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Abstract: Given a linear dynamical system, we investigate the
linear infinite dimensional system obtained by grafting an age strac-
ture. Such systems appear essentially in population dynamics with
age structure when phenomena like spatial diffusion or transport
are also taken into consideration. We first show that the new 8y5-
tem preserves some of the wellposedness properties of the initial one.
Our main result asserts that if the initial systemn is null controllable
in a time small enough then the structured system is also null con-
trollable in a time depending on the various involved parameters.
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1. Introduction

Infinite dimensional dynamical systems coupling age structuring with diffusion
or transport pheromena appear naturaliy in population dynamics, medicine or
epidemiology (see, for instance, Brikei et al., 2008; Webh, 1985,1988; Magal and
Ruan, 2018). A by now classical example is the Lotka-McKendrick system with
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gpatial diffusion (Gurtin, 1973). For the convenience of the reader, we describe
below the type of systems to be considered using a simplified example. To this
aim, let X (the state space) and U (the input space) be finite dimensional inner
product spaces. Qur departure point is the lincar time invariant control system

described by
p(t) = Ap(t) + Buli}, (1)

where A @ X — X and B : U — X are linear operators. The system (1) is
supposed to describe the evolution of a certain population density (particles, in-
dividuals,. ..} and it is possibly obtained by approximating a partial differential
system, Adding an age structure 1o the system described by {1} means that we
assume that p depends not only on £, hut also on the age parameter a, which
lies in some bounded interval [0, a¢]. Moreover, we assume that individuals can
die (with a certain probability) before the limit age a; ot be born at a certain

fertility rate. In this situation, the original system (1} becomes

plEa) + g—g(t a) = Ap(t,a) — pla)p(t,a) + x(a) Bult, a},

p{t,0) = /”ui Bla)p(t, a) da,

where 1 and @ are the mortality and fertility rates, respectively, and x is the
characteristic function of sorme subinterval of [0, a+].

For X = U = C, A= 0and B = 1 in the original system {1}, the correspond-
ing age structure system (2) becomes the classical Lotka-McKendrick systerm,
which has been first studied, from the controllability perspective, in Barbu et
al. (2001). This problem was recently revisited by Hegoburu et al. (2018),
Maity (2019), and by Hegoburu and Anita (2019). Oue of the consequernces of
our main results improves the above mentioned ones, in the sense that for every
n.me N, X =C* U==C", such that the original system (1) is controllable,
then, under appropriate agsumptions on p, 8 and x, the same property holds
for the corresponding age structured system (2) (see Subsection 4.1 further on).

The main focus in this work is on the more complicated situation, where
X and U7 are possibly infinite dimensional spaces, with the operators Aand B
possibly unbounded. We think, in patticular, of the case when X = L3(Q),
where (3 ¢ R” is an open bounded set, A Is an advection-diffusion operator and
B describes a boundary or internal control. From the controflability viewpoint,
particular cases of such systems have been studied in several papers. The first
ones are probably Aniseba and Anita (2001, 2004) (see also Aniseba, 2012;
Hegoburu and Tucsnak, 2018; and Maity, Tuesnak and ZuaZua, 2019) .

The wain results in this article assert that in the infinite dimensional case
(namely when {1} is a PDE system with distributed or boundary consrot), the

ness and nuil controllability of the system described by (1) are inher-

weliposed
(2). One of the advantages

ited by the corresponding age structured system
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of this e e -
o r(}:;l:bpgrf)i'gh is thlat 11t allows for obtaining in a unified manner a variety
I resulis existing in the literature, such as those ¢ 3 i :
s existing In § , such as those corresponding to an operator
! g sion {possibly with singular coeffici
: woeflicients) or transport phe-
nomena, with an operator B, corres ing i8tri Morcovor
) , , ponding to a distributed control. M
we obtain controllability results i i o f an anbtedo]
; s, which seem new, in the case of
‘ _ : _ > cas an unbounded
(,011};01 c_)pera,tor B (corresponding to boundary control problems).
n Do( fgll)\,i a )I;rﬁcm(i description of our results, we introduce some notation. Let
: e the generator of the (° semigr i space X
A ] he CV semigroup S on the Hilbert s
and let U be another Hilbert s ; PR
: ‘ space. Both X and U will be identifi i i
and I , ot L e identified with their
! :Llls Let&Bt bl(; a (possibly unbounded) linear operator from &7 to X. which
5 supposed to be an admissible control o { J 1
. d tc sible ¢ perator for S (see Section 2 for
precise definition of this conce S i the 2o
f this concept). In the examples we have in mi
spaces and operators describe the d i a5 Ehont g et
: ors des > ynamics of a system with age str
hases anc Wb ¢ ‘ : 1out age structure.
" 5 ]:;tllCl:llcll", X is the s:ta.te space and U is the control space. The correspondin
age structured systetn is obtained by first extending these spaces to ;

X = L3(0. ay:
00120, (4)

U:LQ(O,U, 7,
1 U} (5)

;Vhﬁe a.l,&_.>.0 dpnotes the maximal age individuals can attain. Let p(i) € X
se the distribution density of the individuals with respect to age @ = 0 and at
: ] = & at

some time ¢ = X o ahatre . .
l‘ t 19_'5 = 0.. Then, the abstract version of the Lotka-McKendrick syst
to be considered in this paper writes: i K system

w oy

ot Aa — Ap 4+ !*"(G)P = ]i(u.l,az)Bu-. t = 0! a < (07(1'1"):

p(t, 0} = [ Als)pit, 8} ds, E=0 (6)
S0 ,

P((J: “) = P,

whercd}l is Fhe c:hzTra?&c:fneristi(: function of the interval (e1,a2) with 0 € a1 < ay <
ﬁ{ ail Po 13[ 0the ]Hllt_lal population density. In the above system ﬁw poﬁtfix;g
action g |0, ay] — B denotes the natural mortalit ¢ of individuals o J‘
es the natura tality rate of individuals of
Junetton - | . ral mor v individuals of age
o Ilt(‘ieflot(,vby B :[0,a4] -» Ry the positive function, describing the fertili%y
at age a. Ve assume that the fertility rate 4 and the mortality rate 1 satist
the conditions Y e satisly
g—g) B e L=(0,az), 82 0 for almost every a € (0, a;)
.. 0 * i k - )
) p € L®[0,0%] for every a* € (0,a4), 1 2 0 for almost every a € (0,a4).

