection">
26 <xs:complexType>
27 <xs:sequence>
28 <xs:element ref="soammsg:soamResult" maxOccurs="

unbounded"/>
29 </xs:sequence>
30 </xs:complexType>
31 </xs:element>
32 <xs:element name="soamEntityIdsCollection">
33 <xs:complexType>
34 <xs:sequence>
35 <xs:element ref="soammsg:soamEntityId" maxOccurs="

unbounded"/>
36 </xs:sequence>
37 </xs:complexType>
38 </xs:element>
39 </xs:schema>

322



Appendix

E
SoaM Entity Management API:

SOAP and HTTP bindings

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <!-- SoaM Entity Management API - SOAP & HTTP Bindings -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20060211.1 -->
6

7 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http
://schemas.xmlsoap.org/wsdl/soap/" xmlns:http="http://schemas.
xmlsoap.org/wsdl/http/" xmlns:xs="http://www.w3.org/2001/XMLSchema
" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:
mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:soamws="http://
www.awareit.com/soam/2006/02/soamws" xmlns:soamdt="http://www.
awareit.com/soam/2006/02/soamdt" xmlns:soammsg="http://www.awareit
.com/soam/2006/02/soammsg" targetNamespace="http://www.awareit.com
/soam/2006/02/soamws">

8 <import namespace="http://www.awareit.com/soam/2006/02/soamdt"
location="http://www.awareit.com/soam/2006/02/soamdt.xsd"/>

9 <import namespace="http://www.awareit.com/soam/2006/02/soammsg"
location="http://www.awareit.com/soam/2006/02/soammsg.xsd"/>

10 <!-- Messages declaration-->
11 <message name="msgEmpty">
12 </message>
13 <message name="msgInformation">
14 <part name="data"/>
15 </message>
16 <message name="msgCapabilitiesCollection">
17 <part name="data" element="soamdt:capabilitiesCollection"/>
18 </message>
19 <message name="msgConstraintsCollection">

323



A Reactive Behavioural Model for Context-Aware Semantic Devices

20 <part name="data" element="soamdt:constraintsCollection"/>
21 </message>
22 <message name="msgProfilesCollection">
23 <part name="data" element="soamdt:behavioralProfilesCollection

"/>
24 </message>
25 <message name="msgEntityIdsCollection">
26 <part name="data" element="soammsg:soamEntityIdsCollection"/>
27 </message>
28 <message name="msgResults">
29 <part name="results" element="soammsg:soamResultsCollection"/>
30 </message>
31 <message name="msgEntityId">
32 <part name="data" element="soammsg:soamEntityId"/>
33 </message>
34 <portType name="soamInformationService">
35 <operation name="retrieve">
36 <input message="soamws:msgEmpty"/>
37 <output message="soamws:msgInformation"/>
38 </operation>
39 </portType>
40 <portType name="soamCapabilitiesService">
41 <operation name="retrieve">
42 <input message="soamws:msgEmpty"/>
43 <output message="soamws:msgCapabilitiesCollection"/>
44 </operation>
45 </portType>
46 <portType name="soamProfilesService">
47 <operation name="retrieve">
48 <input message="soamws:msgEmpty"/>
49 <output message="soamws:msgProfilesCollection"/>
50 </operation>
51 <operation name="add">
52 <input message="soamws:msgProfilesCollection"/>
53 <output message="soamws:msgResults"/>
54 </operation>
55 <operation name="remove">
56 <input message="soamws:msgEntityIdsCollection"/>
57 <output message="soamws:msgResults"/>
58 </operation>
59 <operation name="renew">
60 <input message="soamws:msgEntityIdsCollection"/>
61 <output message="soamws:msgResults"/>
62 </operation>
63 </portType>
64 <portType name="soamConstraintsService">
65 <operation name="retrieve">
66 <input message="soamws:msgEmpty"/>
67 <output message="soamws:msgConstraintsCollection"/>

324



Juan Ignacio VázquezAppendix E. SoaM Entity Management API: SOAP and HTTP bindings

