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Abstract

In the last decades mathematical control theory has been extensively developed to handle
various models, including Ordinary and Partial Differential Equations (ODE and PDE), both of
deterministic and stochastic nature, discrete and hybrid systems.

However, little attention has been paid to the length of the time horizon of control, which is
necessarily long in many applications, and to how it affects the nature of controls and controlled
trajectories. The turnpike property refers precisely to those aspects and stresses the fact that,
often, optimal controls and trajectories, in long time intervals, undergo some relevant asymptotic
simplification property ensuring that, during most of the time-horizon of control, optimal pairs
remain close to the steady-state optimal one.

Due to the intrinsic finite velocity of propagation and the oscillatory nature of solutions of the
free wave equation, optimal controls for waves are typically of oscillatory nature. But, despite
this, as we shall see, under suitable coercivity conditions on the cost functional to be minimised
and when controllability holds, the turnpike property is also fulfilled for the wave equation.

When this occurs, the approximation of the time-depending control problem by the steady-
state one is justified, a fact that is often employed in applications to reduce the computational
cost.

We present some recent results of this nature for the wave equation and other closely re-
lated conservative systems, and discuss some other related issues and a number of relevant open
problems that arise in this field.

Keywords: Waves, optimal control, controllability, long time horizons, the turnpike property

1 Problem formulation

Optimal control problems play a key role in many fields and applications to industry, technology and
other sciences. In the last decades the mathematical theory has been extensively developed to handle
these problems for various models, including Ordinary and Partial Differential Equations (ODE and
PDE), both of deterministic and stochastic nature, discrete and hybrid systems.

The existing theory provides systematic methods to prove the existence of optimal controls, char-
acterise them through optimality conditions, build feedback controllers and efficient computational
methods. Often times, however, little attention is paid to the length of the time horizon of control,
which is necessarily long in many applications, and how it affects the nature of controls and controlled
trajectories.

But, dealing with long time intervals is sometimes necessary to face specific applications and
it has important consequences on the nature of the controls and increases the computational cost
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significantly, becoming often prohibitive. It is therefore natural to develop specific tools conceived to
deal with control problems in long horizons of time, adapted to its specific nature and structure.

In this paper we summarise the recent work of our team in this field focusing on the paradigmatic
example of the wave equation, and establish links between the property of turnpike and the classical
notion of controllability.

Turnpike refers to the fact that optimal controls and trajectories, in long time intervals, undergo
some relevant, and somehow unexpected, asymptotic simplification property ensuring that, during
most of the time-horizon of control, optimal pairs remain close to the steady-state optimal one, the
turnpike state.

Due to the intrinsic finite velocity of propagation and the oscillatory nature of solutions of the free
wave equation, optimal controls for waves are typically of oscillatory nature. Thus, the fullfilement
of the turnpike property might seem surprising in a first glance, although it is not really so since it
is closely related to the exponential decay of solutions of the Linear Quadratic Regulator Problems
(LQR) in infinite horizons of time.

Despite of this, as we shall see, under suitable coercivity conditions on the cost functional to be
minimised, when controllability holds, the turnpike property is also fulfilled.

When this occurs, the approximation of the time-depending control problem by the steady-state
one, a fact that is often employed in applications to reduce the computational cost, is justified.

We present some recent results of this nature for the wave equation and discuss some other related
issues and a number of relevant open problems that arise in this field.

To do it on a concrete model example we mainly consider the wave equation
ytt −∆y = uχω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0) = y0 , yt(0) = y1,

(1.1)

in a bounded domain Ω of the d-dimensional Euclidean space, with a control function u = u(x, t)
acting on an open non-empty subset ω of Ω during the time horizon (0, T ).

This is one of the most paradigmatic examples of control problem for an infinite-dimensional
conservative model, the wave equation, arising in a variety of applied contexts. The state y = y(x, t)
may represent an acoustic signal or the deformation of some flexible membrane, and the control
u = u(x, t), whose action is localised in ω, letting vibrations to propagate freely outside ω, models
some exterior applied source or force.

In this article we shall mainly focus on this model but most of the contents apply in a much broader
context of conservative infinite-dimensional dynamics. We refer to [37] for a general discussion of the
corresponding abstract semigroup setting.

When (y0, y1) ∈ H1
0 (Ω) × L2(Ω) and u ∈ L2(Ω × (0, T )) system (1.1) has a unique finite energy

solution y ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
.

To motivate the problem under consideration and discriminate the various scenarios in which
the turnpike phenomenon emerges or not, we begin considering the classical controllability problem
where the control is aimed to drive the state to a given target in the final time t = T , paying special
attention to the behaviour of controls and controlled dynamics in long time intervals.

Often in practice, when the free dynamics of the system under consideration enjoys some stability
property so that, for instance, time-evolving solutions tend to steady-state ones as t → ∞, it is
expected that time evolving controls will also reproduce that property when the time control horizon
is long enough. This is the so-called turnpike property and it is very much in agreement with intuition,
in particular, for parabolic-like problems, where the inner dissipative mechanisms are likely to force
the desired stability property of controls and controlled dynamics.

But whether this behaviour is still to be expected for wave-like models, where solutions of the
free dynamics are of oscillatory nature, conserve energy and, therefore, do not enjoy the property of
asymptotic simplification, is less clear.

2



April 9, 2017

In this paper we shall however show, collecting previous earlier results, that the turnpike property
still holds for wave-like models under suitable controllability assumptions. This fact is relevant
since even if, a priori, one is simply interested in other kinds of optimal control problems, such as
minimising a quadratic cost functional, without paying attention to the terminal conditions at the
final time t = T , the emergence of the turnpike phenomenon is very tightly connected with the
fulfilment of the controllability property.

These results are relevant and find application in various different ways:

1. The turnpike property ensures the asymptotic simplification of controls and controlled trajec-
tories for optimal control problems involving wave-like models in long-time horizons, so that
optimal pairs are close to the steady-state ones during most of the time interval. More precisely,
except for an initial time layer [0, τ ] and a final one [0, T − τ ], in which the controlled dynamics
has to match the initial and terminal conditions, during the rest of the time interval [τ, T − τ ]
the control and controlled trajectories are exponentially close to the steady-state ones.

2. This property can be used as test for the accuracy of the numerical simulation codes: those not
reproducing the property of turnpike could be considered as unsuitable ones.

3. This asymptotic simplification property can serve also to initialise iterative methods for solving
the optimality system characterising optimal pairs, employing the steady-state optimal pairs,
which are cheaper to compute, in the initialisation step.

4. The turnpike state also serves as an initialisation to Receding Optimal Control (ROC) or Model
Predictive Control (MPC) methods (see [23], [24]).

As we shall see in the present paper, even when dealing with classical Linear-Quadratic (LQ)
optimal control problems, for the turnpike property to hold two ingredients will be needed:

1. The system under consideration needs to enjoy the property of controllability. And this is so
even if, a priori, one is not interested in controllability issues. But for the turnpike property to
hold, ensuring in particular that the optimal trajectory stays most of the time near the turnpike
point, one needs that the action of the control suffices to ensure the controllability property.