(253

1) [ sl = 1

Jo
For more details about the 1 i
© 5 s the modelling of such system and the bi ical signi
ca.nga of the hypotheses, we refer to Webb {1985) ® plological sigaift
efore we state our main result, let us i et i i
lability ot the oate (4.5 , let us introduce the notion of null control-
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DErFmNITION 1.1 We say that a pair {4, B) is null-controllable in time 7, if for
every zo © X there exists a control w e L?(0, 7, U) such that the solution of the

system

2ty = Az{t) + Bu(t) t€ [0, 7],
satisfies z{1) = 0.
The main result of this paper is:

THEOREM 1.1 Assume that 8 ond p salisfy the conditions (H1)-(H3) above.
Moreover, suppose that the fertility rate 3 is such that

Bla) = 0 for all a € (0, ap), (7
for some ap € (0,as) and that oy < @b, Let us assume that the pair (A, B) is
null controllable tn any time T > 7o, with

0< <7, T=1min{az - ay, — ay}. (8)
Then, for every T > a1 + G — a2 + 27 and for cvery pp € X there exists a
control v € L2(0, 71U} such that the solution p of (G) satisfies

p(r,a) =0 for all a € (0, a)- {9

This result can be seen as & generalization of those obtained in Aniseba
and Anita (2001, 2004); Aniseba {2012); Hegoburu and Tuesnak (2018); Maity,
Tucsnak and Zuazua (2019) in the case when A is an elliptic operator with
Neumann or Dirichlet homogeneous boundary conditions, or in Aniseba et al.
(2013), Boutaayamou and Echarroudi (2017), or Fragnelli (2018}, when A is
a degenerate elliptic operator. Ag shown in Section 4, our approach applie:-'}1
hesides the above mentioned exampies, to operators A such that the systems
without age structure describe fractional diffusion, transport phenomena or even
Sehrédinger type dynamics, with internal or boundary control.

The proof of the above theorem relies on final state ohservability of lts ad-
joint system. This consists of combining the characteristics method with final
state observability of the pair (4", B *), with no reference to the methodology
employed to prove this observability result for the system without age structure.
This idea was already used in Maity, wcsnak and Zuazua (2019) where A was
second order elliptic differential operator and B was interior control operator.

The remaining part of this worlk is organized as follows: In Section 2, we
its adjoint. Section 3

study the wellposedness of the system (6} and we determine
is devoted to the proof of Theorem 1.1. In Section 4, we give several applications

of our main theorem. In Section 5 we study controilability of the system (6)

with regular controls.

Controellabi oA class nnn o glona stems Ee SLr re
i of a« { f l t
L 1 ¥ d ass Of 10 ite dimensional systemns with age structu

2. Wellposedness of the system (6)

In this section, we rewri )
section, we rewrite (6} as an abstract ¢
b s ! v $ & stract control system. Next, we st
‘ Poseduebb of this system and we determine the adjoint of th. g - ?he
semlgroup generaior. © comesponding

Let us remind that if A
r ! l OI}(;{'(‘} ('3;)‘ (rl (Y(] 5 - i
"{ ; 'ﬂlj 51 ] ] ; e BE Hllgl‘()up S on X, t-}leri ,-hel‘e (—:XiSi

I8} € Me¥t, for all ¢ 2= 0.
(10)

We dOIlOt-e by A: [}l(" ('ld (). i gene es -5e sy
f o J it Df A. ThCI A o -3 0 Tii ‘
( ) o \’.‘ o ’ 1 D(J at 28 A C 5 IIllgIO EI) S

St < Me®, for all t = 0.
(11)

VVP deﬁl’ e D(A ) I . —

- 1 ,qulp 2G WIT o T L(’» 1( 5 l }1 1” 1 f
: € ;'i {51 )(’(i ‘h tll graplt no )
X] W 1\11 lC‘b[)e(.t O the pl\. ot s paCO J‘ i - II] [)OEII tpl(_ l.ilrﬂf " {‘ }-) / e

Xtexocx_,,

with continuous and dense en i
inous al ense embeddings. It is known (see, for i
wieh, cont s and dens s. It is known (see, for instance, Tucsns
o ‘?(-‘ISS, 2()(_)), -Se(‘tmn 2.10) that § extends to a GV seu}igmu b on X o ';Hdk
a nzmt(;, which is ar extension of A, has the domain X : e
et Be L(U,X_1) a Ve def
(U, X1} and 7 > 0. We define ®2 ¢ L{L*{0,00;U), X_1) by

(I)f‘u = S Bu(s) ds.
: (12

. _ _
We introduce admissible control operators:

D TFINTT 4 1 .o .

BILGF?(IIFJI(;? Qj l' (T?;;&;ak and Weiss, 2009, Definition 4.2 1) The operator
v X_1) is called dmissi e ' g

Ran (I)f g an admassible control operator for S if for some v > 0,

The above admissibili .
adiofnt Urtf )t?ve. ldI.Illbblblllty condition can also be reformulated in terms of tl
OpPr'it(I)r B‘ 16( szf &)1?)“ {gee ucsnak and Weiss, 2009, Proposition 4.4 i) Tiii-
for all 4 (U, Tl) is an admissible control operator for 8, if and )-1 'f,

all 7 > 0, there exists a constant €, > 0 such that P AR OmyL

*QE 2 p
L |B*Sz||jdt < C’THzHﬁ(, Wz & D(A™). (13)

Reminding that the in :

’ put space X and the control s {
N indi 12 pace I for the cor-
're.sl-)ondmg age structured system are defined in (4) and (5) 3 o 'LhE o
introduce the operator A : D{A) — X, defined by | o respeetively, we

DA = { & 0.0t} X | o00) = [ Blarpta)da, ~ 2 4 g — e ),
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(14)

Let us set
X = L0 a:; X1}
and we introduce the conirol operator B € LU, X_1), defined by
Bu = Ly, 0y BU (uel).

With the above notation, we rewrite the system (6) as

p = Ap + Bu, p(0) = po. (17)
We now show that A generates a O gemigroup on X under the assum iion
g g I
that A generates a Y semigroup on X. More precisely:

THEOREM 2.1 Assume A generates a 0 semigroup on X. Then A, de ied in
(2), generates a CU semigroup on X.

The proof of this theorem is divided into several parts. We are going to
follow the approach of Webb (2008) and Walker {2013). Upon integrating along
the characteristic lines, the solution of (17) with u =0, at least formally, can

be written as

o)

——Gypolu — 1), <

pt,a) =« wla—t) ol — 1), a,
m{a)Sabp, (T — a) L a

(18)

where

) = 6— _/0 psids

is the probability of survival of an individual from age 0 to a and by(f) is the
unigue continuous solution of the following linear Volterra integral equation in
X

ay— mw{a +1)

bo(t) = A Bla)m{a)Saby(t —a) + 5 /0 Bla+ f)wgﬂ(ﬂ) da, (19)

where the last integral is 0 if ¢ 2 at. This motivates us to define a semigroup T
on X as follows:
m{a)

Ty = TF(G -— t)
7{a)Sqby(t — a) tza

Sepla—t), t<a, (20)

Controllability of a class of infini i i
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Note that

£ +

Bla)T;p(a) da. (21)

0

The following result can be obtained i
= z 2 along the lines of We
4) (see also Walker, 2013, Theorem 2.2): ) e of Tebb {2008, heorem