68 </operation>
69 <operation name="add">
70 <input message="soamws:msgConstraintsCollection"/>
71 <output message="soamws:msgResults"/>
72 </operation>
73 <operation name="remove">
74 <input message="soamws:msgEntityIdsCollection"/>
75 <output message="soamws:msgResults"/>
76 </operation>
77 <operation name="renew">
78 <input message="soamws:msgEntityIdsCollection"/>
79 <output message="soamws:msgResults"/>
80 </operation>
81 </portType>
82 <portType name="soamProfilesPostService">
83 <operation name="add">
84 <input message="soamws:msgProfilesCollection"/>
85 <output message="soamws:msgResults"/>
86 </operation>
87 <operation name="remove">
88 <input message="soamws:msgEntityIdsCollection"/>
89 <output message="soamws:msgResults"/>
90 </operation>
91 <operation name="renew">
92 <input message="soamws:msgEntityIdsCollection"/>
93 <output message="soamws:msgResults"/>
94 </operation>
95 </portType>
96 <portType name="soamConstraintsPostService">
97 <operation name="add">
98 <input message="soamws:msgConstraintsCollection"/>
99 <output message="soamws:msgResults"/>

100 </operation>
101 <operation name="remove">
102 <input message="soamws:msgEntityIdsCollection"/>
103 <output message="soamws:msgResults"/>
104 </operation>
105 <operation name="renew">
106 <input message="soamws:msgEntityIdsCollection"/>
107 <output message="soamws:msgResults"/>
108 </operation>
109 </portType>
110 <portType name="soamProfilesGetService">
111 <operation name="retrieve">
112 <input message="soamws:msgEmpty"/>
113 <output message="soamws:msgProfilesCollection"/>
114 </operation>
115 <operation name="remove">
116 <input message="soamws:msgEntityId"/>

325



A Reactive Behavioural Model for Context-Aware Semantic Devices

117 <output message="soamws:msgResults"/>
118 </operation>
119 <operation name="renew">
120 <input message="soamws:msgEntityId"/>
121 <output message="soamws:msgResults"/>
122 </operation>
123 </portType>
124 <portType name="soamConstraintsGetService">
125 <operation name="retrieve">
126 <input message="soamws:msgEmpty"/>
127 <output message="soamws:msgConstraintsCollection"/>
128 </operation>
129 <operation name="remove">
130 <input message="soamws:msgEntityId"/>
131 <output message="soamws:msgResults"/>
132 </operation>
133 <operation name="renew">
134 <input message="soamws:msgEntityId"/>
135 <output message="soamws:msgResults"/>
136 </operation>
137 </portType>
138 <binding name="soamInformationSoap" type="soamws:

soamInformationService">
139 <soap:binding style="document" transport="http://schemas.

xmlsoap.org/soap/http"/>
140 - <operation name="retrieve">
141 <soap:operation soapAction="http://www.awareit.com/soam/

information" style="document"/>
142 - <input>
143 <soap:body use="literal"/>
144 </input>
145 - <output>
146 <soap:body use="literal"/>
147 </output>
148 </operation>
149 </binding>
150 <binding name="soamCapabilitiesSoap" type="soamws:

soamCapabilitiesService">
151 <soap:binding style="document" transport="http://schemas.

xmlsoap.org/soap/http"/>
152 - <operation name="retrieve">
153 <soap:operation soapAction="http://www.awareit.com/soam/

capabilities" style="document"/>
154 - <input>
155 <soap:body use="literal"/>
156 </input>
157 - <output>
158 <soap:body use="literal"/>
159 </output>

326



Juan Ignacio VázquezAppendix E. SoaM Entity Management API: SOAP and HTTP bindings

160 </operation>
161 </binding>
162 <binding name="soamProfilesSoap" type="soamws:soamProfilesService

">
163 <soap:binding style="document" transport="http://schemas.