2. The cost functional needs to be sufficiently coercive. In other words, it needs to penalise the
control but also the state sufficiently so that the partial information of the state involved in
the cost functional suffices to get complete information in the full state. This is a observability
property that, for wave-like equations, requires some geometric restrictions on the subdomain
where the control is being applied and a sufficiently long control time-horizon. The later is not
an issue when analysing turnpike properties since the time-horizon tends to infinity. But the
former needs to be taken into account with care, imposing suitable geometric conditions on the
support of the control.

In order to have a complete understanding of the turnpike property one needs to carefully analyse
the behaviour of the Optimality System (OS) characterising optimal controls and trajectories. It is
constituted by a coupled system of two wave equations, one evolving in the forward sense of time
while the other one does it in the backward sense. State and control are fully coupled through this
system. Accordingly, the turnpike property needs to hold in both variables (state and adjoint state
or co-state) simultaneously.

The two conditions under which the turnpike property mentioned above holds play dual and
complementary roles in what concerns the behaviour of the OS to ensure the turnpike property. The
controllability of the state equation can be understood as an observability property on the adjoint.
On the other hand, the fact that the cost functional involves enough information on the state can be
understood as an observability property of the state equation and thus, a controllability one for the
adjoint system.
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Overall, under these assumptions, the turnpike property is fulfilled and during most of the time-
horizon [0, T ] optimal controls and trajectories are exponentially close to the steady state one. The
later ones are, of course, much easier to compute since they are determined as the solution of an
optimal control problem for the underlying elliptic equation, namely{

∆y = uχω in Ω

y = 0 on Ω.
(1.2)

In a first instance, this fact could seem counterintuitive because of the purely oscillatory nature of
the wave equation in the absence of damping and the fact that the spectral complexity of the initial
data is preserved along the free dynamics. These two properties could prevent us from expecting such
simplification to occur on controlled trajectories. But this does indeed occur, similarly as the solutions
of LQR problems in infinite time horizons experience the property of exponential stabilisation. As
we shall see, somehow, in long time intervals, the optimal controls (according to the cost criteria
fulfilling the conditions above) not only control the system but they also damp it, ensuring thus the
stability or stabilisation property of turnpike.

As we shall see, to a large extent, this property is closely related to the well known property that
controllability implies stabilisation (see e.g. [28] for a simple formulation sufficient to deal with the
specific example under consideration), which is the dual of the classical’s Russell’s principle ensuring
that “stabilisation implies controllability" ([43]). The turnpike property could be added to this list
of properties that are nearly equivalent in long time horizons.

We could summarise the content of this paper by saying that not only controllability implies
stabilisation but also the turnpike property for a large class of cost functionals, provided they are
coercive enough to yield full information on the state of the system.

The rest of this paper is organised as follows.
In the next Section we briefly discuss some of the existing turnpike literature. In Section 3 we

recall some preliminary well known material about the properties of controllability, stabilisation and
observation of the wave equation. In Section 4 we discuss the classical controllability problem for the
wave equation that seems to manifest the lack of turnpike property. In Section 5 we show however
that turnpike occurs provided the choice criterion for the control controlling the system is adequately
modified. In Section 6 we summarise the theory developed in [37] that explains in which conditions
the turnpike property occurs and allows clarifying the two opposite behaviours described in previous
sections, and explaining how they are both compatible. In Section 7 we discuss some of the existing
literature on the subject and present some open problems.

2 Bibliographical comments

There is by now an extensive literature on the turnpike property. Here we comment some of the
published papers in this topic. The bibliography at the end of this paper contains a non complete
list of other articles and books devoted to this, or closely related topics.

The turnpike property of optimal trajectories was introduced in the context of finite-dimensional
discrete-time optimal control problems in Economy (see, e.g., [35], [16], [44]).

In the last decades there has been a growing interest and a significant number of papers was
published in this area, both for time-discrete and time-continuous finite dimensional systems (see, for
instance, [2, 3, 9, 10, 23, 16, 20, 25, 27, 33, 35, 37, 38, 39, 49, 58, 59, 60] and references therein).

The problem of turnpike for abstract linear finite and infinite-dimensional systems has been con-
sidered in [37] where the specific example of heat and wave equations has also been analysed, obtaining
exponential turnpike properties and extending previous works as [13]. In particular, in [37], the wave
equation was shown to fulfil the exponential turnpike property provided the control satisfies the
so-called Geometric Control Condition (GCC) (see [64]), ensuring that all rays of Geometric Optics
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enter the control subdomain in an uniform time. The particular case of the linear 1−d wave equation
was treated in more detail in [27].

In [37] it was also shown that, even if the control subdomain ω does not fulfil the GCC, a weak
version of the turnpike property is satisfied, ensuring a logarithmic convergence rate of the optimal
trajectories towards the steady-state one. This is a typical infinite-dimensional phenomenon that
cannot hold in the linear finite-dimensional context. It is due to the fact that if GCC fails, the
wave equation is still controllable, but in a much smaller space (see [5]). The cost of controlling
high frequencies grows exponentially as the frequency tends to infinity, and this is responsible for the
turnpike property to emerge slowly, with a logarithmic rate as T →∞. This is in agreement with the
well-known results on the logarithmic decay rates of the energy of smooth solutions of the damped
wave equation, when the damping is effective on subdomains that do not satisfy the GCC.

The work in [37] was inspired in [7], [8] where the long-time averages of solutions for backward-
forward mean field game systems were analysed, independently, without reference to the turnpike
theory.

The turnpike property has been also the object of intensive investigation in the nonlinear finite-
dimensional setting (see, for instance, the list of references in the recent paper [49]). The main
ingredient in [49] is an exponential dichotomy transformation established in [53] to uncouple the
two-point boundary value problems arising from the Pontryagin maximum principle, reflecting the
hyperbolic nature of the Hamiltonian system, as introduced in [42].

The notion of turnpike towards a steady state, a manifestation of the tendency of optimal pairs to
undergo some asymptotic simplification property in long time intervals, can be extended in various
ways. For instance, in [46], we deal with the problem of periodic turnpike, also considered in the
recent paper [56] within the dissipativity context, making use of the hyperbolicity properties of the
Optimality System. See also [4], [21].

The results in [37] have been also extended to semilinear heat equations in [38] and to the 2− d
Navier-Stokes equations in [55] but, for that to be done, a smallness condition was assumed in the
target. This is very likely a purely technical condition. Dealing with semilinear problems and large
targets and deformations is a widely open problem that we shall discuss below in some more detail.

The property of turnpike for shape design problems for the 2d heat equation has been considered
in [48], for time-independent shapes. The extension of the results of [48] to shape design problems
where shapes are also allowed to depend in time is an interesting and challenging open problem. The
situation is similar in the context of design problems where the control is the diffusivity coefficient,
see [1]. Similar questions arise in different problems arising in Inverse Problem theory as well ([12],
[29]).

In the last section we discuss some possible extensions and open problems inspired on this rich
earlier literature and the developments presented in this paper.

