
Chapter 6
Filtered gradient algorithms for inverse design
problems of one-dimensional Burgers equation

Laurent Gosse and Enrique Zuazua

Abstract Inverse design for hyperbolic conservation laws is exemplified through
the 1D Burgers equation which is motivated by aircraft’s sonic-boom minimization
issues. In particular, we prove that, as soon as the target function (usually a N-wave)
isn’t continuous, there is a whole convex set of possible initial data, the backward
entropy solution being possibly its centroid. Further, an iterative strategy based on a
gradient algorithm involving “reversible solutions” solving the linear adjoint prob-
lem is set up. In order to be able to recover initial profiles different from the back-
ward entropy solution, a filtering step of the backward adjoint solutoin is inserted,
mostly relying on scale-limited (wavelet) subspaces. Numerical illustrations, along
with profiles similar to F-functions, are presented.

6.1 An elementary modeling of sonic boom

The study of sound waves propagation in the atmosphere appears to trace back to
Whitham’s famous paper [47], where the so-called “F-function”, representing an
approximate, explicit pressure profile around a supersonic bullet, was derived. With
some adjustments, that F-function was taken as the standard macroscopic pressure
shape located in a close neighborhood of a plane jet: see for instance, [3, 19, 37,
38]. However, in order to propagate down to the ground the imprint a given, even
approximate, pressure profile, one was still needing to solve inviscid Euler equations
of gas dynamics. In Cleveland’s Ph.D. thesis [13, eq. (2.69), page 36] (see also [40]),
a so-called “augmented Burgers equation” was derived, reading,
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Fig. 6.1 Decay of a F-function onto a N-wave by solving a Burgers equation like (6.1).

∂xP−P∂tP =
1
Γ

∂ 2P
∂ t2 − 1

2A
∂A
∂x

·P, (6.1)

the terms on the right-hand side accounting for absorption and ray-tube spreading,
respectively. Hence, in the simplest case, it reduces to a Burgers equation with op-
posite velocity and the roles of space and time being exchanged. With empirical data
of a standard F-function at hand, one can visualize the evolution induced by such
an homogeneous, inviscid, Burgers equation, see Fig. 6.1; the simulation is per-
formed by means of the wavefront-tracking algorithm [28], which doesn’t contain
any numerical viscosity, being not based on finite-differences. The dominant pro-
cess is the spreading of the big rarefaction wave (induced by the entropy-violating
downward jump initially located around x ≃−1) separated by two shocks. Both the
upward (in x ≃ −1.5) and downward (x ≃ −0.8) spikes, initially present in the F-
function, are quickly dissipated in order to let the so–called N-wave develop. Such
a N-wave stands for the self-similar large-time behavior (also called “intermediate
asymptotics”) of one-dimensional, genuinely nonlinear, scalar conservation laws.

This situation raises very delicate issues when it comes to trying to optimize
the pressure profile around a jet plane (by slightly correcting its aerodynamic de-
sign) based on the constraint of minimizing its sound imprint on the ground. Such
an optimal control problem is usually referred to as to both “sonic boom minimiza-
tion”, and the “inverse design problem”. Despite the simplicity of the Burgers model
(6.1), it appeared that the hopes of aiming at a rigorous inverse design procedure are
discouragingly thin, as a consequence of irreversibility expressed by entropy dis-
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sipation beyond shock onset. This is illustrated, for instance, on Fig. 6.2, where
very different initial data end up yielding the same shock at time t ≃ 10, even after
quite complicated intermediate dynamics inside which a lot of entropy dissipates.
Aware of that drawback, engineers decided to reduce some inverse design problems
in aerodynamics to the more tractable optimization of a finite number of parameters
inside the F-function, as advocated in [19] and followers, like e.g. [38]. Hereafter,
we aim at taking a step back, by still planning to perform a gradient-based opti-
mization of a Burgers equation’s initial with respect to a given target at time
t = T , but modulating its iterations by means of a specific filtering, driving the
iterates toward minimizers belonging to one or another linear subspace of L2.
Accordingly different shapes of initial profiles can be reconstructed: see for instance
Fig. 6.7, where two different wavelet filters are applied during to totality of the op-
timization process in order to drive iterates onto rather different initial data, each
one belonging to a different “scale-limited subspace” of L2. Adequate filters can be
drawn out of signal processing books, like [27, 33]: in particular, Prolate Spheroids
[42, 46] and Father Wavelet functions [16, 35] furnish good candidates toward an
efficient filtering of a gradient optimization algorithm. Strategies can be combined
with one another in order to produce “hybridized algorithms”: see for instance Fig.
6.9, where different wavelet filters are applied to the iterates. Moreover, PSWF and
wavelets can even be merged into each other as in [45] (see also [25, §3.4]). Of
course, applying filters in order to restore stability in the context of a control prob-
lem isn’t new: see e.g. [23, 36]. Theoretical approaches to optimal design problems
for hyperbolic equations in the presence of shocks are presented in [9, 10].