xmlsoap.org/soap/http"/>
164 - <operation name="retrieve">
165 <soap:operation soapAction="http://www.awareit.com/soam/

profiles" style="document"/>
166 - <input>
167 <soap:body use="literal"/>
168 </input>
169 - <output>
170 <soap:body use="literal"/>
171 </output>
172 </operation>
173 - <operation name="add">
174 <soap:operation soapAction="http://www.awareit.com/soam/

profiles?add" style="document"/>
175 - <input>
176 <soap:body use="literal"/>
177 </input>
178 - <output>
179 <soap:body use="literal"/>
180 </output>
181 </operation>
182 - <operation name="renew">
183 <soap:operation soapAction="http://www.awareit.com/soam/

profiles?renew" style="document"/>
184 - <input>
185 <soap:body use="literal"/>
186 </input>
187 - <output>
188 <soap:body use="literal"/>
189 </output>
190 </operation>
191 - <operation name="remove">
192 <soap:operation soapAction="http://www.awareit.com/soam/

profiles?remove" style="document"/>
193 - <input>
194 <soap:body use="literal"/>
195 </input>
196 - <output>
197 <soap:body use="literal"/>
198 </output>
199 </operation>
200 </binding>
201 <binding name="soamConstraintsSoap" type="soamws:

soamConstraintsService">

327



A Reactive Behavioural Model for Context-Aware Semantic Devices

202 <soap:binding style="document" transport="http://schemas.
xmlsoap.org/soap/http"/>

203 - <operation name="retrieve">
204 <soap:operation soapAction="http://www.awareit.com/soam/

constraints" style="document"/>
205 - <input>
206 <soap:body use="literal"/>
207 </input>
208 - <output>
209 <soap:body use="literal"/>
210 </output>
211 </operation>
212 - <operation name="add">
213 <soap:operation soapAction="http://www.awareit.com/soam/

constraints?add" style="document"/>
214 - <input>
215 <soap:body use="literal"/>
216 </input>
217 - <output>
218 <soap:body use="literal"/>
219 </output>
220 </operation>
221 - <operation name="renew">
222 <soap:operation soapAction="http://www.awareit.com/soam/

constraints?renew" style="document"/>
223 - <input>
224 <soap:body use="literal"/>
225 </input>
226 - <output>
227 <soap:body use="literal"/>
228 </output>
229 </operation>
230 - <operation name="remove">
231 <soap:operation soapAction="http://www.awareit.com/soam/

constraints?remove" style="document"/>
232 - <input>
233 <soap:body use="literal"/>
234 </input>
235 - <output>
236 <soap:body use="literal"/>
237 </output>
238 </operation>
239 </binding>
240 <binding name="soamProfilesHttpPost" type="soamws:

soamProfilesPostService">
241 <http:binding verb="POST"/>
242 <operation name="add">
243 <http:operation location="?add"/>
244 <input>

328



Juan Ignacio VázquezAppendix E. SoaM Entity Management API: SOAP and HTTP bindings

245 <mime:mimeXml part="data"/>
246 </input>
247 <output>
248 <mime:mimeXml part="results"/>
249 </output>
250 </operation>
251 <operation name="renew">
252 <http:operation location="?renew"/>
253 <input>
254 <mime:mimeXml part="data"/>
255 </input>
256 <output>
257 <mime:mimeXml part="results"/>
258 </output>
259 </operation>
260 <operation name="remove">
261 <http:operation location="?remove"/>
262 <input>
263 <mime:mimeXml part="data"/>
264 </input>
265 <output>
266 <mime:mimeXml part="results"/>
267 </output>
268 </operation>
269 </binding>
270 <binding name="soamConstraintsHttpPost" type="soamws:

soamConstraintsPostService">
271 <http:binding verb="POST"/>
272 <operation name="add">
273 <http:operation location="?add"/>
274 <input>
275 <mime:mimeXml part="data"/>
276 </input>
277 <output>
278 <mime:mimeXml part="results"/>
279 </output>
280 </operation>
281 <operation name="renew">
282 <http:operation location="?renew"/>
283 <input>
284 <mime:mimeXml part="data"/>
285 </input>
286 <output>
287 <mime:mimeXml part="results"/>
288 </output>
289 </operation>
290 <operation name="remove">
291 <http:operation location="?remove"/>
292 <input>