ProrosiTion 2.1 The ! 8 j ;
Prop e family of operators T defined in (20) is a C"-semigroup

L‘et. A denote the generator of the semigroup T. Therefore, to prove Theo
rem.z.l we only n@ed to show A = A, where A is defined in (-2). To this aim
we first prove the following result : S

LEMMA 2.1 Let A be the unbounded —
: the nded eperator defined in { o
onte for X large enough. “ efined in (2}. Then, A\ — A is

Pr ive /
ROOF  Given A >0, f € & and % € X, we consider the following problem
dp
A: + — . (A e . e
g s Aptpp = £ 9l0) =0, (22)
Since A generates a C'-semigroup on X, the above problem admits a unigue

solution v € C'([0, as]; X), given by

g3

(,9(0. — CWAH.' ’ Sa j a—AMa—s) e
) m{a)S.v + /0 e w{w — 8) Sues f(8) ds. (23]

From the above formuia, we obtain

o0 - | " Bla)ela)da

0

a
= 1p — [ e () B(e)Se v da — /
Jo

J0

a @
ﬁ(a}L e MV, fls) dsda.
Now, consider the operator F(X) € £{X) defined by
F(\w :/ e Ma{a)B(a)Sq. da.
0
Using (10), we have

i 1 1 /
[F(Mwilx < M\i@”ma((},u.r)/\ S [t x.

Thus, i =0,
hus, /\lﬂl;c : 1F (M) 2ixy =0, and we clearly have that I — F()) is invertible for
large A. Let us take

'(lT [+
o= (] - -1 - ,—Ala—s
W= {I — F{A}) /0 3(a) [0 e MamS (g — §18q- s f(2) dsda.
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o ‘ - - 23y, with the above choice
Then, using (2} it is easy to see that i, defined by (23),

of 4 satisfies the following system

I

"
D 4 b i) = / S(a)e(a) da.

] H [ ] : M i. ! \ \ em o
T 115 A[ - T (EH \ Teove . U 1C Y quC 8] 11t O Ol 2 ak ove )
L, A 15 ONte are o 11 ] 1 £ SOV :‘}-\'5[['1 15

given by

~ g } o —A(a—s) L — 59 —s (¢ dsd )
ola) = e ()8 — F(N) 1 (/o Bla) ./U e~ My 1Sa—sfls)dsda

" 20
+ [ e~ Mem8ala — 8)S,—. f{s)ds. (26)
Jo

O

'~ the semigr oincides with A,
Now we show that the generator of the semigroup T coincides

ProrosiTioN 2.2 Let A be the generator of the semigroup T and let A be de-
fined in (2). Then, A=A

Tici - laree and we set f = Ap — A
Proor  Let g € D{A) Let A >0 sufficiently large and we set f 40

Then, using (31), we have
pla) = [ M Fla)dt =
Jo N

I Y MWS”‘,(Q — e / (if)\tfr((i'.)g(._bf('t — (t)({-!';
0 ’ ’ﬂ'((l — f;) - Ja

“ — A LAk :
= / e M (g — 8)8,, fls)ds +e Mog{a)Se / e Mb(Odi (27)
o

Jo
Now, using (21) and (31}, we get
h e~ Mbp (1) db = / | 8la) / e MT, f(a) dida
Jo ' Jo Jo
B a8 g p - ) dida
= 3 e~ M S, fa —t) dE
\/E) P /(a mla—t)
+ /H! ,B(u,)]L e Mar{a)S.bp(t — o) dide

0 f

= ]‘ﬂ-; Bla) [ e Mam0 (g - 518, f(s) dsda
0 Ju
LT >0 Y Ny
+/ e‘*"ﬂ(a)w(a.)Sa[ e Mbp(t) dide.
Jo Jo

Thereiore,

40

oG B Ly ) gc] ._)\(clf.',')“ — Saf,q'f S) dS('].(},,
[ e Mbe(t) dt = (IT—F(A) ! ./0 S{a) ./0 e (o —s) {
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where F(A) is defined in {25). Using the above relation in (27) and comparing
this expression with (26) one can easily sce that ¢ € D{A}. We have thus proven
that P(A4) C D(A) and
- dp -
Ap ==t Ap = o = Ay (i € D(A)). (28)
Conversely, let us assume that » € D(A). For A sufficiently large, we define
=g+ % — A+ . Then, f € X. Set ) = (AI—A)"f e D(A). Therefore,
using (28) we have that

‘ o : : '
Mo =) + o=(0 =) = Alp — ¢) + plw — ) = 0,
Thus,
== E_/\”'TT(G)SQ(SO - LF/)(O)

Using the definition of F(A) in (25), it is easy to see that the above relation is
equivalent, to

(I = FO) e - 9)(0) = 0.

Hence, for A sufficiently large, ©(0) = 1{0) and therefore ¢ = 4 € D(.ﬁ) This

completes the proot of the proposition. il
PROOF oF THEOREM 2.1 The proof of this theorem follows from Proposition 2.1
and Proposition 2.2, [

REMARK 2.1 An alternative proof of Theorem 2.1 can be obtained by combining
the results in Magal and Rual (2018, Section 3.8 ) with o perturbation result of
Desch-Schappeher type (see, for instance, Tucsnak and Weiss 2009, Section
5.4).

Next we show that B defined in (16} is an admissible control operator:

LiMMA 2.2 Let us assume that B € L{U, X_ ) is an admissible control operator
Jor'S. Then, the operator B € L(U, X_1) defined in (16) is an admissible control
operator for the semigroup T generated by A.

Proor  The proof follows casily from Definition 2.1 and the fact that B is
an admissible control operator, i

Using Theorem 2.1 and Lemma 2.2, we have the following wellposedness
result of the system (17) (see, for instance Tucsnak and Weiss, Proposition
4.2.5):

THEOREM 2.2 For every py € X and for every u € L2 (0, a:;U) the system (17)
admils o unigue solution

p € C([0,a4]; X).
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With the above notation our main result in Theorem 1.1 can be restated as:
If the pair {4, B) is null controilable in time 7p, then the pair (A, B) ts null
controllable in time 7 > a; + ay — az + 279. To prove this assertion, we are
going to use the fact that null controllability of the pair {A,B) at time 7 18
equivalent to final state observability in time 7 of the pair {A*,B*). Ia the
following theorem we determine the adjoint of A and B. To this aim, we frst
consider an auxiliary operator Ay, defined by

e ‘
DAy} = {1.") e X |qg(tas) =0, -g:—; — i+ AT E X} : (29)
i |
Apth = gy i + AT
da

We have the following proposition:
L]

PROPOSITION 2.3 The operator Ay is the infinitesimal generator of a CY.-semigroup

T on X. Moreouer,
ITPN < Me, (30)

where M and w are defined in (11).