3 Preliminaries on controllability, observability and stabilisa-
tion

The problem of controllability consists roughly in describing the set of reachable final states for all
possible solutions of the wave model under consideration,

R (T ; (y0, y1)) =
{

(y(T ), yt(T )) : u ∈ L2(Ω× (0, T ))
}

and building controls that efficiently drive the system to the final reachable states.
This set is the affine subspace of the final states that the solutions reach at time t = T , starting

from the initial datum (y0, y1), when the control u varies all over L2(Ω× (0, T )). Note however that
the action of the control is localised in ω. Thus, the controls may also be viewed to belong to the
more limited class L2(ω × (0, T )).
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One may distinguish various notions or degrees of controllability. Exact controllability consists on
analysing whether

R (T ; (y0, y1)) = H1
0 (Ω)× L2(Ω)

for all (y0, y1) ∈ H1
0 (Ω)×L2(Ω), i. e. whether the system can be driven from any finite energy initial

configuration to any final one by a suitable choice of the control.
Since system (1.1) is linear and time-reversible, a necessary and sufficient condition for exact

controllability to hold is whether (0, 0) ∈ R (T ; (y0, y1)) for all (y0, y1) ∈ H1
0 (Ω)× L2(Ω). This is the

so called null-controllability property in which the goal is reduced to

y(T ) ≡ yt(T ) ≡ 0. (3.1)

Since we are dealing with solutions of the wave equation, due to the finite speed of propagation,
for controllability to hold, the control time T has to be sufficiently large, the trivial case in which the
control subdomain ω coincides with the whole domain Ω being excepted.

More precisely, the so-called Geometric Control Condition (GCC) (see [64]), ensuring that all
rays of Geometric Optics enter in time T the control subdomain ω, is a sharp sufficient condition for
controllability. Under this condition the controllability property holds.

This sharp geometric condition on the control subdomain is also related with the decay properties
of the damped equation and, more generally, with the exponential stabilisability of the damped wave
equation: 

ytt −∆y + ytχω = 0 in (0,∞)× Ω

y = 0 on (0,∞)× ∂Ω

y(0) = y0 , yt(0) = y1.

(3.2)

In fact, if ω ⊂ Ω satisfies the GCC, then the solutions of (3.2) satisfy

E(t) :=

∫
Ω

[yt(t)
2 + |∇y(t)|2]dx ≤ Ce−µtE(0) ∀t > 0

for some C, µ > 0 independent of the solution, where the energy E(t) is defined as

E(t) =
1

2

∫
Ω

[|∇y(x, t)|2 + |yt(x, t)|2]dx.

This means that, in those circumstances in which the controllability property holds, the feedback
control

u = −yt,

localised in the control subset ω, ensures the property of exponential decay.
This is the first manifestation of the link between the finite-time controllability property of the

system and the asymptotic properties as t → ∞. This equivalence was noticed by D. Russell [43]
who also indicated how, out of the exponential decay property of the damped system, one can
build a control ensuring controllability in finite time, as the limit of an iterative process. This
fact has also been employed recently to develop efficient numerical approximation methods (see [50]
and [19]), implementing the iterative algorithm introduced in [43] but applied to a suitable discrete
approximation of the PDE.

Both properties, controllability and exponential decay of the damped system, in the present
setting, are equivalent to the so-called observability property for the adjoint system:

ϕtt −∆ϕ = 0 in (0, T )× Ω

ϕ = 0 on (0, T )× ∂Ω

ϕ(T ) = ϕ0 , ϕt(T ) = ϕ1.

(3.3)
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This observability property ensures the existence of a constant C > 0 which, of course, depends on
Ω, ω and T > 0, but is independent of the adjoint solution under consideration, such that

||ϕ0||2L2(Ω) + ||ϕ1||2H−1(Ω) ≤ C
∫ T

0

∫
ω

ϕ2dxdt, (3.4)

for all solutions of (3.3).
This observability inequality holds if and only if the GCC is satisfied (some exceptional cases

being excluded involving glancing rays).
Observability not only implies the exponential decay for the damped system (3.2) as proved by [28].

In fact, out of the observability inequality one can build more general feedback operators ensuring
the exponential decay of the corresponding damped system at any exponential rate (see [30]).

There is an extensive literature related to the observability and controllability of wave-like equa-
tions. Due to the purely conservative and infinite-dimensional character of the model some of the
classical features of optimal control problems such as the bang-bang control property for L∞-controls
in minimal time may fail (see for instance [26]). See also the monographs [51] and [54] for a general
presentation of the topic.

4 The apparent lack of turnpike property
As pointed out by J. L. Lions [32], when the observability inequality holds, controllability holds as
well, and there is a unique control achieving the terminal condition of minimal L2(ω × (0, T ))-norm.
More precisely, if the goal of the control system is to drive the system from the initial state (y0, y1)
to the trivial one in time t = T , i.e.

(y(x, T ), yt(x, T )) ≡ (0, 0),

whenever this is possible, the control u of minimal L2-norm can be characterised as the restriction
to ω of a distinguished solution of the adjoint system (3.3)

u = ϕ̃ (4.1)

where ϕ̃ is the solution of (3.3) with data (ϕ̃0, ϕ̃1) where (ϕ̃0, ϕ̃1) is the minimiser of the functional

K(ϕ0, ϕ1) =
1

2

∫ T

0

∫
ω

ϕ2dxdt+

∫
Ω

[y0ϕt(x, 0)− y1(x)ϕ(x, 0)]dx (4.2)

in L2(Ω)×H−1(Ω).
The observability property of the system plays a key role when ensuring the coercivity of the

functional K and, thus, to guarantee the existence of a minimiser.
The control given by (4.1), in view of the very properties of the conservative adjoint wave equation,

has a periodic or quasi-periodic nature in time. For instance, in the 1d domain Ω = (0, L), the control
is time-periodic of period 2L.

This is in agreement with intuition: Solutions of the wave equation are of an oscillatory nature,
and controls should behave the same way. The control of minimal L2(ω × (0, T ))-norm enjoys this
very property, indeed.

As we have seen, both the exponential decay of the damped wave equation or its controllability
require achieving an observability estimate of the form (3.4), which is linked to the GCC. And proving
these observability inequalities needs significant developments, using tools from the theory of non-
harmonic Fourier series, microlocal analysis, multipliers or Carleman inequalities.

In practice, when addressing control problems and, in particular, when looking for numerical
approximations, it is natural to address the controllability problem from the point of view of optimal
control through a penalisation procedure.
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The classical optimal control approach consists on minimising a cost functional of the form:

J(u) =
1

2

[
||y(T )||2H1

0 (Ω) + ||yt(T )||2L2(Ω) +

∫ T

0

∫
ω

u2dxdt

]
, (4.3)

which penalises both the size of the control and also the final value of the solution at time t = T .
In order to enhance the target y(T ) ≡ yt(T ) ≡ 0, one can rather consider a penalised functional

of the form

JN (u) =
1

2

[
N ||y(T )||2H1

0 (Ω) +N ||yt(T )||2L2(Ω) +

∫ T

0

∫
ω

u2dxdt

]
, (4.4)

with N > 0 large enough.
Increasing N emphasises the goal of making the final energy of the solution at time t = T to be

smaller and smaller, so that the state (y, yt) approaches the target (0, 0) at the final time t = T .
Classical results from the Calculus of Variations, ensuring that a convex and coercive functional in

a Hilbert space achieves its minimum, suffice to guarantee the existence of a minimiser uN ∈ L2(ω×
(0, T )) for the functional JN , without any observability or controllability property. Furthermore,
uniqueness is assured by the strict convexity of the functional.