329



A Reactive Behavioural Model for Context-Aware Semantic Devices

293 <mime:mimeXml part="data"/>
294 </input>
295 <output>
296 <mime:mimeXml part="results"/>
297 </output>
298 </operation>
299 </binding>
300 <binding name="soamInformationHttpGet" type="soamws:

soamInformationService">
301 <http:binding verb="GET"/>
302 <operation name="retrieve">
303 <http:operation location=""/>
304 <input/>
305 <output>
306 <mime:mimeXml part="data"/>
307 </output>
308 </operation>
309 </binding>
310 <binding name="soamCapabilitiesHttpGet" type="soamws:

soamCapabilitiesService">
311 <http:binding verb="GET"/>
312 <operation name="retrieve">
313 <http:operation location=""/>
314 <input/>
315 <output>
316 <mime:mimeXml part="data"/>
317 </output>
318 </operation>
319 </binding>
320 <binding name="soamProfilesHttpGet" type="soamws:

soamProfilesGetService">
321 <http:binding verb="GET"/>
322 <operation name="retrieve">
323 <http:operation location=""/>
324 <input/>
325 <output>
326 <mime:mimeXml part="data"/>
327 </output>
328 </operation>
329 <operation name="renew">
330 <http:operation location="?renew"/>
331 <input>
332 <http:urlEncoded/>
333 </input>
334 <output>
335 <mime:mimeXml part="results"/>
336 </output>
337 </operation>
338 <operation name="remove">

330



Juan Ignacio VázquezAppendix E. SoaM Entity Management API: SOAP and HTTP bindings

339 <http:operation location="?remove"/>
340 <input>
341 <http:urlEncoded/>
342 </input>
343 <output>
344 <mime:mimeXml part="results"/>
345 </output>
346 </operation>
347 </binding>
348 <binding name="soamConstraintsHttpGet" type="soamws:

soamConstraintsGetService">
349 <http:binding verb="GET"/>
350 <operation name="retrieve">
351 <http:operation location=""/>
352 <input/>
353 <output>
354 <mime:mimeXml part="data"/>
355 </output>
356 </operation>
357 <operation name="renew">
358 <http:operation location="?renew"/>
359 <input>
360 <http:urlEncoded/>
361 </input>
362 <output>
363 <mime:mimeXml part="results"/>
364 </output>
365 </operation>
366 <operation name="remove">
367 <http:operation location="?remove"/>
368 <input>
369 <http:urlEncoded/>
370 </input>
371 <output>
372 <mime:mimeXml part="results"/>
373 </output>
374 </operation>
375 </binding>
376 <!-- Example services declaration for IP address 169.254.0.3 -->
377 <!-- Information Retrieval Service-->
378 <service name="soamInformationService">
379 <port name="soamInformationServiceSoap" binding="soamws:

soamInformationSoap">
380 <soap:address location="http://169.254.0.3/information"/>
381 </port>
382 <port name="soamInformationServiceHttpGet" binding="soamws:

soamInformationHttpGet">
383 <http:address location="http://169.254.0.3/information"/>
384 </port>

331



A Reactive Behavioural Model for Context-Aware Semantic Devices

385 </service>
386 <!-- Capabilities Retrieval Service-->
387 <service name="soamCapabilitiesService">
388 <port name="soamCapabilitiesServiceSoap" binding="soamws:

soamCapabilitiesSoap">
389 <soap:address location="http://169.254.0.3/capabilities"/>
390 </port>
391 <port name="soamCapabilitiesServiceHttpGet" binding="soamws:

soamCapabilitiesHttpGet">
392 <http:address location="http://169.254.0.3/capabilities"/>
393 </port>
394 </service>
395 <!-- Profiles Management Service-->
396 <service name="soamProfilesService">
397 <port name="soamProfilesServiceSoap" binding="soamws:

soamProfilesSoap">
398 <soap:address location="http://169.254.0.3/profiles"/>
399 </port>
400 <port name="soamProfilesServiceHttpPost" binding="soamws:

soamProfilesHttpPost">
401 <http:address location="http://169.254.0.3/profiles"/>
402 </port>
403 <port name="soamProfilesServiceHttpGet" binding="soamws:

soamProfilesHttpGet">
404 <http:address location="http://169.254.0.3/profiles"/>
405 </port>
406 </service>
407 <!-- Constraints Management Service-->
408 <service name="soamConstraintsService">
409 <port name="soamConstraintsServiceSoap" binding="soamws:

soamConstraintsSoap">
410 <soap:address location="http://169.254.0.3/constraints"/>
411 </port>
412 <port name="soamConstraintsServiceHttpPost" binding="soamws:

soamConstraintsHttpPost">
413 <http:address location="http://169.254.0.3/constraints"/>
414 </port>
415 <port name="soamConstraintsServiceHttpGet" binding="soamws:

soamConstraintsHttpGet">
416 <http:address location="http://169.254.0.3/constraints"/>
417 </port>
418 </service>
419 </definitions>

332



Appendix

F
SoaMonto specification

1 <?xml version="1.0"?>
2

3 <!-- SoaMonto: the SoaM ontology -->
4 <!-- Juan Ignacio Vazquez -->
5 <!-- Version 20051216.1 -->
6

7 <rdf:RDF
8 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

10 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11 xmlns:owl="http://www.w3.org/2002/07/owl#"
12 xmlns="http://www.awareit.com/soam/2005/12/soamonto#"
13 xml:base="http://www.awareit.com/soam/2005/12/soamonto">
14

15 <owl:Ontology rdf:about=""/>
16

17 <owl:Class rdf:ID="Operator"/>
18 <owl:Class rdf:ID="Rule"/>
19

20 <owl:Class rdf:ID="Constraint">
21 <rdfs:subClassOf>
22 <owl:Class rdf:ID="Condition"/>
23 </rdfs:subClassOf>
24 </owl:Class>
25

26 <owl:Class rdf:ID="Smobject">
27 <rdfs:subClassOf>
28 <owl:Class rdf:ID="Entity"/>
29 </rdfs:subClassOf>
30 </owl:Class>
31

333



A Reactive Behavioural Model for Context-Aware Semantic Devices

32 <owl:Class rdf:about="#Condition">
33 <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-

syntax-ns#Statement"/>
34 </owl:Class>
35

36 <owl:Class rdf:ID="Orchestrator">
37 <rdfs:subClassOf rdf:resource="#Entity"/>
38 </owl:Class>
39

40 <owl:Class rdf:ID="Reasoner"/>
41 <owl:Class rdf:ID="Capability">
42 <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-

syntax-ns#Statement"/>
43 </owl:Class>
44

45 <owl:Class rdf:ID="LocalReasoner">
46 <rdfs:subClassOf rdf:resource="#Reasoner"/>
47 </owl:Class>
48

49 <owl:Class rdf:ID="RemoteReasoner">
50 <rdfs:subClassOf rdf:resource="#Reasoner"/>
51 </owl:Class>
52

53 <owl:Class rdf:ID="Variable"/>
54 <owl:Class rdf:ID="BehaviouralProfile"/>
55 <owl:Class rdf:ID="ReasoningMechanism"/>
56

57 <owl:ObjectProperty rdf:ID="manages">
58 <rdfs:domain rdf:resource="#Orchestrator"/>
59 <rdfs:range rdf:resource="#Smobject"/>
60 <owl:inverseOf>
61 <owl:ObjectProperty rdf:ID="managedBy"/>
62 </owl:inverseOf>
63 </owl:ObjectProperty>
64

65 <owl:ObjectProperty rdf:ID="operator">
66 <rdfs:domain rdf:resource="#Condition"/>
67 <rdfs:range rdf:resource="#Operator"/>
68 </owl:ObjectProperty>
69

70 <owl:ObjectProperty rdf:ID="hasPostcondition">
71 <rdfs:domain rdf:resource="#BehaviouralProfile"/>
72 <rdfs:range rdf:resource="#Condition"/>
73 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