6.2 Some analytical aspects of 1D inverse design

6.2.1 Irreversibility versus reverse Poincaré inequality

As a preliminary step, consider the 1D linear wave equation,

∂tt y−∂xxy = 0, t > 0, x ∈ R,

with enough decay at infinity so as to ensure conservation of energy:

E(t = T ) =
∫

R
|∂t y(T,x)|2 + |∂xy(T,x)|2 dx = E(t = 0),

The equation, being well-posed in the backward sense, the inverse design problem
has a unique solution, belonging to the same space as the prescribed target. Instead,

∂t y−∂xxy = 0, t > 0, x ∈ R.

brings out a different type of energy identity since, in that case,
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d
dt

∫

R

y2

2
dx =−

∫

R
| ∂xy |2 dx =−Λ(t) ∥ y(t) ∥2

L2(R) . (6.2)

The so-called “reverse Poincaré inequality” for the heat equation reads,

∀t ≥ 0, Λ(t) =
∥∂xy(t)∥2

L2

∥y(t)∥2
L2

≤ Λ(0) = Λ0 ,

also called “Cacciopoli’s inequality”, [34, 44], and so that,

d
dt

∫

R

y2

2
dx+Λ0 ∥ y(t) ∥2

L2(R)≥ 0,

hence the ratio of initial data to final (target) data grows exponentially with time:

∀t > 0, ||y(0)||2 ≤ exp(2Λ0 t)||y(t)||2, (6.3)

expressing strong ill-conditioning of the inverse design problem. This estimate is
sharp, being the energy version of the Fourier series representation for an equation
posed in a bounded domain. Most linear systems enjoy the property of backward
uniqueness (except transport equations in bounded domains). For Burgers equation
(more generally for genuinely nonlinear scalar laws) irreversibility manifests itself
through gradient steepening and shock formation: as a (decreasing, u+ ≤ u−) jump
splits R into open sets Q±, the pair (u,φ)= (flow solution, shock location) solves:





∂tu+u∂xu = 0, in Q− ∪Q+,

φ̇(t) =
u+(φ(t), t)+u−(φ(t), t)

2
, t ∈ (0,T ),

φ(0) = φ0 ∈ R, u(x,0) = u0(x), in {x < φ0}∪{x > φ0}.

A less singular problem is the viscous Burgers equation, see (6.1), for which the
Hopf-Cole transform [11, 14, 29] applies; consider uε(t,x) a classical solution of,

∂tuε − ε∂xxuε +∂x|uε |2 = 0, | uε(x, t) |+ | ∂xuε(x, t) |→ 0 as | x |→ ∞. (6.4)

Since an antiderivative of uε ,

v(x, t) =
∫ x

−∞
uε(s, t)ds solves ∂t vt − ε∂xxv+ | ∂xv |2= 0.

Then by rescaling the time variable, one gets that

z(x, t) = v(x, t/ε)/ε solves ∂t z−∂xxz+ | ∂xz |2= 0.

At last, by defining

η(x, t) = exp(−z(t,x)) = exp(−v(x, t/ε)/ε),



6 Filtered inverse design of Burgers equation 159

one (maybe surprisingly!) recovers the linear heat equation,

∂tη −∂xxη = 0. from which uε(x, t) =−ε
∂xη(x, εt)
η(x, εt)

. (6.5)

This classical argument suggests that, even in the absence of shocks as uε ∈C∞, the
inverse design problem for (6.4) is exponentially ill-conditioned, too, as a conse-
quence of (6.3). In the singular limit ε → 0, the situation deteriorates even more, be-
cause as soon as a shock appears, all the information about any initial profile which
gave rise to it is irremediably lost: this loss of information is quantified through the
dissipation of entropy. In a numerical perspective, two main issues emerge:

• Build efficient numerical solvers to find one (generally smooth) inverse design;
• Further, try to recover as many other possible inverse designs to study their set.

As an illustration, Fig. 6.2 displays several, quite different, initial profiles u0 decay-
ing, after having produced more or less intricate interaction patterns, onto a single
entropy shock connecting 1 to 0 at time t = 10. Theoretical results are available by
Adimurthi et al. [1], using the explicit Lax-Oleinik representation formula: see also
related works by Ancona and Cannarsa [4] for Hamilton-Jacobi equations.

6.2.2 Convexity of the set of inverse designs

Consider the simplest occurrence of (6.1), where, for ease of reading, space and
time variables are recast into their usual setup: in smooth areas, u(t,x) solves,

∂tu+u∂xu = 0, u(t = 0,x) = u0(x).

The method of characteristics stems on curves passing through each point (t,x),

Ẋ(t) = u(t,X(t)), u̇(t,X(t)) = 0,⇒ X(t) = X(t = 0)+ t ·u0(X(t = 0)).