By the contrary, in order to show that the minimisers uN are uniformly bounded in L2(ω× (0, T ))
as N tends to infinity, one needs the controllability property to be fulfilled. In that case, it can be
shown that the limit of uN in L2(ω× (0, T )) as N tends to infinity leads to the desired exact control.

Accordingly, in practice, minimising JN is not only a means of approximating the exact control
when it exists, but also a way of testing the controllability properties of the system through the
boundedness criterion of the sequence of minimisers uN .

Let us now analyse the structure of the controls we achieve when minimising functionals of the
form JN . To fix ideas and simplify the presentation let us simply consider N = 1, going back to the
functional J in (4.3).

The Optimality System (OS) characterising the control u minimising the functional J can also be
characterised as

u = ψ in ω × (0, T ) (4.5)

where ψ is a distinguished solution of the adjoint system coupled together with the state equation in
the following manner: 

ytt −∆y = ψχω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0) = y0 , yt(0) = y1, in Ω

ψtt −∆ψ = 0 in (0, T )× Ω

ψ = 0 on (0, T )× ∂Ω

ψ(T ) = − yt(T ) , ψt(T ) = −∆y(T ) in Ω.

(4.6)

System (4.6) is constituted by the coupling of the state and the adjoint system, one with initial
conditions at t = 0 and the other one with terminal conditions at t = T . Thus the system does not
enter into the class of classical Cauchy problems. The existence of a unique solution for (4.6) is a
consequence of the fact that it characterises the unique critical point, the minimiser, of J that we
know it exists.

We observe that, once again, the control preserves the time-periodic or quasi-periodic structure of
the solutions of the wave equation since it is actually given by (4.5), as the restriction to the control
set ω of the solution ψ of the adjoint system, which is the free wave equation. In particular, because of
the conservative character of the wave equation, the energy of ψ, which, in the appropriate functional
setting has to be defined as

E−(t) =
1

2

(
||ψ(t)||2L2(Ω) + ||ψt(t)||2H−1(Ω)

)
, (4.7)
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is time independent.
This fact does not depend on the value of the penalty parameter N and the length of the time

horizon T . We thus observe, in particular, that by taking the time horizon for control [0, T ] to be
longer, the control preserves its oscillatory nature and does not experience any asymptotic simplifi-
cation. In particular, the controls and controlled trajectories, even when the time horizon for control
is very long, do not present the property of turnpike of being close to a steady configuration most of
the time.

5 The emergence of the turnpike property
One could think that this fact, the lack of turnpike property, is unavoidable, purely related to the
inner oscillatory nature of the solutions of the wave equation. But, according to our previous work in
the subject, as we shall see, this is not a correct interpretation since the behaviour of optimal controls
and trajectories in long time intervals, and whether, more precisely, the turnpike property holds or
not, depends heavily on the chosen criterion to characterise the optimal control.

We can for instance, rather than dealing with the minimisation of the functional JN , consider the
perturbed quadratic functional

J̃N (u) =
1

2

(
N ||y(T )||2H1

0 (Ω) +N ||yt(T )||2L2(Ω) +

∫ T

0

∫
ω

u2dxdt+

∫ T

0

∫
Ω

|∇y|2dxdt

)
. (5.1)

This quadratic functional involves three terms. The first and second one, as in the functionals
above, have as goal driving the system to equilibrium at the final time t = T and keeping the size of
the control limited, respectively. However, in the third term of this new functional, the size of the
solution all along the trajectory is penalised as well.

The existence of a unique minimiser ũN for J̃N is again an obvious fact and, in the limit as N
tends to infinity, it will lead to a control ũ controlling exactly the solution of the wave equation to the
null state in time t = T as well. But, of course, this new control will not coincide with the previous
one since it has been characterised as the minimiser of a different functional. But this does not
generate any contradiction since the control controlling a system exactly is not necessarily unique.

The Optimality System (OS) characterising the control ũN varies with respect to (4.6). Although
the control is still given by (4.5), the corresponding OS takes the form:

ytt −∆y = ψχω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0) = y0 , yt(0) = y1, in Ω

ψtt −∆ψ = ∆y in (0, T )× Ω

ψ = 0 on (0, T )× ∂Ω

ψ(T ) = −N yt(T ) , ψt(T ) = −N ∆y(T ) in Ω.

(5.2)

In this case we see that, even if the control is given as the restriction to ω of ψ, ψ is not longer
the solution of the free wave equation. Rather the wave equation satisfied by ψ is forced by a right
hand side term involving the state y, namely ∆y. In order to analyse the nature of the control, both
equations, the state and the adjoint one, need to be handled simultaneously because of their coupling.

The corresponding system, ignoring the initial and terminal conditions reads:
ytt −∆y = ψχω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

ψtt −∆ψ = ∆y in (0, T )× Ω

ψ = 0 on (0, T )× ∂Ω.

(5.3)

9
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In order to analyse the behaviour of the solutions of this system it is worth to consider the simplest
case in which ω = Ω, i.e. the control acts everywhere in the domain ω where waves propagate, in
which case, of course, the GCC is fulfilled, and the controllability property holds, together with
the observability one and the exponential decay of the energy of the corresponding damped wave
equation.

In this particular case the system reads:
ytt −∆y = ψ in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

ψtt −∆ψ = ∆y in (0, T )× Ω

ψ = 0 on (0, T )× ∂Ω.

(5.4)

In order to analyse the behaviour of its solutions it is convenient to perform a Fourier series
decomposition. Let {φj}j≥1 and {λj}j≥1 be the eigenfunctions and the eigenvalues of the Dirichlet
Laplacian, {

−∆φj = λjφj in Ω

φj = 0 on ∂Ω,
(5.5)

the eigenfunctions {φj}j≥1 being normalised to constitute an orthonormal basis of L2(Ω).
Then the pair of solutions of (5.4) can be written as:

(ψ, y) =
∑
j≥1

(ψ̂j , ŷj) exp(µjt)φj ,

for suitable time frequencies µj and Fourier coefficients (ψ̂j , ŷj)j≥1.
It is easy to see that these coefficients are linked by the relations

µ2 + λ =
ψ̂

ŷ
, µ2 + λ = −λ ŷ

ψ̂
. (5.6)

Here and in the sequel we have omitted the index j in all the terms entering in the system to simplify
the notation.

In view of this, we have
[µ2 + λ]2 = −λ

and, accordingly,

µ = ±
√
−λ± i

√
λ. (5.7)

We observe that µ takes four different complex values, two pairs of conjugate ones actually. Two of
them have strictly positive real parts, while the two others negative ones.

This means that the solutions of (5.4) are constituted by the superposition of two time evolving
components of oscillatory nature, one decaying exponentially as t → ∞ while the other one grows
exponentially.

This behaviour is compatible with the turnpike property, according to which the solution should
be close to the optimal steady state during most of the time horizon of control [0, T ], when T is large.

The steady state optimal configuration can be characterised as the solution of the corresponding
steady optimal control problem. It concerns the steady equation{

−∆z = vχω in Ω

z = 0 on ∂Ω,
(5.8)

the optimal control z = z(x) being given as the minimum of the steady cost functional

J̃s(v) =
1

2

(∫
Ω

|∇z|2dx+

∫
ω

v2dx

)
, (5.9)

10
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which is independent of the penalisation factor N .
Obviously, the existence and uniqueness of the minimiser (z, v) for this functional in L2(ω) is

straightforward. In fact the minimiser, in this case, is the trivial one, i. e. v ≡ 0, leading to the
trivial solution z ≡ 0. But similar arguments would apply if the minimiser for the steady problem
was non-trivial.