InverseFunctionalProperty"/>
74 </owl:ObjectProperty>
75

76 <owl:ObjectProperty rdf:about="#managedBy">
77 <owl:inverseOf rdf:resource="#manages"/>

334



Juan Ignacio Vázquez Appendix F. SoaMonto specification

78 <rdfs:domain rdf:resource="#Smobject"/>
79 <rdfs:range rdf:resource="#Orchestrator"/>
80 </owl:ObjectProperty>
81

82 <owl:ObjectProperty rdf:ID="hasOperationCapability">
83 <rdfs:range rdf:resource="#Capability"/>
84 <rdfs:domain rdf:resource="#Smobject"/>
85 </owl:ObjectProperty>
86

87 <owl:ObjectProperty rdf:ID="observesBehaviour">
88 <rdfs:domain rdf:resource="#Entity"/>
89 <rdfs:range rdf:resource="#BehaviouralProfile"/>
90 </owl:ObjectProperty>
91

92 <owl:ObjectProperty rdf:ID="usesReasoner">
93 <rdfs:domain rdf:resource="#Entity"/>
94 <rdfs:range rdf:resource="#Reasoner"/>
95 </owl:ObjectProperty>
96

97 <owl:ObjectProperty rdf:ID="isConstrainedBy">
98 <rdfs:range rdf:resource="#Constraint"/>
99 <rdfs:domain rdf:resource="#Smobject"/>

100 </owl:ObjectProperty>
101

102 <owl:ObjectProperty rdf:ID="involves">
103 <rdfs:range rdf:resource="http://www.w3.org/2002/07/owl#Ontology

"/>
104 <rdfs:domain rdf:resource="#Rule"/>
105 </owl:ObjectProperty>
106

107 <owl:ObjectProperty rdf:ID="applies">
108 <rdfs:domain rdf:resource="#Reasoner"/>
109 <rdfs:range rdf:resource="#ReasoningMechanism"/>
110 </owl:ObjectProperty>
111

112 <owl:DatatypeProperty rdf:ID="profilesUri">
113 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI

"/>
114 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

FunctionalProperty"/>
115 <rdfs:domain rdf:resource="#Entity"/>
116 </owl:DatatypeProperty>
117

118 <owl:FunctionalProperty rdf:ID="capabilitiesUri">
119 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI

"/>
120 <rdfs:domain rdf:resource="#Smobject"/>
121 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

DatatypeProperty"/>

335



A Reactive Behavioural Model for Context-Aware Semantic Devices

122 </owl:FunctionalProperty>
123

124 <owl:FunctionalProperty rdf:ID="constraintsUri">
125 <rdfs:domain rdf:resource="#Smobject"/>
126 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

DatatypeProperty"/>
127 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI

"/>
128 </owl:FunctionalProperty>
129

130 <owl:FunctionalProperty rdf:ID="informationUri">
131 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI

"/>
132 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

DatatypeProperty"/>
133 <rdfs:domain rdf:resource="#Entity"/>
134 </owl:FunctionalProperty>
135

136 <owl:InverseFunctionalProperty rdf:ID="hasPrecondition">
137 <rdfs:range rdf:resource="#Condition"/>
138 <rdfs:domain rdf:resource="#BehaviouralProfile"/>
139 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

ObjectProperty"/>
140 </owl:InverseFunctionalProperty>
141

142 <owl:InverseFunctionalProperty rdf:ID="hasPerceptionCapability">
143 <rdfs:range rdf:resource="#Capability"/>
144 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

ObjectProperty"/>
145 <rdfs:domain rdf:resource="#Smobject"/>
146 </owl:InverseFunctionalProperty>
147

148 <ReasoningMechanism rdf:ID="OwlFull"/>
149 <Operator rdf:ID="LessThan"/>
150 <Operator rdf:ID="NotEquals"/>
151 <ReasoningMechanism rdf:ID="OwlLite"/>
152 <ReasoningMechanism rdf:ID="OwlDL"/>
153 <ReasoningMechanism rdf:ID="GenericRules"/>
154 <ReasoningMechanism rdf:ID="Rdfs"/>
155 <owl:Thing rdf:ID="Any"/>
156 <Operator rdf:ID="GreaterThan"/>
157 <Operator rdf:ID="Equals"/>
158 <Operator rdf:ID="GreaterOrEqualsThan"/>
159 <Operator rdf:ID="LessOrEqualsThan"/>
160