However, as u0(X(t = 0)) = u(t,X(t)), the solution of Burgers equation reads,

u(t,x) =
x− y

t
, y the foot of the characteristic passing at (t,x). (6.6)

Actually, beyond shock onset, (6.6) still holds almost everywhere, [17, p.145],

u(t,x) =
x−ξu

t
, inf

y

( |x− y|2
2t

+
∫ y

u0(s)ds
)
=

|x−ξu|2
2t

+
∫ ξu

u0(s)ds. (6.7)

The functional which is minimized is the Lax function: according to [15, Chap. 11],
given a point (t,x), the minimum on R is unique (and the backward characteristic
is a shock-free straight line) when u(t,x) is continuous. Oppositely, if u(t,x) dis-
plays an entropy shock, there are two distinct minima ξ±

u , with ξ−
u < ξ+

u , another
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Fig. 6.2 Initial profiles yielding a single shock in x = 5 at t = 10.
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manifestation of Oleinik’s condition: as u(t,x±) = u0(ξ±), by differentiating,

u0(ξ+)−u0(ξ−)
ξ+−ξ− =

u(t,x+)−u(t,x−)
ξ+−ξ− =

1
t
.

An illustration is provided by Fig. 6.3, for the special case of Burgers equation with

Fig. 6.3 Lax function with u0(x) = 0.1− tanh(x) and x = 0.2, t = 0.5,1,2,4.

initial data u0(x) = 0.1− tanh(x), so that the Lax function reads,

G(y; t,x) =
|x− y|2

2t
− logcoshy+0.1y.

The figure displays the different minima for x ≡ 0.2 with t = 0.5,1,2,4. At time
t ≃ 2, the shock appears and G is endowed with two distinct minimizers.

The existence of inverse designs, given a specific target at time T > 0 supported
inside an interval of R, was studied by the authors of [1, Theorem 1.2]:

Theorem 6.1. Let ρ be a locally bounded, non-decreasing, possibly discontinuous
function, and, given a time T > 0, consider the BVloc, entropy admissible, target,

∀x ∈ (X1,X2), ū(x) =
x−ρ(x)

T
, ρ ′ ≥ 0.

Then under the following condition,

ρ(X1)≥ A1 > Y1, ρ(X2)≤ A2 < Y2,

there exists an inverse design u0 ∈ L∞(Y1,Y2) yielding at time T an entropy solution
of Burgers equation, which restriction to the interval (X1,X2) is exactly ū.
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Being the difference of two locally bounded functions, the target ū is in BVloc(R);
by construction it is entropy admissible because it cannot contain increasing shocks.

Theorem 6.2. Let u0,v0 be two L∞(R) inverse designs; assume that, at a given time
T > 0, their respective, piecewise-continuous, targets ū(·) and v̄(·) coincide, i.e.
u(T,x) = v(T,x). Then, for any α ∈ (0,1), any convex combination wα

0 = αu0 +
(1−α)v0 yields the same target at the same time, too,

∀x ∈ R, wα(T,x) = u(T,x) = v(T,x).

Given any reachable target, the union of its inverse designs is a convex set of L∞(R).

If the target is a non-negative N-wave, the results in [32] ensure that a Dirac atom
can be considered an inverse design (in a weaker sense of bounded measures), too.

Proof. It splits into three main steps:

• First, there is no restriction in considering regularized initial data uε
0,v

ε
0 ∈ C∞

because standard mollifying kernels can be applied to any pair u0,v0 ∈ L∞. De-
noting uε(t, ·) = Stuε

0 and similar for vε(t, ·), Kružkov contraction estimate yields

∀t > 0, ∥u(t, ·)−uε(t, ·)∥L1 ≤ ∥u0 −uε
0∥L1 → 0, ε → 0.

• Yet, consider the representation (6.7) for both u(t, ·) and v(t, ·): accordingly, ξu
and ξv are mappings (t,x) 7→ ξu(t,x) or ξv(t,x) (yielding the foot of the corre-
sponding characteristic where the target is smooth). At any point t = T, x ∈ R,

u(t,x) = v(t,x) ⇒ ξu(t,x) = ξv(t,x) = some value ξ ∈ R.

If T,x is a shock location, each minimum is reached at two distinct locations,

ξ±
u (t = T,x) = ξ±

v (t = T,x) = ξ± ∈ R2.

• Now, applying again (6.7) to wα
0 = αu0 +(1−α)v0 should bring ξw = ξ with,

inf
y

( |x− y|2
2t

+
∫ y

(αu0(s)+(1−α)v0(s))ds
)

=
|x−ξw|2

2t
+

∫ ξw
(αu0(s)+(1−α)v0(s))ds .

= α
( |x−ξw|2

2t
+

∫ ξw
u0(s)

)
+(1−α)

( |x−ξw|2
2t

+
∫ ξw

v0(s))ds
)
.

Consequently, since inf(A+B)≥ inf(A)+ inf(B), where

A = α
( |x− y|2

2t
+

∫ y
u0(s)ds

)
, B = (1−α)

( |x− y|2
2t

+
∫ y

v0(s)ds
)
.
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and both A, B are minimized at the same point ξu = ξv = ξ , then equality holds:

inf
y

( |x− y|2
2t

+
∫ y

(αu0(s)+(1−α)v0(s))ds
)
≥

α
( |x−ξ |2

2t
+

∫ ξ
u0(s)

)
+(1−α)

( |x−ξ |2
2t

+
∫ ξ

v0(s))ds
)
=

|x−ξ |2
2t

+
∫ ξ

(αu0(s)+(1−α)v0(s))ds.