The turnpike property ensures that the existence of positive constants C > 0, α > 0 and T0

such that, for all T > T0, the solution (y, u) of the time-evolution control problem minimising the
functional J̃N is close to the steady-state one in the sense that, for all t > 0,

||y(t)−z||H1
0 (Ω)+||yt(t)||L2(Ω)+||u(t)−v||L2(ω) ≤ C[exp(−αt)+exp(−α(T−t))][||y0−z||H1

0 (Ω)+||y1||L2(Ω)].
(5.10)

Recall that, in the present particular case, z ≡ 0.
This guarantees that both the control and the state stabilise around the steady state ones away

from t = 0 and t = T for T large enough.
The situation therefore is rather different to the one we encountered when analysing the controls

minimising the original functional JN . In that case, for ω = Ω, the OS would have been
ytt −∆y = ψ in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

ψtt −∆ψ = 0 in (0, T )× Ω

ψ = 0 on (0, T )× ∂Ω.

(5.11)

The Fourier decomposition, in view of the fact that ψ fulfils the free wave equation, would then lead
to

µ2 + λ = 0. (5.12)

Accordingly, µ would be purely imaginary, thus leading to solutions of purely oscillatory nature,
in agreement with the previous observations. In this case, in particular, the adjoint state ψ and,
accordingly, the control u, would have a purely oscillatory behaviour without never stabilising around
the steady state one.

We conclude that:

1. The turnpike property may hold not only for control problems in which the free underlying
dynamics has in itself the property of asymptotic simplification. It may also take place for
wave-like equations.

2. This depends heavily on the fact that both the state and the control are penalised on the cost
functional to be minimised, as for instance in (5.1).

3. For this to hold the system under consideration needs to enjoy the property of controllability.

The fact that penalising the state in the functional to be minimised affects the turnpike property
is very easily seen in the previous example. Otherwise, the adjoint state is independent of the state,
satisfies a free wave equation and does not experience the property of asymptotic simplification or
turnpike.

But the third fact, according to which controllability contributes to the turnpike property of
optimal control problems is less obvious and can be understood in the following manner.

Even if, in principle, the control is entering into a conservative dynamics as

ytt −∆y = uχω, in (0, T )× Ω,

the fact that the system under consideration is controllable, i. e. ω satisfies the GCC, allows viewing
the solution y as that of the damped system

ytt −∆y + ytχω = (u+ yt)χω, in (0, T )× Ω.

11
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And this new damped system has the property of exponential decay in the absence of control. This
passage from the conservative to the exponentially damped dynamics is ensured by an additive
translation of the control from u into w = u+ yt. Under the controllability assumption we can thus
assume that we are dealing with a control problem for an exponentially stable dynamics. The cost
functional to be minimised being coercive in the original state and control variables (y, yt) and u,
then it remains coercive when written in the new control variable w as well.

In a first reading, it could also be argued that the functionals above are coercive on the state itself
y but not on the velocity variable yt, which is also part of the state. Thus, strictly speaking, for the
functional to be coercive on the full state (y, yt) in H1

0 (Ω) × L2(Ω), the cost functional should also
involve a term of the form ∫ T

0

∫
Ω

|yt|2dxdt.

But, as we have seen above, this is not strictly necessary. Penalising the state y in H1
0 (Ω) suffices

and this is due to the classical property of equipartition of energy that guarantees that, along a given
time interval [0, T ], the energy concentrated on the y and yt components is nearly the same, in L2(Ω)
and H1

0 (Ω) respectively, up to a compact reminder term.
In the presentation above we have penalised both the control and the state so as to keep them as

small as possible in the corresponding norms. But the same could be done aiming that the solution
remains close to another reference state. For instance, the functional J̃N in (5.1) could be slightly
modified to consider

J̃N,ȳ(u) =
1

2

(
N ||y(T )||2H1

0 (Ω) +N ||yt(T )||2L2(Ω) +

∫ T

0

∫
Ω

|∇y −∇ȳ|2dxdt+

∫ T

0

∫
ω

u2dxdt

)
,

(5.13)
ȳ being any element of H1

0 (Ω).
When minimising the functional we penalise the state at t = T so to make it as close as possible

to (0, 0) with a control of minimal norm but, simultaneously, keeping the trajectory y(t) close to the
reference target ȳ. The turnpike property holds in this situation too but, in this case, of course, the
corresponding steady-state problem has to be modified accordingly to deal with the functional

J̃s(v) =
1

2

(∫
Ω

|∇z −∇ȳ|2dx+

∫
ω

v2dx

)
. (5.14)

The turnpike property ensures, once again, that in long time control horizons optimal controls
and controlled trajectories remain exponentially close to the steady-state ones during most of the
time interval [0, T ] as in (5.10).

Remark 1. As we shall see below, the turnpike property does not need to involve a cost functional
that is coercive in the full state, but just on some projection ensuring the observability inequality to
hold. Thus, the penalisation term ∫ T

0

∫
Ω

|∇y −∇ȳ|2dxdt

in the cost functional could be replaced by∫ T

0

∫
O
|∇y −∇ȳ|2dxdt

with some subset O of Ω satisfying the GCC and the same turnpike property would hold.
The situation would be different however if the penalisation on the state was done in a weaker

norm, for instance, the L2-one, ∫ T

0

∫
Ω

|y − ȳ|2dxdt.

12
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In that case the exponential turnpike property would not be achieved and one would rather expect a
polynomial version. The situation is similar to that of damped conservative semigroups, with compact
damping operators, that fail to guarantee the exponential stabilisation property.

But a complete analysis of this issue would need further developments in the spirit of those in [37]
where, to some extent, a less favourable situation was considered; that in which the control enters in
a set ω that does not fulfil the GCC, making exponential stabilisation impossible.

6 Turnpike for abstract conservative semigroups
We now briefly present the abstract theory developed in [37] that explains the phenomena described
above about the possible manifestation of turnpike phenomena. In [37] both finite-dimensional and
infinite-dimensional models are considered, distinguishing parabolic-like and hyperbolic-like semi-
groups. Here we recall the main results in [37] devoted to abstract wave equations which suffice to
explain the main observations of previous sections on the emergence of the turnpike property or the
lack of it.

Consider the second order in time abstract system{
ytt +Ay = Bu in (0, T )

y(0) = y0 , yt(0) = y1 .
(6.1)

We assume that X, H are Hilbert spaces such that X ⊂ H ⊂ X ′ (with dense embedding), H
being identified with its dual and A ∈ L(X,X ′) is a linear continuous operator. For simplicity we
assume that A is coercive, i. e.