Proor  The proof of this proposition is similar to that of Theorem 2.1. We
briefly sketch the idea. By integrating along the characteristic lines, we define
the semigroup T on X as follows:

w{a) ..
el S0+ ), T < ay —a,
T Farp AT e o
0 t =z a —a.

As 87 i3 a C%-semigroup, it follows that Ty Is also a CV-semigroup {(see Propo-
sition 2.1). Moreover, proceeding as in Proposition 2.2 we can show that the
domain of the semigroup TV is Ag. The estimate (30) is easy to obtain from the
expression of the semigroup TY. U

The result below gives the adjoint operators of A and B. We skip its proot
since it is fully similar to the one given for Maity et al. {2019, Proposition 2.3).

ProPOSITION 2.4 The adjoint of A in & is defined by
M

DAY =D(Ag), A= e i+ A% + Blayn(0).
Moreover, B* € L{L?{0, as; D(A™));U), defined by

BQ’U - E((Lhag)B*wa

where B* € L{D{A*),U) is the adjoint of the operator B.

Controllabili . :
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L1 age strug i}

We end this subsection with the f ing reg i i
. h the following result, which will be required later

LemMA 2.3 Assume the hypothesi 7
.3 Ass 2 the hypothesis of Lemuna 2.2, Then, there erists
Cr >0 such that the solution o to the system } Feists @ constant

p=Aap+ f(E) tel0,7],  p(0) =0, (32)
satisfies
T w12
L1860 < el (33)

Jor every f € L*(0,; ).

» IPROSI V\e first note ‘tha.t G e LU, X ), defined in (16), is also an
admissible contr ol F)pemtor for the semigroup T, generated by Ap. The resﬁlt
follows from Curtain and Weiss (1989, Theorem 5.1 and Remark 5.4) o D

3. An observability inequality
3.1. The results

As HjleIltiOIlO(‘} above, the null-controllability of pair (A, B) is equivalent to
Er}ie final SIt;Lt; observability of the pair (A*, B*), see Tucsnak and V\f@i% (JQUIOfIJ
theorem 11.2.1). Recall that the final-sts haervabili R d
T ) 1at the final-state observability of (A*, B*) is defined

DEFINITION 3.1 (Tucsnak and Weiss, 2 :
3. csnak and Weiss, 2008)  The pair (A B*Y is # i
observable in time 7 if there exists a k. > 0 such that (A", B*} is final state

“Tiﬁ qn

2 o T e

v kT/n 1B T qoll7, (g0 € D{A®).
For A defined in {2} and g, € & we set

q(t) = Tig {t = 0),

where T Is the semigroup generated ! -
smerated by A - . o
satisfies, for t = 0, a € (0, QJS: Y According to Proposition 2.4, g
dg g .
(T_)? - ;;(—l— —Ag — B((I)(](i, 0) + H((t)(] =,
(](U, a) = QQ((L).

In_ view of.rIucsnak and Weiss {2009, Theorem 11.2.1), the statement in Theorem
1.1 is equivalent to the foliowing theorem: ’
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THEOREM 3.1 Assume that 8 and p satisfy the conditions (H1)-(H3). More- S Now, applying the final state observability of (A*, B*) over the time inter
over, suppose that the fertility rote 3 is such that E [T1, T3], we obtain ’ I the time interval
Bla) =0 for all a € (0, ag), 35 o . 2 * 2
() f (0, 20) (35) i (T}l < (T — )| B*w(s)||;, ds.

for some ap € (0, a;) and that ay < as. Let us assume that the pair (A*, B*) s Combinine '
’ ' ; ining the above two estimates we ¢ . o
final state observable in time 7 > 7o, with 5 0 5 wbove two estimates we conclude the proof of the proposition.

e - The fi ing Sl .
0< <7 7F=minfas—ai,m— al. (36) e foilowing three propositions are crucial in proving Theorem 3.1.

; Proros K — , .
Then, the pair (A*,B*) is final-state observable for every 7 > a1 +aj — a2 +270. OSITION 3.2 Let us assume the hypothesis of Theorem 3.1. Let
In other words, for every T > ai + a; — @z + 7o there exists ke > 0 such that the i . .
solution g of {31) satisfies B T > 7+ Q1.

Then, for every gy € D{A*), the solution g of the system (34}, verifies

lotr)iy <2 [ 150l a0 € PO (37
5 [l a)la <
REMARK 3.1 Using the expression of B* it is easy to see that the inequality (37) B v
o, ' 2 N I A Wi T €z
reads o8 : MC,e“" max {C('r - a1}, Clag ~ al)} / f 1B*q(t. a)|)? da dt, (41)
3 . . T pan i g B S0 Jay '
/ lq(r a)i% da < hf/ [ 1B ¢(t, a)i7 dadt, {38) L 5
0 o Ja o where C), = e HJ““-U{G,(M.
for any qo € D(A"). PRrOOP Let us recall that 7 is defined by 7 = min{ay — ay, a, ~— ay}. Thus

without loss of generality we can assume that ay < a;. Since 3 (@) =0 for all

The main idea of the proof is to use final state observability of the alr 7
! ? iy a € {0,ay), q satislies

(A*, B*) along the characteristic lines. We first have the following proposition,

which is an easy consequence of the final state observability of the pair (A", B"). .;3 09 _ dq
FTar Ag+plalg=10, t=20,a€(0,as). {42)

PROPOSITION 3.1 Let us assume that the pair (A*, B*) is final state observable 18
in any time T > Ty with Ty 2 0. Let C(T') be the observability cost with C{T) — We set
oo as T — Ty. Let Ty, Ty and Ty be three real numbers such thal

0T <Ty < Ty with To=Ti> T i) = alta)e ;o v (13)
Then for every wo € D(A™), the solution w of the problem B Then, 7 satisfies
duw , 2o 55 .
— = A"w te T, Ty, w(Ti)=wo, (39) a9 ?_@ e
dt i g, Ad=0 t120,0€(0,0). (44)
satisfies the estimate S Without loss of gencrality, let 1s assume that
Ty N
w(Ts)|% < MM T00(Ty — Ty / 1B w(s)iF ds, (40) R T <ay, T>az-a. (45)
Jr .
We set by = az — 7 and we split the i v L1 re
where M and w are defined in {(11). ? we split the interval (0, a1} as follows
(0; al) = (0, bn) J (b(], (1,1). (46)

PROOF By the semigroup property (11}, it is easy to see that
(TR < M T T T I Let us r‘?m&rk that, the choices in (45) are made to cover all possible scenarios.
Hu-( :;)HX < Me ”w( z)H X : Indeed, if 7 < a3 —ay, we can choase by = a, or, if 7 > a4y, we choose by =10 VVé
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are OOlllg tO 18 P ODOh 101011 .j. 1 Q ) o 1arac SUiCS. Iﬂ th » Temaltn 5 p(lrt

= . 5€ 5 ‘ ) al ng t 119 Ci aCie st S e 111 mg

()t th" p ( E W ve € { ldb l T T s where I 18 DUC(:(/‘Q\:&IVC]}
& 00 © gl 2 i‘ipp T b UL Q / L q( . !1) E X (1& }lf_,l

[ )
each one of the intervals appearing in the decomposition {46).