That inequality shows that the value of Gwα (t,x,ξ ) is smaller than its infimum on y;
hence y = ξ is automatically a critical point for wα(t,x). The same holds for ξ±.

Fig. 6.4 Time evolution of convex combinations of continuous and discontinuous “ramps”.

Besides Fig. 6.2, which already illustrates the variety of inverse designs associated to
the simple target χx<5, at time T = 10, Fig. 6.4 shows several convex combinations
of two elementary inverse designs, (χA being the indicator of the set A)

u0(x) = χx<0 +(
1
2
−2x)χ0<x< 1

2
, v0(x) = min(1,

1
2
− x)χx< 1

2
,

which all reach the same target at time, namely a single shock at time t ≃ 1.2.
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6.2.3 Backward entropy solution as the centroid

An elementary observation is that, given a smooth target ū ∈ C∞(R) and a time
T > 0 small enough, the inverse design problem is solved by “tracing characteristics
backwards”. More precisely, such a solution is u(t,X(t)) = ū(X(T )) with,

Ẋ(t) = u(t,X(t)), so that X(t) = X(T )+(t −T )u(T,X(T )), 0 ≤ t < T.

Such a process is actually equivalent to solving Burgers equation backward in time,

∂tu−∂x(u2/2) = 0, u(T,x) = ū(x). (6.8)

This situation corresponds to the convex set of Theorem 6.2 being reduced to a

Fig. 6.5 Dissipation in backward entropy solutions of (6.8) with ū(x) three bigger N-waves



6 Filtered inverse design of Burgers equation 165

single point. Yet, when the target ū is an admissible entropy (hence one-sided Lips-
chitz) BV function, more elaborate techniques (generalized characteristics, Lax for-
mula, ...) allow to derive an inverse design by means of the entropy solution of (6.8):
see first row in Fig. 6.2. Clearly, as the flux function changes its sign, any entropy
admissible (decreasing) jump in ū becomes entropy-violating for (6.8) and is instan-
taneously converted in a (smooth) backward expansion wave. In contrast, the other
solutions shown on Fig. 6.2 all display increasing (entropy-violating) jumps at time
t = 0. This suggests that this particular inverse design from (6.8) may be the cen-
troid of the convex set K ∈ L∞(R) containing all the possible inverse designs of a
discontinuous target: by definition, the centroid is the barycenter,

C =

∫
K ydy∫
K dy

, C(x) an inverse design of ū(x).

Let η stand for any convex entropy (for instance η(u) = u2): by Jensen’s inequality,

∫

R
η(C(x))dx =

∫

R
η
(∫

K ydy∫
K dy

)
dx ≤

∫

K

∫
R η(y(x))dx∫

K dy
dy,

so that the centroid C(x) is the inverse design of the discontinuous, entropy admis-
sible, target ū minimizing a convex entropy η with respect to all the others in K.

Remark 6.1. The relevance of the backward entropy solution of (6.8) is limited to
“small targets” or “small times”, an assumption tacitly made in Theorem 6.1:

dρ
dx

≥ 0 ⇒ dū
dx

≤ 1
T

where the target ū(x) =
x−ρ(x)

T
. (6.9)

Indeed, if ū contains entropy jumps, the backward evolution cannot induce wave
cancellations (see first and second rows of Fig. 6.5), so the backward entropy solu-
tion realizes an inverse design. Oppositely, the third row of Fig. 6.5 shows that, when
such a smallness assumption is broken, that solution isn’t an inverse design anymore
because too much entropy, like the L2 norm, was dissipated in the discontinuity.

Corollary 6.1. Under the assumptions of Theorem 6.1, let u(t,x) be the “backward
entropy solution” solving (6.8) with final data u(T, ·) = ū, then

• for all t ∈ (0,T ), u(t, ·) is Lipschitz continuous;
• entropy is preserved during the backward evolution;
• u(0, ·) is an inverse design, so that u0 = u(0, ·).
However, ū can display decreasing shocks, and u0, increasing ones.

Proof. First, as ū is entropy-admissible, it may contain only decreasing discontinu-
ities which are all instantaneously regularized as rarefaction waves in the backward
evolution. Then, the smallness assumption (6.9) implies that the entropy solution of
(6.8) cannot blow up in the open interval (0,T ) because its blowup time satisfies,
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T̄ =
1

supx ū(x)
≥ T.

A numerical discussion of inverse designs for “big targets” was given in [2, §6.4].

6.3 A PDE-constraint optimization process

6.3.1 Reduced objective functional and control-to-state map

Inverse design consists in reconstructing an initial profile u0 at time t = 0 able to
match (or to get as close as possible to) some given target function ū at time t =
T ∈ R+. It can be formalized as a PDE-constrained optimization process for an
“objective functional” JT and a control u0 ∈U , namely

inf
U

JT (u) =
1
2

∫
|u(T,x)− ū(x)|2dx, T > 0,

subject to the (presumably infinite set of) constraints,

∂tu+∂x(u2/2) = 0, u(t = 0, ·) = u0, ∂tη(u)+∂xq(u)≤ 0.