〈Ay, y〉X′,X ≥ α||y||2X , ∀y ∈ X. (6.2)

This implies in particular that range(A) = X ′.
We also assume that B ∈ L(U,H) and C ∈ L(X,V ), where U , V , are Hilbert spaces.
Here and in the sequel we denote by 〈·, ·〉X,X′ (resp. 〈·, ·〉X′,X) the canonical duality pairing

between X and its dual X ′ (resp. X ′ and X).
Since we are mainly interested in wave-like equations we assume that A is self-adjoint so that the

system under consideration is conservative, i.e, such that the energy

E(t) =
1

2
[〈Ay(t), y(t)〉2X,X′ + ||yt(t)||2H ]

is conserved along trajectories whenever u ≡ 0.
The abstract system (6.1) models various wave-like equations. The setting in [37] is slightly more

general since it allows considering also models involving damping terms. But we focus here on con-
servative models, our goal being to describe how, despite the fact that the model under consideration
is conservative, the turnpike phenomena may emerge.

Such assumptions on B and C can be relaxed (see [37]) to deal, for instance, with boundary
control problems for wave-like equations. But, for the sake of simplicity, we shall assume that those
operators are bounded. This allows avoiding unnecessary technical difficulties. On the other hand,
this functional framework suffices to deal with the problem of the internal control of the wave equation
analysed above.

Under these assumptions, for (y0, y1) ∈ X ×H and u ∈ L2(0, T ;U), system (6.1) admits a unique
solution y ∈ C0([0, T ];X) ∩ C1([0, T ];H) (see e.g. [31], [Chapter IV, Thm 1.1]).

Given the target g ∈ V , we consider the optimal control problem in the time horizon [0, T ]:

min

{
JT (u) =

1

2

∫ T

0

[
||u(t)||2U + ||Cy(t)− g||2V

]
dt , u ∈ L2(0, T ;U)

}
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where y is the solution of (6.1).
Note that, here, for the sake of simplicity of the presentation, the value of the state at time

t = T is not penalised in the cost functional JT although similar results apply when those extra
terms (||y(T )||2X and ||yt(T )||2H) are added to the cost functional. We do not impose either terminal
conditions on the state at t = T , corresponding to the fulfillement of the controllability property. But
the same analysis applies in these other cases too. Here we have preferred to limit our presentation
to this functional to avoid unnecessary technical difficulties.

Similarly we consider the steady state minimisation problem

min

{
Js(u) =

1

2

[
||u||2U + ||Cy − g||2V

]
, u ∈ U , y ∈ X : Ay = Bu

}
(6.3)

Both minimisation problems, the time-evolution and the steady-state ones, have unique solutions,
that we denote respectively by (uT (t), yT (t)){t≥0} and (ū, ȳ). This can be easily deduced from the
fact that the functionals JT and Js under consideration are strictly convex, continuous and coercive
in the Hilbert spaces L2(0, T ;U) and U respectively. The optimal pairs (uT (t), yT (t)){t≥0} depend,
obviously, on the time-horizon [0, T ] but, often times, we will not make this dependence explicit on
the notation, except when necessary to avoid confusion.

Furthermore, taking into account that

JT (uT ) = minJT (u) ≤ JT (0) =
1

2

∫ T

0

[
||Cỹ(t)− g||2V

]
dt,

we get a first upper bound on the optimal pair (uT (t), yT (t)){t≥0}, ỹ being the solution of uncontrolled
system corresponding to u ≡ 0.

At this point it is important to observe that this estimate, by itself, does not guarantee the uniform
boundedness of the optimal pairs (uT (t), yT (t)){t≥0} in [0, T ] as T →∞. Indeed, the equation under
consideration being conservative the free solution ỹ (in the absence of control, i. e. u ≡ 0) does not
decay and, therefore, as T →∞,

∫ T
0

[
||Cỹ(t)− g||2V

]
dt may grow linearly.

At this early point of our analysis we observe the essential role that the controllability property
of the system (6.1) plays, so to ensure that all optimal pairs remain uniformly bounded. To do it,
rather than considering ỹ as the solution corresponding to u = 0, we take ỹ as being the solution of
the damped system with u = −B∗ỹt. In view of the fact that controllability implies the stabilisation
property, this solution ỹ decays exponentially in the energy space. This guarantees the uniform
boundedness of

∫ T
0

[
||B∗ỹt(t)||2U + ||Cỹ(t)||2V

]
dt as T → ∞, and consequently of the optimal pairs

(uT (t), yT (t)){t≥0} when g ≡ 0.
Thus, as mentioned in previous sections, even if our goal was simply to analyse the asymptotic

behaviour as T →∞ of the optimal pairs, the need of the controllability assumption emerges.
In fact, when the system under consideration is controllable the optimal control problem makes

sense in the infinite horizon as well provided the target is g = 0:

min

{
J∞0 (u) =

1

2

∫ ∞
0

[
||u(t)||2U + ||Cy(t)||2V

]
dt , u ∈ L2(0,∞;U)

}
. (6.4)

As mentioned above, the controllability property, thanks to the stabilisation, ensures that the class
of admissible controls for J∞0 is non empty.

Concerning the steady-state problem we easily observe that

Js(ū) = minJs(u) ≤ Js(0) =
1

2
||Cg||2V

which yields automatically an obvious bound on the optimal control and the corresponding state.
The problem of turnpike consists in analysing whether, when the time horizon T is long enough,

the minimiser for the time-evolution problem JT is close to the steady-state one Js. This proximity
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can be expressed in various manners. The strongest one is the exponential turnpike property in
(5.10).

In order to perform a fine analysis of the behaviour of optimal pairs (uT (t), yT (t)){t≥0} it is
convenient to characterise them in terms of the corresponding Optimality Systems (OS).

The unique minimiser ū ∈ U of the functional Js and the corresponding optimal state ȳ ∈ X such
that

Aȳ = Bū (6.5)

can be characterised by the identity
ū = −B∗p̄ (6.6)

where p̄ ∈ X satisfies
A∗p̄ = C∗jv(Cȳ − z), (6.7)

jv being the natural inclusion of V into V ′.
Similarly, the optimal pairs (uT , yT ) (that sometimes will be simply denoted by (u, y)) of the

time-evolution problem are characterised by the state equation and the additional condition (6.6)
together with the adjoint system {

ptt +Ap = C∗jv(Cy − g)

p(T ) = pt(T ) = 0.
(6.8)

To prove the main turnpike result we need to ensure that the operator C entering in the cost
functional allows to recover enough information on the state y and the operator B∗ on the adjoint
state. This is in agreement with our informal discussion in the previous section in which we indicated
the relevance of the property of controllability for the turnpike phenomena to emerge. In fact the
controllability of the state equation is equivalent to the observability of the adjoint one. But, because
of the coupling between state and adjoint state in the OS and the fact that each variable plays a
similar dual role in the equation satisfied by the other one, this kind of assumption in needed both
in the state equation and in the adjoint.

Thus, we assume that the homogeneous system{
ztt +Az = 0

z(0) = z0 , zt(0) = z1 ,
(6.9)

is observable by means of C. More precisely, we suppose that, for T > 0 large enough, there exists
an observability constant c(T ) > 0 such that

|z0|2X + ‖z1‖2H + |z(T )|2X + ‖zt(T )‖2H ≤ c(T )

∫ T

0

‖Cz‖2V dt, (6.10)

holds for all solutions z of (6.9).
Similarly, for the homogeneous adjoint system{

qtt +Aq = 0

q(T ) = q0 , qt(T ) = q1 ,
(6.11)

we assume the observability inequality

||q0||2H + ‖q1‖2X′ + ||q(0)||2H + ‖qt(0)‖2X′ ≤ C(T )

∫ T

0

‖B∗q‖2Hdt, (6.12)

for all solutions q of (6.11).
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Remark 2. The observability inequality (6.12) is equivalent to the controllability of the state equation.
As mentioned above this assumption is necessary to ensure that optimal pairs (uT , yT ) are uniformly
bounded with respect to T .