Upper bound on (0, b):

For a.e. a € (0,bq), we first set
w(s) =q(s,a+7—3) se(0,7).
Then, w satisfies

gﬂ —A*w =10, se(0,7). {47)
s

Applying Proposition 3.1, with To =719, T1 =0, To =7+a — 4 and T3 = 7

we obtain

T — Gy

ol o 2. .
()% < Me =9Iy 4 a —ay) ./(; 1B w(s)| i ds.

In terms of §, the above inequality writes
Tha—dag 5
lg(r, el < ﬂ—fff“’(”-‘_“)C(TJra—al)/ | B*if(s, a+7—s,2)|F ds =

0
O ot e

o 2 .

= M=V C(r 4+ a — ay) / B G{r +a —s,8)|; ds.
Sty

Integrating with respect to a over (0,by) we obtain

By pT
’ * . 2 ]
/ ) |g(r, e)i)% da € Me*“'C(r—a1) / / | B*§(r +a—s. s}t dsda
0 S0 g

(855 ) bn .
= M C(T — ay) / [ | B*3(r +a—s,9)||f dads
daoy Js—T1

&

y  pap—§ )
= Me¥" C{r — 1) [ / [ B*G(r, s)||7; drds
Jay 1]

< Me"™Cir — al)/ [ ) | B*g(t, a7 dadt. (48)
0 Jao

Upper bound on (b, ay):

For a.e. a € (by, a1), we define

w(s) = q(s,a+71 —5) sC{T+a—asT)
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NN _
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Figure 1. An illustration of the choice made in {45): the dashed (~—} region
corresponds to the interval (0, by). Since 7 > a,), the trajectory v{(8) == (r—s5, 0+
s}, 8 € {0, 7] (or equivalently the backward characteristics starting from (7, a))
enters the observation region {4y, as) x (0,7) at s =4y —a. At s = 7, ~(s) hits
the line ¢ = 0 without leaving the observation region. The dotted (.....) region
corresponds to the interval (bg,a1). In this case, the trajectory y(s) enters the
observation domain at s = @ —a and exits the observation region at s = as — a.
Since (A*, B*) is final state observable in time 7 > 75, we need the length of
the characteristics to be greater than 7, within the observation region. Thus,
we need T > 7 -+ a; in order to observe § at final time

Then, w satisfies

Hw

e — At = (), s€(T4+a~ay,T). (19;
ds

By applying Proposition 3.1 with Ty = To, T1=T+a-~ag, To =740 —a; and
T3 = v we obtain that

T4
[k < Me1=9¢(a; — ay) B w(s)| ds.

T~y

In terms of 7, the above inequality becomes
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o Nt ; .': PROOF The proof is similar to that of Proposition 3.2. Let us briefly explain
3(r, )% < Me® ™ 9¢(az — a1) /+a § B*d(s,a+7—s)li ds the main steps. We consider the case
Jrt+a—az
bz .
:Mwmf@a@—aﬂ/ 1B*G(r +a— s, 9] ds. 4 T
451 :

We split the interval (e, ap) as (see Fig. 2)
Integrating with respect to a over {bp, a;) yields

[£5] o ¢4}
Ly ’ # @ 2 1sda
. 2 14 w(r:-r-—fm)c o — O / / HB q('r + a8, S)HU asc
/e la(r.a)llx do < Me (a2 1)' by Jas ' If v 2 az — a1, then we choose a3 = q;. Then, we estimate
) u

Ly Wi
= Mes@ e (az —ar) / [ am e [ et 0y

(a1, 00) = (a1, as) U {as, ap)  where a3 = ag — 1.

7 dads

2%

an T+a—8 e o
= M0 0y — ay) [ 1B, )% drds

: 5 where [ is successively each of the intervals appearing in the above decornposi-
o I [ B tion. These estimates are similar to the ones presented in Proposition 3.2, thus
< Me* ¥ Clug ~ ar) [ ) / |B*qlr, s)i|f drds 5 are omitted here. ]
= - Jap SO :
R * 2 |4
= Me¥Claz — a1) / / 1 B7q(t, a)l|yy dadi. (50)
40 iy
Therefore, by combining (18) and (50}, we get a3 — T
i1y
/ g a)l|% da 20
Jo v e ,
o 34 9
< Me™™ max {C(T —ay),Clae — (1«1)} / / | B*4(t, )i dadt.  (51)
Jo o Jay a3
. —_— t=1 -t
Finally, using the above estimate and the definition of § in (43), we obtain (4 l}m _ N S Ss S\\\
CLEZ Y,y e 7 T e E . .
This completes the proof of the proposition. . . o E Bt ANNENVAN
Next, we congider the system (34) with 5= 0. More precisely, we cousider r o NN
o . : SNRNNNT
the gystem . NANNNNT
, . i . RANNNNN
9z iz_ — A*z 4+ pln)z =0, {t,a)€ 0,7} x(0.a) E 0 a; a,
gt du (52) g
#(t,a) =0, te(0,7) — . . e
€ (0,a) 3 Figure 2. In this case, the trajectory Ys) = (7 = 5,0 + s) starts inside the
2(0,a) = zo(a) @ Pt [ observation region. Thus, we just need r > 7, in order to apply final state
PROPOSITION 3.3 Let us assume the hypothesis of Theorem 3.1, Let : observability of the pair {4*, B*) along the characteristics

T > 71 and ay < ay < 4z — To.

;‘ > E,' s - f h b t - (l .2} L”(A‘) > C p 5 [ 3 es ,ll‘ﬂatt, q(t, {))- 1\' are pIeCL‘JC )’5 we I) ove L;l(—)
e Z D A £ BOLULTON 2 thie 8ystaern y] veET C CXL PE os1f 1011, we est 3 I n
zhen. oy T ] & ( ), thz (i t o1 2z 0 ky

following:
- ( ;)“2 da LR PROPOSITION 3.4 Let us assume the hypothesis of Theorem 3.1 and let + >
. l[2(. al[xda : To+ay and 1 € (19 + a1, 7). Then, for every go € D{A), the solution q of the
T 2 5 . system {34) salisfies
< ﬂlfcﬂ,ﬂum Max {C(T),C(ﬂz — (I(])} /(; ./al HB Z(te G-)HU da di, ()]) | ) o
ol [t ar < st —an [ [ 15t ay que. s
where C, = ¢ FRL Gy an] Sy Joo S,
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ProoF First of all, without loss of generality we can assume that az < ap
(otherwise we simply observe for small ages). Then, for allt > 0 and a € (03 as),
q satisfies the system (42). Let ¢ be defined as in (43). In particular, g saFLsﬁes
(44). Here, we are also going to use Proposition 3.1 along the characteristics.
Without loss of generality, let us assume that

as<ay and 7nN<ax<T.
Case 1: For a.e. t € (a, ), we define
w(s,z) = g(s,t —s), s€(t—aztl). (55)
Then, w satisfies