Here, the entropy η stands for any convex function and q, the entropy flux is such
that q′(u) = u ·η ′(u). Since Burgers’ flux is strictly convex, only one convex entropy
is actually needed because just one entropy inequality yields all the other ones.
So the optimization process contains only one equality and one inequality, say for
η(u) = u2. The PDE rewrites e(u,u0) = 0 and is referred to as an “equation of state”.
That equation of state e(·, ·) rewrites as a mapping such that,

e : L1 ∩BV (R)×L1 ∩L∞(R)→ M (R),

where, for any ϕ(t,x) ∈C1(R×R+) with compact support,

∫ ∫

R
u∂tϕ(t,x)+

u2

2
∂xϕ(t,x)dx.dt +

∫

R
u0(x)ϕ(t = 0,x)dx = 0.

For any t ≥ 0, let u(t, ·) = St(u0) stand for the entropy solution (in the sense of
Kružkov) of the inviscid 1D scalar Burgers equation,

∂tu+∂x(u2/2) = 0, ∂t(u2/2)+∂x(u3/3)≤ 0, x ∈ R, t > 0.

Being a semi-group of L1 contractions, it implies a BV estimate,

∀h > 0, ∥u(t, ·+h)−u(t, ·)∥L1 ≤ ∥u0(·+h)−u0(·)∥L1 ≤ h ·TV (u0),
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where TV (u0) stands for the total variation of u0. So, BV ⊂ L∞ is a stable space for
this convex scalar law: u0 ∈ L1∩BV (R)⊂ L2 (by classical interpolation inequalities)
produces an entropy solution lying in L2(R), too. Accordingly, the “control-to-state
map” ST can be defined along with a “reduced objective functional”,

J̃T (u0) =
1
2

∫
|ST (u0)(x)− ū(x)|2dx = JT (“u(u0)”), (6.10)

inside which the PDE dynamics are already encoded (in the form of ST (u0)). In
particular, for a given T > 0, one may consider the minimization problem,

given ū, inf
u0∈U

J̃T (u0), U = L1 ∩BV (R)⊂ L2(R),

which can be expected to admit many solutions (see Theorem 6.2) when the target
function ū contains entropy shocks.

6.3.2 Regularized objective functionals and duality solutions

Duality solutions is a peculiar notion of weak solutions to one-dimensional conti-
nuity equations enjoying both uniqueness and weak stability properties; they were
proposed in [8], then applied to differentiability issues for convex scalar conser-
vation laws in [9]. Finally their numerical analysis was tackled in [26]. Following
both [12] and [9], one can consider the “sensitivity problem” for Burgers equation:
let u0 ∈ L1 ∩L∞(R) be initial data, and u(T, ·) = ST (u0) its entropy solution at time
t = T > 0. A small deviation δu0 and a parameter 0 < η ≪ 1, yield new data,

uη
0 = u0 +η ·δu0, uη(T, ·) = ST (u

η
0 )=̇u(T, ·)+η ·δu,

Clearly, by defining δu(t, ·) as the perturbation at time 0 ≤ t ≤ T ,

δu(t, ·) = St(u
η
0 )−St(u0)

η
, ∂t(δu)+∂x(a(t,x) ·δu) = 0, with a =

|uη |2 − |u|2
2(uη −u)

,

one finds that it satisfies a linear continuity equation, with a possibly discontinuous
coefficient, though, so that uniqueness is a delicate issue.

Definition 6.1. • Let m(t = 0, ·) = m0 a bounded measure on R and a bounded
velocity field a(t,x) ∈ L∞, a weak solution m(t, ·) is a duality solution to

∂tm+∂x(a ·m) = 0, ∂xa(t, ·)≤ α(t), with α ∈ L1(]0,T [),

if it satisfies, for any 0 < τ ≤ T and any p(t,x) reversible solution in (0,τ)×R
with compact support in x,

d
dt

∫

R
p(t,x)m(t,x)dx = 0, t ∈ [0,τ]. (6.11)



168 Laurent Gosse and Enrique Zuazua

• under the same assumptions, given a Lipschitz final datum pT , a reversible solu-
tion to the dual transport equation is a Lipschitz solution of,

∂t p+a ·∂x p = 0, p(T, ·) = p(·),

which is equivalently characterized by TV (p(t, ·)) = TV (pT ) or p = p1 − p2, a
difference of two non-decreasing Lipschitz solutions.

Thanks to these notions, Bouchut and James stated in [9] the following:

Theorem 6.3. Let u0 be entropy admissible, i.e. ∂xu0(·) ≤ C ∈ R, then as η → 0,
the perturbation δu(t, ·)→ m(t, ·), which is the duality solution to,

∂tm+∂x(St(u0) ·m) = 0, m(t = 0, ·) = δu0.

Accordingly, m(t, ·) is the directional derivative of St(u0) in the direction δu0.

Especially, that duality solution satisfies, for any (Lipschitz) reversible solution p,
∫

R
p(T,x)m(T,x)dx =

∫

R
p(t = 0,x)m(t = 0,x)dx =

∫

R
p(0,x)δu0(x)dx. (6.12)

Yet, following [12], let an objective functional and its Gâteaux derivative along δu0,

JT (uη) =
1
2

∫

R
|ST (u

η
0 )− ū(x)|2dx, δJT =

∫

R
δu(T, ·) · (ST (u

η
0 )− ū)dx.