161 </rdf:RDF>

336



Appendix

G
Example of smobject

configuration file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <smobjectConfiguration perceptionsPollingPeriod="1000" uuid="urn:uuid:

plant1" constraintsCheckingPeriod="5000" defaultConstraintTimeout
="PT5M">

3

4 <mapping name="useReasoner" value="true"/>
5 <mapping name="ontologies" value="domain/temperature.owl domain/

light.owl domain/location.owl"/>
6 <mapping name="nativeBehaviour" value="demo_plant/bp_plant.xml"/>
7 <mapping name="nativeDomainRules" value="domain/motenetwork_rules.

txt"/>
8

9 <mapping name="perceptorFile" value="demo_plant/plant1_data.owl"/>
10 <mapping name="com.awareit.smobject.platforminterfaces.alerter.

ttscommand" value="flite"/>
11

12 <perceptionCapabilityBinding bindingClass="com.awareit.smobject.
platforminterfaces.PerceptorFile" id="urn:uuid:plant1_pcap1">

13 <subject resource="urn:uuid:plant1"/>
14 <ontology resource="http://www.awareit.com/soam/2005/12/

soamonto#Any"/>
15 </perceptionCapabilityBinding>
16

17 <operationCapabilityBinding bindingClass="com.awareit.smobject.
platforminterfaces.alerter.EffectorTTSAlerter" id="urn:uuid:
plant1_ocap1">

18 <subject resource="http://www.awareit.com/soam/2005/12/
soamonto#Any"/>

337



A Reactive Behavioural Model for Context-Aware Semantic Devices

19 <ontology resource="http://www.awareit.com/onto/2005/12/
alerting"/>

20 </operationCapabilityBinding>
21

22 </smobjectConfiguration>

338


	1 Introduction
	1.1 Problem description
	1.2 Semantic Web in Ubiquitous Computing scenarios
	1.3 Semantic devices
	1.3.1 Semantic discovery protocol
	1.3.2 Semantic devices as social devices

	1.4 Hypothesis and goals
	1.5 Evaluation scenarios
	1.5.1 Generalisation

	1.6 Research methodology
	1.7 Thesis outline

	2 Related Work
	2.1 Evaluation criteria
	2.2 Universal Plug and Play
	2.2.1 UPnP Architecture
	2.2.2 UPnP Activities
	2.2.3 Conclusion

	2.3 Task Computing
	2.3.1 Task Computing architecture
	2.3.2 Semantic-ization and Service-ization
	2.3.3 Conclusion

	2.4 CoBrA and SOUPA
	2.4.1 CoBrA: Context Broker Architecture
	2.4.2 SOUPA: Standard Ontology for Ubiquitous and Pervasive Applications
	2.4.3 Conclusion

	2.5 Gaia
	2.5.1 Gaia architecture
	2.5.2 Semantic Knowledge in Gaia
	2.5.3 Conclusion

	2.6 Semantic Spaces, SOCAM and CONON
	2.6.1 Conclusion

	2.7 Other related work
	2.7.1 Triple Spaces
	2.7.2 The Context Toolkit
	2.7.3 Oxygen
	2.7.4 Other relevant activities

	2.8 Comparative analysis

	3 mRDP: A Semantic Discovery Protocol
	3.1 Previous approaches
	3.2 Introduction to mRDP -- Multicast Resource Discovery Protocol
	3.2.1 Operation
	3.2.2 Resource identification

	3.3 Plant: Pattern Language for N-Triples
	3.3.1 The Plant Query Resolution Algorithm
	3.3.2 mRDP SPARQL queries

	3.4 mRDP message format
	3.5 ReDEL: Resource Description Endpoints Language
	3.6 Example of advanced uses of semantic queries
	3.7 Performance evaluation of lexical and semantic discovery with mRDP
	3.8 Comparative analysis