The turnpike property, however, requires also the extra assumption (6.10) because both state and
adjoint-state play symmetric roles in the OS.

Remark 3. Note that, for wave-like equations, due to the finite velocity of propagation, (6.10) holds
only for T > 0 large enough. But this is not an impediment for the turnpike property to hold since
it refers to the behaviour of optimal pairs in long time horizons.

There are however models that enter in this abstract frame for which observability holds in
arbitrarily small time. That is the case, for instance, for the plate model where A is the biharmonic
operator.

Remark 4. The observability constant c(T ) in (6.10) is a decreasing function of T and, in fact,
because A is selfadjoint and coercive (i. e. 〈Ay, y〉X,X′ ∼ ||y||2X) and the system under consideration
is conservative, c(T ) decays as O(1/T ) as T →∞.

Note also that, because of the time-reversibility of the abstract wave equation under consideration,
estimate (6.10) is equivalent to

||z0||2X + ‖z1‖2H ≤ c(T )

∫ T

0

‖Cz‖2V dt. (6.13)

Similar results apply for the dual observability inequality (6.12).
As observed in Remark 1 for (6.10) to hold in concrete examples, it is sufficient that the operator

C entering in the penalisation term of the cost functional consists for instance on the trace of the
solution of the wave equation to some subset O of Ω satisfying the GCC.

Remark 5. As observed by [28] the observability inequality (6.12) for the homogeneous adjoint system
(6.11) is equivalent to the stabilisability of (6.1) with feedback u = −B∗wt. Namely, solutions of the
damped system {

wtt +Aw +BB∗wt = 0 in (0,∞)

w(0) = w0 , wt(0) = w1 ,
(6.14)

enjoy the property of exponential decay, i. e. the existence of C > 0 and λ > 0 such that

||w(t)||2X + ||wt(t)||2H ≤ C exp (−λt)[||w0||2X + ||w1||2H ], ∀t > 0.

The same can be said for the state equation based on the fact that controllability implies stabilisation.

Remark 6. Observability for non-homogeneous state and adjoint state equations. The observability
inequalities above have been assumed to hold for the homogeneous state (6.9) and adjoint equations
(6.11). However, in the proof of the turnpike property we will need to deal with non-homogeneous
models submitted to an extra forcing term, as they appear in the OS. Thus, we need also to consider
systems {

ztt +Az = f

z(0) = z0 , zt(0) = z1 ,
(6.15)

and {
qtt +Aq = C∗jvCg

q(T ) = q0 , qt(T ) = q1 .
(6.16)

The observability inequalities above can be rewritten as follows for these non-homogeneous systems.
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Consider first the adjoint problem (6.16) and let us take the scalar product with the solution w
of the damped system (6.14). We get

(qt, w)|T0 − (q, wt)|T0 =

∫ T

0

[(Cg,Cw)− (B∗wt, B
∗q)]dt.

Taking into account that, as a consequence of the exponential decay in time, it holds

||w(T )||2X + ||wt(T )||2H +

∫ ∞
0

[||w(t)||2X + ||wt(t)||2H ] ≤ C[||w0||2X + ||w1||2H ],

for all T > 0, and all solution w of (6.14), we deduce the existence of a constant C > 0, independent
of T > 0, such that

||q(0)||2H + ||qt(0)||2X′ ≤ C[|q0||2H + ||q1||2X′ +

∫ T

0

[||Cg||2V + ||B∗q||2U ]dt. (6.17)

A similar argument leads to the estimate

||z(T )||2X + ||zt(T )||2H ≤ C[|z0||2X + ||z1||2H +

∫ T

0

[||f ||2H + ||Cz||2V ]dt (6.18)

for the solutions of (6.15).
It is important to emphasize that the observability constants in (6.17) and (6.18) are independent

of T .

Assumptions (6.10) and (6.12) are enough to deduce the turnpike property.

Theorem 1. Assume that the observability inequalities (6.10) and (6.12) hold for the state and
adjoint state equations.

Then
1

T
min JT

T→∞−→ min Js

and there exists M > 0 such that

1

T

∫ T

0

(
||uT (t)− ū||2U + ||C(yT (t)− ȳ)||2V

)
dt ≤ M

T
→ 0 as T →∞. (6.19)

Moreover, we have

1

(b− a)T

∫ bT

aT

yT (t) dt→ ȳ,
1

(b− a)T

∫ bT

aT

uT (t) dt→ ū, as T →∞. (6.20)

for every a, b ∈ [0, 1].
In fact the convergence of time-evolving optimal pairs towards the steady state ones is exponential,

i. e. there exist C > 0 and λ > 0 such that

‖yT (t)−ȳ‖X+||yTt (t)‖H+‖uT (t)−ū‖U ≤ C(e−λt+e−λ(T−t))||(y0−ȳ, y1)||X×H ∀t ∈ [0, T ] , (6.21)

for all T > 0 large enough and all possible initial data (y0, y1) ∈ X ×H.

Remark 7. As we have seen above, for the turnpike problem to make sense, i. e. for the optimal
pairs (uT , yT ) to be uniformly bounded as T → ∞, we need the system under consideration to be
controllable, which is in fact equivalent to assumption (6.12). But for the turnpike property to be
proved we also need the assumption (6.10) and this because, in the OS, both variables, state and
adjoint-state, are coupled and play symmetric roles. �

17



April 9, 2017

Remark 8. The exponential version of the turnpike property (6.21) implies the averaged weaker ones
(6.19) and (6.20), which is close to the notion of measure turnpike property ensuring that optimal
trajectories and control are close to the state ones in the sense of Lebesgue measure (see e. g. [23]).

Proof. To simplify the presentation we drop the dependence on T on the notation of the optimal
evolution pair (uT (t), yT (t)).

Substracting the optimality systems of the time-evolution problem satisfied by (y, p) and the
steady-state one fulfilled by (ȳ, p̄) we get

(y − ȳ)tt +A(y − ȳ) = B(u− ū)

(y − ȳ)(0) = y0 − ȳ, (y − ȳ)t(0) = y1

u− ū = −B∗(p− p̄)
(p− p̄)tt +A(p− p̄) = C∗jvC(y − ȳ)

(p− p̄)(T ) = −p̄, (p− p̄)t(T ) = 0,

where p and p̄ are the adjoint states (the time-evolution and the steady one) representing the optimal
controls.

We have ∫ T
0
||C(y − ȳ)||2V dt−

∫ T
0

(B(u− ū), p− p̄)H dt
=
∫ T

0
[||C(y − ȳ)||2V + ||u− ū||2U ] dt

= 〈(p− p̄)t, (y − ȳ)〉X′,X
T

|
0
−((y − ȳ)t, (p− p̄))H

T

|
0

= −〈pt(0), (y0 − ȳ)〉X′,X + ((y − ȳ)t(T ), p̄)H + (y1, (p(0)− p̄)).