An essential property for inverse design feasibility is (6.12) holding in the case,

p(T, ·) = ST (u
η
0 )− ū, so that δJT =

∫

R
p(0,x)δu0(x)dx = ⟨p(0, ·),δu0⟩ .

Theorem 6.3 states that, being δu in general a (measure) duality solution, such a
property can be expected to hold mostly for p being a (Lipschitz) reversible solution,
see (6.11). As ST (u

η
0 )− ū is likely to be discontinuous, setting up “regularized ob-

jective functionals”, involving some convolution kernel, secures the Lipschitz regu-
larity of each p(T, ·) and the crucial property (6.12), too: for instance, let

0 ≤ µε(x) =
1

ε
√

π
exp(−|x/ε|2) ∈C∞(R),

in order to define “ε-regularized objective functions”,

J ε
T (u) =

1
2

∫ ��[µε ∗u(T, ·)]− ū(x)
��2dx =

1
2

∫ ��[µε ∗ST (u0)]− ū(x)
��2dx. (6.13)

Clearly, for ε ≪ 1, this type of perturbation of the L2 norm remains negligible,
especially when it comes to numerics. More precisely, for most applications, a grid
size ∆x > 0 is fixed, so that the correction (6.13) becomes transparent if ε ≪ 1.
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6.3.3 Critical points of reduced objective functionals

Even in the favorable case where JT is strictly convex on L2(R), a numerical algo-
rithm remains too costly as long as it needs to compute gradients in all the directions
corresponding to any Hilbertian basis functions φi(x). So, an operator ∇J̃T (a lin-
ear form in the dual of L2(R)) expressing the first variation of JT ,

∀φi, δJT (u)[φi] =
⟨
∇J̃T (u0),φi

⟩
=

∫

R
∇J̃T (u0)φi(x)dx,

would be very useful. Formally, using (6.10), it comes,

δJT (u = ST (u0))[φi] = ⟨∇uJT (u),∇ST (φi)⟩ ,

by means of the chain rule. By taking the adjoint in the duality bracket,

δJT (ST (u0))[φi] = ⟨(∇ST )
∗[∇uJT (u)],φi⟩ ,

so that our desired operator reads ∇J̃T (u0) = (∇ST )
∗[∇uJT (u)]. In this expres-

sion, ∇ST stands for the linearized evolution operator associated to the Burgers
equation, that is, the solution of the transport equation

∂t v+u(t,x)∂xv = 0, t ∈ (0,T ).

Yet, the adjoint (∇ST )
∗[∇uJT (u)] corresponds to the backward problem,

−∂t p−u(t,x)∂x p = 0, p(T,x) = u(T,x)− ū(x) = ST (u0)(x)− ū(x).

In particular, in the dual space of L2(R), (∇ST )
∗[∇uJT (u)] = p(t = 0, ·),

∀φi,
⟨
∇J̃T (u0),φi

⟩
= ⟨p(t = 0, ·),φi⟩ . (6.14)

Accordingly, ∇J̃ ε
T is a linear form on L2(R) such that,

∀φi, δJ ε
T (u)[φi] =

⟨
∇J̃ ε

T (u0),φi
⟩
.

As µε is an even function, similar computations yield for any φi,

δJ ε
T (u

ε = µε ∗ST (u0))[φi] = ⟨∇uJT (uε),µε ∗ [∇ST (φi)]⟩
= ⟨µε ∗ [∇uJT (uε)],∇ST (φi)⟩
= ⟨(∇ST )

∗[µε ∗∇uJT (uε)],φi⟩ ,

and finally, the expression of the modified gradient operator follows,

∇J̃ ε
T (u0) = (∇ST )

∗[µε ∗∇uJT (uε)], uε(T,x) = [µε ∗ST (u0)](x).

The backward equation remains unchanged, except for its final data, so
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⟨
∇J̃ ε

T (u0),φi
⟩
= ⟨pε(0, ·),φi⟩ with pε(T, ·) = µε ∗ [µε ∗ST (u0)− ū] (6.15)

The velocity field u(t, ·) in ∂t pε +u(t,x)∂x pε = 0 is not regularized: by Oleinik’s
form of the entropy condition, it may display downward jumps, so that, to ensure
stability, pε(t,x) should be interpreted as a “reversible solution”, see Definition 6.1.

6.4 Minimizing sequences in filtered gradient algorithms

6.4.1 Large-time behavior of numerical schemes

Let us consider now numerical approximation schemes for the inviscid problem :




un+1
j = un

j −
∆ t
∆x

(
g(un

j ,u
n
j+1)−g(un

j−1,u
n
j)
)
, j ∈ Z, n > 0.

u0
j =

1
∆x

∫ ( j+1/2)∆x
( j−1/2)∆x u0(x)dx, j ∈ Z.

The approximate, piecewise-constant, numerical solution u∆ (t,x) is given by

u∆ (t,x) = un
j , ( j−1/2)∆x < x < ( j+1/2)∆x, n∆ t ≤ t < (n+1)∆ t,

Are corresponding large-tine dynamics discrete analogues of continuous ones ?