	4 A Theoretical Model for Context-Aware Reactivity
	4.1 Passively influencing the environment
	4.2 A set-theory based approach for context-aware reactivity
	4.2.1 Environment-oriented approach
	4.2.2 Entity-oriented approach
	4.2.3 Managed constraints
	4.2.4 The context-awareness process
	4.2.5 Behavioural profiles

	4.3 Semantic Web mapping
	4.3.1 Environment and Entity
	4.3.2 Context information
	4.3.3 Knowledge domain
	4.3.4 Knowledge domain item
	4.3.5 Knowledge domain item value
	4.3.6 Perception capability
	4.3.7 Operation capability
	4.3.8 Constraint
	4.3.9 Behavioural profile, precondition and postcondition

	4.4 Serialisation
	4.4.1 Capabilities
	4.4.2 Constraints
	4.4.3 Behavioural profiles

	4.5 Summary

	5 SoaM Architecture
	5.1 Smobject
	5.1.1 Base components
	5.1.2 Base core components
	5.1.3 Platform interfaces
	5.1.4 Built-in platform components
	5.1.5 Awareness components
	5.1.6 The Profiles Resolution Algorithm
	5.1.7 Selective and comprehensive context information collection
	5.1.8 Optimising behavioural profiles resolution
	5.1.9 Intelligence and reasoning at the smobject
	5.1.10 Smobjects as context-aware entities
	5.1.11 An example scenario
	5.1.12 Advanced perceptors and effectors

	5.2 Orchestrator
	5.2.1 Example scenario with orchestrator
	5.2.2 Reasoning at the orchestrator

	5.3 Ontologies and domain rules discovery for Ubiquitous Computing
	5.4 Smobjects-only versus orchestrator-powered scenarios
	5.5 BPinjector
	5.5.1 The smobject as BPinjector

	5.6 Interactions
	5.7 SoaM Discovery
	5.7.1 SoaM discovery with UPnP integration and SSDP extensions
	5.7.2 SoaM discovery with mRDP and SoaMonto
	5.7.3 Comparison

	5.8 SoaM Entity Management API
	5.8.1 HTTP binding operations and messages

	5.9 SoaMonto: the SoaM support ontology
	5.9.1 SoaMonto classes
	5.9.2 SoaMonto properties
	5.9.3 SoaMonto instances
	5.9.4 Examples

	5.10 Comparative analysis

	6 Prototypes and Evaluation
	6.1 Prototyping
	6.1.1 Smobject base components
	6.1.2 UPnP SSDP extensions
	6.1.3 Orchestrator
	6.1.4 BPinjector
	6.1.5 mRDP client and server
	6.1.6 Smobject awareness components
	6.1.7 Prototyping issues
	6.1.8 Second generation prototypes
	6.1.9 Integration with wireless sensor networks

	6.2 Evaluation
	6.2.1 Performance tests
	6.2.2 Scenarios tests

	6.3 Conclusions

	7 Conclusion
	7.1 Contributions
	7.1.1 Discussion
	7.1.2 Publications

	7.2 Future research and challenges
	7.2.1 Exploring other forms of semantic devices
	7.2.2 Exploring and extending the SoaM model and architecture

	7.3 Final remarks

	Bibliography
	Appendices
	A Basic Semantic Web technologies
	A.1 Resource Description Framework
	A.2 Ontologies
	A.3 SPARQL Protocol And RDF Query Language

	B SoaM Numbers, Ports and Namespaces
	C ReDEL: Resource Description Endpoints Language
	C.1 ReDEL XML Schema
	C.2 ReDEL Web Service
	C.3 Simple RDF Web Service

	D SoaM XML Datatypes and Exchange Messages
	D.1 SoaM XML Datatypes
	D.2 SoaM XML Exchange Messages

	E SoaM Entity Management API: SOAP and HTTP bindings
	F SoaMonto specification
	G Example of smobject configuration file