Jw

— —A'w=0 s € (t —ag,t), (56)
ds
Using Proposition 3.1, with fp =1 —ag, &ty =t —a and T =t, we obtain
t—aq
lw(t)l5% < Me“"*C(az — a1) t | B*w(s, |7 ds.
—az

In terms of g, the above inequality reads as

latt, 0% <
i—a

Me¥*'C(az — a1) | B*d(s,t — S)H%{ ds

t—as

az
= Me*“Clas — al}f | B*§(t — s,8)||f ds.
ay

By integrating with respect to ¢ over [az, 7], we obtain

T i o az ;
f 176, 0)||? dt < Me®1C(as 7(11)/(1 / 1B 3t — 5, 9)|I% dsdt

2
a

2 T
= Me**'C(az —a1) / | B*G(t — s, 5)||f dtds
az

@y

ap T=5
= Me“"Claz — al)-/ / | B*q(r, s)||7 drds
a) a2—3s
< Me“1C(az — ay) / / IB*i(t, )3 dedadt. (57)
0 ay

Case 2: For a.e. t € (1,a2), we define
w(s) = q(s,t — s) s € (0,%). (58)
Then, w satisfies
dw

E-—A*UJ:O SE(O,t).
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= DN ERXN
t="1+ a4 ;T“\\\“
o

t=a, SIS

0 a dy = dp

Figure 3. Anillustration of the estimate of g(t,0). Here, we have chosen as = ay.
Since 7 > 1o + ay, all the backward characteristics starting from (¢, 0) enter the
observation domain (the dashed region) and the length of the characteristics
within the observation region is greater than

By applying Proposition 3.1, with tp =0, t; = ¢ —a; and T = {, we obtain
t—ay
o)l < Mece—an) [ B w(s)IE ds
0
This yields

l(t, 0)II%

t—aq
< Me“C(t — ay) [ |B*G(s,t - s)|I% ds
Jo
i
= et —a) [ 18T 5,9} ds.
Integration with respect to t over [, as] yields
ag ~ 9
[l oyl ae
"

ag t
< Me*™¢(n — al)/ f 1Bt — 5,5)|% dsdt
n ay

g £
< Me“MC(n — al)f / |B*q(t — s,8)||7 dsdt
0 al
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8

az a2
= Me*m((n— al)f / 1B q(t — 5, 9)|% dtds
(251
az a2 —S5
= Me*iC(n — a) [ f 1B*q(r, 8)|I% drds
ai 0
T pag
< Me“"“C(n—al)f / |B*§(t,a)||7 dadt. (59)
0 Jay
By combining (57) and (59), we obtain
T i 3 ao
[ e o) ae < e —a) | i a doar.
n 0 a1

Note that, from the definition of g in (43), we have g(t, 0) = ¢q(¢,0). Thus, from
the above estimate, we clearly obtain (54). O

3.2. Proof of the main result

We are now in a position to prove Theorem 3.1, thus, consequently, our main

result in Theorem 1.1.
PROOF OF THEOREM 3.1 The constant C, appearing in this proof, depends

only on 7,as,, 8, A and B. Let us set
)
6 =7 — (a1 +a; — az + 2m) andn=a1—0—70+§.

Without loss of generality we can assume that 7 is such that a; < az —70— /2.
(see Fig. 4). By Proposition 3.2, we already have that

[0 la(r, @)% da < Cue*™Clro +3/2) ] j 1B q(t, )% dadt. (60)

Thus, the rest of the proof is devoted to the estimate of

at
/ la(r, a)ll% da.

1

With this in mind, let us define

an(a) = q(n,a),a € (0,at) and V(t,a) := Ba)q(t,0),t € (n,7),a € (0,at).

(61)
We write
Q(‘tsaf) ZQI(taa)Jrq?(tsa)? LiE (ﬁ':”'):@ = (O,GT), (62)
where g1 solves
I O . _
% Ba —A*q +pla)g =0, t€(n7)a€(0a),
q(t,a:) =0, te(n), (63)
q1(n,a) = qy(a), a € (0,a4),
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and ¢y solves

dgz  Ogo "

E*%—A g2 + pla)ga = V (¢, a), ten),ae(0,a4),

g2(t,ay) =0, tE (9, 7); (64)
g2(n.a) =0, a € (0,at).

Using Duhamel’s formula, we can write g2 as

sl == fn 0 V(s,) ds, (65)

0 : . - .
wheret'JI‘ is the C” semigroup defined in (31). Using (30) and Proposition 3.4
we ge h

| el da

T T gz
<G, [ lae,O)% dt < C-Cro-+8/2) [ [ B%g(t,0)13 dact. (60)
J 0 @y

On the other hand, we write

at az—Tp—8/2 ra
5 2 — '
f lgr(7, @)% da = / (T a)ll% da+/ laa (7, 0)|* da.

ay
@ 2—Tp—08/2
a;— Tp— 6/2 a;— Tp— 6/2
AR ' .
SAYARN = * 3
i = N
Joas t=a1+ay—az;+21
\\\ A Y
\\\\: b
\\\ o1} =0 \\\
NN
NN
A
LAY
A5
AN
LN
NN
ESN
B R e R, . ¥
o IRSLS i IR R e g N
t=n
t=1+a NS
A
N
Ny
LY
3N
0 ER ap a; ar 0 a1 ap A2 at

Estimate of q(T,a) Estimate of q(t,a)

Figure 4.

From the semigroup representation of T? in (31), we have

qi(t,a) =0fort—n = a; —a. (68)
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In particular,
g, a) =0 for a € [ag — 7o ~ 0/2,a¢].
Therefore,

a as—Ta—48/2 ) .
] ar o)l da= / lqu(r.a)lk da. (69)

[£5Y 1

Since 7 — 1 > 74, by applying Proposition 3.3 to ¢ with ag = az — 10 — /2,
we obiain

"»'.’”T{)*f?/Q } T i . 9
/ oy (7, )i da < CTC(TU—H)/Q)f / [ B* g (t,a)|l dadi. (T0)
oW

[45)

Using Lemma 2.3 and Proposition 3.4 we deduce that

/ / 1B*q1(t, a}||7 dadi

n dar 2

é?(fT['Z 1B q(t, )| dadt+/ / Bt dadt)
U Jn Jay

< Cr (/ / 2 HB*q(t,a)!li dadt + / Hq(t,[})H%( dt)
T v Js

i

?).- dadt.