1. Lax-Friedrichs

gLF(u,v) =
u2 + v2

4
− ∆x

∆ t

(
v−u

2

)
,

2. Engquist-Osher

gEO(u,v) =
u(u+ |u|)

4
+

v(v− |v|)
4

, (6.16)

3. Godunov

gG(u,v) =





min
w∈[u,v]

w2

2 , if u ≤ v,

max
w∈[v,u]

w2

2 , if v ≤ u.

These methods converge in L1
loc(R×R+), i.e. on all compact subsets: do they

behave correctly as t → ∞ ? Such a question was already raised in [41, §6.4]. It
has consequences for numerical inverse design problems because a gradient descent
method needs an iterative resolution of both forward and adjoint dynamics repeat-
edly, possibly over long time intervals. Three-point monotone schemes rewrite like

un+1
j −un

j

∆ t
+

(un
j+1)

2 − (un
j−1)

2

4∆x
= R(un

j ,u
n
j+1)−R(un

j−1,u
n
j)

where the numerical viscosity R is defined in a unique manner as
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R(u,v) =
Q(u,v)(v−u)

2
=

1
2∆x

(u2

2
+

v2

2
−2g(u,v)

)
.

Accordingly, the following results were proved in [39]

Theorem 6.4. Let u0 ∈ L1 ∩L∞(R) and ∆ t∥un∥∞,∆ ≤ ∆x: then, for any p ∈ [1,∞),

• the numerical solution u∆ given by the Lax-Friedrichs scheme satisfies

lim
t→∞

t
1
2 (1− 1

p )∥u∆ (t)−w(t)∥Lp(R) = 0, (6.17)

where the diffusion wave w = wM∆ , M∆ =
∫
R u0

∆ , is the unique solution of

{
∂tw+∂x

(
w2

2

)
= (∆x)2

2∆ t ∂xxw, x ∈ R, t > 0,

w(t = 0,x) = M∆ δ (x), the Dirac mass in x = 0.
(6.18)

• the ones given by both Engquist-Osher and Godunov schemes satisfy a similar
asymptotic behavior with an N −wave, w = wp∆ ,q∆ , being unique solution of





∂tw+∂x

(
w2

2

)
= 0, x ∈ R, t > 0,

w(t = 0,x) = M∆ δ (x), lim
t→0

∫ x

0
w(t,z)dz =





0, x < 0,
−p∆ , x = 0,
q∆ − p∆ , x > 0,

(6.19)

with M∆ =
∫
R u0

∆ , p∆ =−minx∈R
∫ x
−∞ u0

∆ (z)dz, and q∆ = maxx∈R
∫ ∞

x u0
∆ (z)dz.

These quantitative results confirm, in an accurate manner, the observation formerly
made in [41, §6.4]: “Neither of these two results [Error Estimates in Theorems 6.4.1
and 6.4.2] is uniform with respect to the time and indeed they could not be”.

6.4.2 Reversible solutions of the adjoint problem

A classical tool to build a minimizing sequence (un
0)n∈N is the fixed-step gradient

algorithm: let 0 < η ≪ 1 be small enough as an iteration step, (see e.g. [6, 7])

un+1
0 = un

0 −η∇J̃T (un
0) ⇒ J̃T (un+1

0 )≤ J̃T (un
0).

What saves the day is that, again on (0,T ), and under the condition that the function
p0 := p(t = 0, ·) can be well defined, the minimizing sequence is just,

un+1
0 = un

0 −η · pn
0, in L2(R)∗,

where pn
0 = pn(t = 0, ·) = ∇J̃ (un

0) as seen in (6.14). It stops when pn
0 ≃ 0. For

definiteness, let g(u,v) stand for the Engquist-Osher numerical flux (6.16) for the
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(forward) Burgers equation, along with n,k, j being the minimizing sequence, time
and space indexes, respectively: an inverse design comes from iterating in n ∈ N,

∀ j, un=0,k=0
j = 0;

{
un,k+1

j = un,k
j − ∆ t

∆x

[
g(un,k

j ,un,k
j+1)−g(un,k

j−1,u
n,k
j )

]
,

for k = 0,1, ..., T
∆ t −1;

{
∀ j, pn,k=T/∆ t

j = un,k=T/∆ t
j − ū j,

or its regularized value given in (6.15);





pn,k
j = pn,k+1

j + ∆ t
∆x

[
∂g
∂u (u

n,k
j ,un,k

j+1)(pn,k
j+1 − pn,k

j )

+ ∂g
∂v (u

n,k
j−1,u

n,k
j )(pn,k

j − pn,k
j−1)

]
,

for k = T
∆ t −1, ...,1,0;

{
∀ j, un+1,0

j = un,0
j −η pn,0

j ,

or a filtered version, see (6.22).





(6.20)

An issue in (6.20) is that the backward solution p may not be unique when u admits
discontinuities. However, as long as the final data pT remains Lipschitz continuous,
both uniqueness and stability hold for “reversible solutions” because u(t, ·) satisfies
a one-sided Lipschitz condition (OSLC). Moreover, usual finite-difference (dual)
schemes converge toward reversible solutions as the grid size ∆x → 0.