Using assumptions (6.10) and (6.12) and, more particularly, the estimates in Remark 6 on the non-
homogeneous systems we obtain∫ T

0

||C(y − ȳ)||2V dt+

∫ T

0

||u− ū||2U dt ≤ C (6.22)

which proves (6.19).

Let us now deduce the convergence in average for the optimal states.
First of all, using (6.22) and the estimates in Remark 6 we deduce that

(yT (t), yTt (t)) are uniformly bounded with respect to T > 0 in L∞(0, T ;X ×H)

and
(pT (t), pTt (t)) are uniformly bounded with respect to T > 0 in L∞(0, T ;H ×X ′).

To simplify the notation we shall often denote the optimal triples yT , pT , uT simply by y, p, u.
Furthermore ∫ T

0

A(y − ȳ)dt =

∫ T

0

B(u− ū)dt+ [y1 − yt(T )]

the equality being valid in X ′. Therefore we have

‖ 1

T

∫ T

0

A(y − ȳ)dt‖X′ ≤
c

T
+

1

T

∫ T

0

‖B(u− ū)‖X′dt ≤
c

T
+
c

T

∫ T

0

‖u− ū‖Udt .

Using the coercivity of A we get

‖ 1

T

∫ T

0

(y − ȳ)dt‖X ≤
c

T
+
c

T

∫ T

0

‖u− ū‖Udt = O(1/T ),
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which gives the convergence in mean of the optimal trajectories. The same argument can be applied
in any interval (aT, bT ), with 0 ≤ a < b ≤ 1. And, similar arguments, applied to the dual state
equation, yield the same conclusion also holds for p− p̄.

The proof of the exponential turnpike property requires of further developments that can be found
in full detail in [37]. For the sake of completeness we recall here the main ideas.

Let us rewrite the OS in the time horizon [0, T ] with target g = 0 as
yTtt +AyT = −BB∗qT t ∈ (0, T )

qTtt +AqT = C∗jvCy
T t ∈ (0, T )

yT (0) = y0 , y
T
t (0) = y1 , qT (T ) = 0 , qTt (T ) = 0 .

This system defines a nonnegative operator E(T ) ∈ L(X ×H,X ′ ×H):

E(T )(y0, y1) := (−qTt (0), qT (0)),

since

〈E(T )(y0, y1), (y0, y1)〉 = (−qTt (0), y0)H + (qT (0), y1)H = JT (uT ) = min JT0 ,

where JT0 is the cost functional with target g = 0.
The operator E(T ) depends on T in a monotonic increasing manner. This is simply due to the

fact that the time-horizon of control [0, T ] on which the cost functional is integrated grows with T .
Furthermore, E(T ) is uniformly bounded from above as T → ∞. This is a consequence of exact
controllability that guarantees that, in finite time T > 0, the solution y can be driven to the null
state (0, 0) by means of a suitable control u ∈ L2(0, T ;U). This shows that J∞0 (u) < ∞ for some
specific values of u, J∞0 being given as in (6.4). Accordingly, necessarily,

min J∞0 (u) <∞

and the operator E(∞) is well defined.
Thanks to the monotone character and the uniform bound of E(T ), and using local compactness

properties of solutions of the abstract model under consideration, the operator E(T ) has a limit Ê
such that Ê(y0, y1) = (−q̂t(0), q̂(0)), where q̂ is the adjoint state for the regulator problem, i.e. the
problem with infinite horizon (see [32] and [45]),

y∞tt +Ay∞ = −BB∗q∞ t ∈ (0,∞)

q∞tt +Aq∞− = C∗jvCy
∞ t ∈ (0,∞)

y∞(0) = y0 , y
∞
t (0) = y1

(q∞(t), q∞t (t))→ (0, 0), as t→∞.

which constitutes the OS of the infinite-horizon control problem for J∞0 .
The regulator problem, which consists in the infinite horizon minimisation problem (6.4) for J∞0

is by now well understood (see e. g. [32], [6]). The optimal pair is given through a feedback operator
solving the Riccati equation and ensures the exponential decay of the energy of the state as t→∞.
The functional Ê plays the role of a Lyapunov functional.

It can also be shown that E(T ) converges to Ê exponentially as T →∞. And with this we conclude
the proof of the turnpike property when the target is g = 0. The general case can be handled by
translating variables so that the non-trivial turnpike plays the role of the equilibrium around which
the exponential turnpike phenomena occurs.
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7 Further comments and open problems

Some of the main open problems arising in this field are the following:

1. The results in [18], [19] show that, suitable minimal-norm controls for exact controllability
preserve the regularity of the initial data. This can be understood as an ellipticity property of
the map from the data to be controlled to the control function. It would be natural to analyse
similar questions in the turnpike setting and, in particular, whether, when the data are more
smooth, the exponential proximity property of turnpike is fulfilled in stronger norms.

2. Obtention of the turnpike property for semilinear wave equations without smallness conditions
on the target.

The techniques developed in [38] would allow handling the semilinear wave equation with, say,
a cubic-nonlinearity, but always under a smallness assumption on the target. More precisely,
the linear state equation (1.1) could be replaced by the following semilinear one

ytt −∆y + φ(y) = uχω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0) = y0 , yt(0) = y1,

(7.1)

with a smooth nonlinearity φ, satisfying the classical growth and sign conditions to ensure the
well-posedness of the problem in the energy space and the controllability in long intervals of
time ([62]). But for the turnpike property to be proved by means of the techniques in [38] the
target g would be needed to be small.

Achieving similar results without the smallness condition in the target constitutes a challenging
open problem.

3. The same issues arise in the context of first order hyperbolic conservation laws. In [17] the
question of a time-dependent control is considered. But a systematic analysis of the turnpike
property in this setting is a challenging topic.

4. Developing the hyperbolic analogues of the results in [1] and [47] on the turnpike property for
control problems where the control enters through the coefficients of the wave equation or the
shapes of the domains where waves evolve is an interesting and difficult subject. As mentioned
above previous works focus mainly on the parabolic setting but are also limited to treat time-
independent controls. Dealing with time-dependent ones would be much more challenging.

5. There is an extensive literature aimed to develop efficient numerical approximation methods
for the controllability of wave-like equations ([63]). It would be interesting to analyse its con-
sequences at the level of turnpike properties. Are some numerical schemes more suitable than
others for approximating control problems in long time intervals?

The results of this paper indicate the relevance of controllability and observability like prop-
erties to ensure the turnpike phenomenon: Accordingly, very likely, those numerical schemes
that are well behaved from the controllability and observability viewpoint would also be more
appropriate for turnpike purposes.

6. Recently the controllability of wave equations involving memory terms has been proved in
[34]. But for this to be done the support of the control has to move to satisfy the so-called
Moving Geometric Control Condition (MGCC). It would be interesting to investigate whether
the turnpike property holds in this case as well, although, because of the necessity of the support
of the control to move, it would be more natural to expect the periodic turnpike property to
hold rather than the steady-state one.
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7. The theory of stabilisation has also been developed for more complex models involving the wave
equation. That is the case for instance for wave equations in 1-d networks (see e. g. [52]), or
models of fluid-structure interaction (see e. g. [41], [61]). It would be natural to explore to
which extent these models preserve the turnpike property.
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