T il
<o remri [ 1Bt o)
n Jdar
Combining the above estimate together with (60} and (70), we obtain

[ iatmal dos e t+cims2) [ iatta)

ey

!‘f,» dadt. {71)

L

The above estimate, together with {62) and (3.2), yields

’(l\“ 2
/ la(r, )|l da

iZ dadz. (72)

T as
< Cp (14 Clmo +8/2))” +Clro +8/2)) /O / | B qlt, a)
. Jaoy
Finaily, combining the above estimate with (60) we obtain {37), with

W=, {2+c(T_(a’iza"””))r. (73)

This completes the proof of the theorem.

4. Applications

The aim of this section is to apply the controllability result obtained in Theorem
1.1 for different classes of operators A and B.
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4.1. Finite dimensional diffusion

Let us take X = R" and I/ = R™ with m < n. Let A he a real n x T Imairiy
and B be a real n x m matrix. Let us assume that

rank[B, AB,... A" 'B] = o, (74)

In particalar, we assume that the pair {4, B) is mull-controliable for arbitrary
time (i.e. 7p = 0). Then, by Theorem 1.1, the system {6) is null controllable in
time 7 > g1 + ay = Qg.

A Special Case: Let us choose:

n=m=1, A=0and B =1,

Le., we consider the classical diffusion free Lotka-McKendrick system. This sys-
tem has already been studied in Barbu, Ianelii and Martcheva (2001}; Hegoburu,
Magal and Tucsnak (2018); Maity (2019), as well as Hegoburu and Anita (2019),
By applying Theorem 1.1 to this particular case, we recover the result obtained
in Hegoburu and Anita {2019, Theorem 1.1) (see also Hegoburu, Magal and
Tucsnak, 2018; Maity, 2019).

4.2. Transport equation with age structure
Let £2 = (0, L). We consider the following control problem

L PN - o
B + 30 + a;(v(x)p) +pla)p =0, (t,a,2)€(0.7) x (0,a4) x £,

p(t,e,0) = 1, 4yult,a),

at
pit, 0, z) :f Bla)p(t,a,z) da, (t.2) € (0,7) x 0,
0

(0,0, z) = pgla, x} (a,x) € x(0,a;) x £,

(t,a) € (0,7) x (0, a+), 75)

where v € C*[0, L] and v{z) 2 © > 0. We take X = L2(Q) and U/ = R. The
operator A is defined by

D)= { e HYO.L) | e(0) =0}, Ap=— L(up)
The control operator B is defined by
Bu = udp,
where dy is the Dirac mass at 0. It is well known that the pair (A, B) is null

L , .

controllable in time 7 > —. Therefore, in order to apply Theorem 1.1, we choose
v

L or v such that

L
— < min{as —ay,a, — a; }. (76)
v

: 2L
Thus, the system (75) is null controllable in time 7 > ay + a; — ay + —.
T
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4.3. Population dynamics models with spatial diffusion

Let O be a smooth bounded domain in B3. Let us set X = L*(2). We consider
the Lotka-McKendrick system with spatial diffusion.. _ Fo.r .(t,a,zr:) € ((‘],‘7))><7
(0,a;) x €, let p(t, @, x) be the distribution (1611%1‘:-)[ of individuals \Vltlh 1es;p]e,ct
to age a 2 0 and spatial position & € £ at some time ¢ 2 0. The control problem

we consider is:

f?ﬁ + 9 _ Ap+ pla)p = di1 g, e Lour, (t,a,x) € (0,7} x (0,a;) x Q
- da
o _ d2la, sy hruz, (ta,3) € (0,7) % (0,ay) x 90
on. {ay.02 2
'l’L‘
p(t,0,x) = / Bla)p(t,a,z) da, (t,z) € (0,7) x &,
Jo
; ; 0, as) * £2,
p(0, a,z) = pola,x) (a,2) € (0, a4 _
Lpt ) -
where @ C 2 and T C 94,
4.3.1. Interior control
We consider the case of dz = (. In this case, we have
2oy 92 = 78
A=A, ’D(A):{L,JGH(Q)IE)-H—O}, {78}
and
B=1p (79

It is well known that the pair {4, B) is null controllable in zu'b.itrﬂ..ry time,
where A and B arc defined as in (78) and (79), respectively {see, for lllst_‘c'lil(j?j
Fursikov and Imanuvilov, 1996). Therefore, by Theorem 1.1 the Syst.(—‘:zm (77) is
mull controllable in time 7 > o + a4 — az by interior _cont.rols u € L ((rO 1“) X
(0,a+) x €2). This result was already obtained in Maity, Tucsnak and Zuazua

{2019).
4.3.2. Boundary control with respect to the spatial variable
We consider the case of d; = 0. In this cage

B*w = Trw, weDA).

It is well known that (A*, B} is the final state observable for any time,
Seidman {1976). Thus, by applying Theorem 1.1, with 7 = 0, we get that
the system (77) is nuli controllable in time 7 > @1 + aj — G2 by controls wy €
L2((0,7) x {0,a4) x I').
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o

4.4. Population dynamics models with degenerate diffusion

Let 2 = (0,1) and O = (£;,45) < Q. We consider the following age structured
model with degenerate diffusion;

O J 9p
—5}; + £ — k(@) 55+ pla)p = Lo, o, (4a,2) € (0,7) X (0, 04) x €

p(t,a,0) = pli,a,1) =0, (tya} € (0,7) x {0, 04),

[

plt,0,z) = Bla)p(t, a, z) da, (t,z) € (0,7} x 0,
0

p(0,a,2) = pyla, ) (a.x) € {0,a1) x Q,
(80)

where £ is a nou-negative continuous function in [0,1] and degenerate at the
houndary, i.e.

D) =k(1) = 0. (81)
Let us set the state and the control space as follows:

- (-
X =L1,0,1) = {p e L*0,1) | -“% dz < oo} and U = L*{0,1). (82)
41

We consider the unbounded operator 4 on X debned by
D(A) = {(p € L2,(0,1) " HHO, 1) | ki, € L2, (0, 1)} and Ay = kd,.0.

The operator B is defined by B = 1. By Cannarsa, Fragnelli and Rocchetti
(2008, Theorem 2.3), the operator 4 generates a CY-semigroup on X. We now
make several assumptions on the degenerate coefficient k so that the pair {A, B)
is null controllable. Following Cannarsa, Fragnelli and Rocchetti (2008}, we
make the following assumptions on k: The function k € C°[0,1] N C3 (0,1} is
such that it satisfies (81) and & > 0 in (0,1). Moreover, there exist = € (0, 1)
such that

e o )
— € L™(0,¢) and there exists M; € (0,2) and ¢ > 0
< C1——l-— for all z € (0, ¢);

) 5 20k )
e }'C k (‘r)

€ L™(1 ~¢,1) and there exist M» € (0,2) and

(x— Dk 5 (&~ 1)d.k _1__
‘*’“"'"'%:_—‘- Oy ""'T'_ = 2 k{l‘)

1) The function

xd.k
such that % < M, and

{x - 1}0,k

2) The function

Co > 0 such that < My and

forallw e (1—2¢,1).
Under the above assumptions, by Cannarsa, Fragnelli and Rocchetti (2008,
Theorem 4.5) the pair (A, B) is null controllable in any time. Therefore, by
Theorem 1.1, the system (80} is null controllable in time = ar +a; —ag.
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REMARK 4.1 Let us make the following remarks:

o Recently, similar controllability result for the system (80) was proven in
Fragnelli (2018). Our result can be seen as an improvement of the above
mentioned result, as we are able to tackle the case of a control, which
is active for small ages and we show that our global controllability result
applies to individuals of all ages, without the need to exclude ages in a
netghbourhood of zero.

o Our method also applies to the case, in which the spatial variable is mul-
tidimensional. Of course. we need to moke suitable assumptions on de-
generacy. For dnstance, we can consider the case studied by Cannarsa,
Martinez ond Vancostenoble (2009, 2016). More precisely, let Q be o
smooth bounded domain in R2. The operator A is defined by

Ap = div (M{x}V),

with appropriate boundary conditions. The control operator B is defined
by B = 1o, where O < . Under suitable assumptions on the degenerate
matriz M(z), the pair (A, B) is null controllable in arbitrary time (see,
for instance, Cannarsa, Martinez and Vancostonoble, 2009). Thus, the
corresponding age structured model is also null controllable wn time T >

a1 +ay — ag.

4.5. Fractiona! diffusion equation with age structure

Let X = L2(Q) and let A := (~Ap)* or A= (~Ay)", where —Ap and —An
are the Dirichilet and the Neumann Laplacian in € and o > 1/2. Let B be defined
by (79). Then, {4, B) is null coutrollable in any time (see, for instance, Micu
and Zuazua, 2006; Miller, 2006; Tenenbaum and Tucsnak, 2011). Therefore,
the conclusion of Theorem 1.1 also holds with the above choice of (A, B).

4.6. Schridinger equation with age structure

Let © be a square in R?, and we consider the Schridinger operator as diffusion
operator. More precisely, we take X = L*(€)

A= —iA, D(A) = H*Q)n HH{Q).

Let B be defined by (79). Then, the pair (A, B) is null controliable in any time
(see Jaffard, 1988). Thus, the conclusion of Theorem [.1 holds with 7y = 0.

Alternatively, we can take €2 to be a unit disc in R? and @ C Q to be an open
sot, such that @ N 38 # 0. The operators A and B are defined as above. The
pair (A, B) is null controllable in any time, which was proven in Anantharaman,
Léautand and Macid (2016, Theorem 1.2). Therefore, Theorem 1.1 also holds
in this setup.
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5. Controllability with regular controls

In Theorem 1.1, we have shown that the age structured system {6) is null con-
trollgble by controls w € L?({(0,7) x (0,a4); U). However, in many practical
applications, we may need to choose controls in more regular spaces. For in-
stance, while proving positivity of the controlied trajectory of the system (77)
one needs to choose control u; € L*=({0,7) x {0,ay) x §2) (see Maity, Tucsnak
and Zuazua, 2019, Theorem 4.6). The aim of this section is to show that ruil
controtlability by “smooth” controls of the pair (A, B) is also inherited by the
pair {4, B). ‘

To this aim, let us fix s € NU {0} and a Hilbert space V, so that V « [,
F{)}Jlllaving Pighin and Zuazna (2018) we introduce the notion of smooth control-
ability.

DEFINITION 5.1 We say that o pair (A, B) is smoothly null controllable in time
7, if for every zy € D(A%} there exists a control u € L>{0,7,V) such that the
solution of the system

Z(f,) = Az(t} -+ Bu(f} t e [0,7’], 2(0) = zj
satisfies (1) = 0.

| The smooth controllability property of the system (6) can he stated as fol-
ows:

THEOREM fS‘l Let us assume the hypothesis of Theorem 1.1, Let us also assume
that the pair (A, B) is smoothly null conirollable in any time T > T, with

O0< <7, 7T=minf{ay —ar,a —a;). (83)

Then, fc?r every T > a1+ ay —ag + 27 and for every pg € L7(0,ay; D(A*))
thefe erists a control v € L>((0,7) x (0,a1) x V) such that the solution p of (6)
satisfies

p{m,a) =0 for ail a € (0,a4). (84)

The proof the above theorem is a consequence of a suitable observability in-
f-zquality. Let us briefly describe the main steps. The principal idea is the s‘ame.
i.e., to use observability property of the pair (A, B) along the characteristics.
The smooth controflability in time 7 of the pair (A, B) is equivalent to the fol-
lowing final state observability inequality (see, for instance, Pighin and Zuazua
2018, Section 2): there exists a constant &, > 0 such that for any zg € D{A™) ,

18520l < ke [ i0B7S7z0]
0

v dt* (85)

where D(A)* and V™ are the duals of D(A%)* and V' respectively, with respect
to the pivot spaces X and U and i : V — U is the inclusion map. By applying
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the above observability property of the pair (A, B) along the chaj'acterisi.:ufs ;)ne
can prove that: for evety 7 > ay +ay —ag + 279 and go € (A%}, the solution
q of {34) satisfies

/ la(r, allprasy do < fﬁ[ f | B*q(t, a)iv- dadt. (86)
o 8} [£3]

Next, using the classical duality argument (see, for instance, Maity, 'Ihcsnal.»:' gnd

Zuaﬁm 2019, Theorem 4.6, or Micu, Roventa and Tucsnak, 2012, Proposition
Aeia ) o j

2.5) we can easily prove Theorem 5.1.
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Abstract: Optimal control problems governed by a transport
equation are investigated that are motivated by optical flow
problems. The control is given by the velocity field, corresponding

‘ ot 2l structured by age, size, and spatial to the op'ti(:a,l flow, while thp state cotresponds to the brightness of
WenB, G- F'I(Z(}g?) ptop,l;;d;2;,;2?;;;132;;(1qitm Biosg()qj and Epidemiology. _ unage points. The problem is studied in the setting of spatially BV-
position. In: Structur 10T 5 e :

regular vector fields under very low regularity requirements. Existing
stability results for the control-to-state operator are itmproved and
based on this the existence of minimizers for several classes of
optimal control problems is proved under mild assumptions on the
admissible sets.
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1. Introduction

In this paper, we investigate optimal control problems governed by transport
equations, where the control is the velocity field. The main focus lies in the
analysis of the problem, in particular — existence of optimal controls, under
very low regularity requirements on the velocity field and also on the state. The
problem class considered is motivated by optical flow based image sequence
interpolation. Optical flow basically describes the vector field of velocities of
apparent points in the 2D image plane. Assuming that image points of a scene do
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