Theorem 6.5. (see [26, Theorem 3.7]) Let pT be a Lipschitz continuous function
with Lipschitz constant Lip(pT ). Let the backward scheme be consistent, satisfy
a uniform OSLC and that monotonicity-preservation is ensured by a CFL restric-
tion. Then the sequence p∆x of piecewise-constant functions converges as ∆x → 0
strongly in L1

loc(R×R+) and almost everywhere toward the reversible solution.

Obviously, as µε ∈C∞(R), µε ∗ [uε(T, ·)− ū] ∈C∞ is also a Lipschitz function. So
pε(t, ·) is rigorously a reversible solution of the adjoint equation because the ve-
locity field u(t, ·) satisfies Oleinik’s OSLC. Accordingly, most of the monotonicity-
preserving backward finite-difference schemes approximating pε(t, ·) converge to-
ward this unique and stable reversible solution under the CFL restriction,

∆ t max
j,k,n

|un,k
j |≤ ∆x

2
.

Remark 6.2. One may wonder why (6.20) wasn’t initialized with the entropy so-
lution of the “backward Burgers equation” (6.8) with ū as its final data. Indeed,
consider again the situation displayed on Fig. 6.2: that backward solution is the
“ramp” displayed on the first row. Starting with these data, (6.20) produces the en-
tropy shock, so that the velocity field acting on p(T, ·)≡ 0 (for ε small enough if the
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regularization (6.13) is applied) is discontinuous. By definition of reversible solu-
tions, p(t, ·) will remain null (TV (p(t, ·)) = TV (p(T, ·))) in the cone of dependence
of the shock, so p(t = 0, ·)≡ 0, too, and the algorithm will always keep the “ramp”
as a steady inverse design. Hence, initializing with (6.8) may not be a good strategy
when seeking different, more oscillating inverse designs (belonging to K).

6.4.3 Projection and component-wise gradient algorithm

The previously introduced method allows to iteratively recover an initial profile
which image by the evolution semi-group ST matches the target ū, just by solv-
ing a simple transport equation for pε (for which supposedly many schemes may
be available). Indeed, it’s very easy to numerically check that trying to devise a
“non-entropic backward evolution” for (6.8) starting from ū is strongly ill-posed
since entropy dissipation in shocks cancels many details (oscillations), so the back-
ward evolution algorithm would have to guess all those missing data. Accordingly,
a majority of (stable) finite-difference schemes converge to the (unique) reversible
solution: hence only one initial profile (probably the centroid of the convex set
of inverse designs) is generally recovered. Unfortunately different, generally more
sharply-varying, profiles are sought in the realm of concrete applications: it may be
necessary to circumvent the stability of the reversible solution pε by projecting it
onto a closed linear subspace V of the Hilbert space L2(R). Let PV stand for the
orthogonal projection onto V and, still, 0 < η ≪ 1 so that,

J̃ ε
T (ũ

n+1
0 ) = J̃ ε

T (ũ
n
0)−η

⟨
∇J̃ ε

T (ũ
n
0),PV ∇J̃ ε

T (ũ
n
0)
⟩
+o(η)≤ J̃ ε

T (ũ
n
0),

because ⟨
∇J̃ ε

T (ũ
n
0),PV ∇J̃ ε

T (ũ
n
0)
⟩
= ∥PV ∇J̃ ε

T (ũ
n
0)∥2 ≥ 0. (6.21)

Clearly, the definition (6.14) is quite convenient, because it suffices to apply it to
φi, i ∈ N, the Hilbertian base of the linear subspace V . Imposing that the control
belongs to the subspace V , i.e., u0 ∈ L1 ∩L∞ ⊂V ⊂ L2(R),

u0(x) = ∑
i

αiφi(x), (αi) ∈ ℓ2(Z),

at each iteration n, by taking all the duality brackets with pn
0 = ∑i βiφi,

⟨
un+1

0 ,φi
⟩
= ⟨un

0,φi⟩−η
⟨
∇J̃ ε

T (u
n
0),φi

⟩
⇔ αn+1

i = αn
i −η ·β n

i . (6.22)

Instead of (6.22), one may apply filtering to pT when V contains Lipschitz functions.

Remark 6.3. Let K be the convex (see Theorem 6.2) associated to a discontinuous
target ū; the inverse design in V , obtained through the filtering (6.22), is not (in gen-
eral) the projection of the centroid C(x) of K. Since PV is an orthogonal projection,
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∫

R
|PV (C)(x)|2 dx = ∥PV (C)∥2 = ∥C∥2 −∥(Id −PV )(C)∥2 ≤

∫

R
|C(x)|2 dx.

So, being η(u) = |u|2 a convex entropy for Burgers equation, PV (C) would dissipate
more entropy than C: in general, the minimizer generated by (6.20)–(6.22) is the
projection onto V of an inverse design in K, different from its centroid, see Fig. 6.7.

6.4.4 F-functions or scale-limited subspaces of L2

A natural choice for V is one of the nested scaled-limited subspaces of a multi-
resolution analysis of L2(R), spanned by a so–called “scaling function”.

Definition 6.2. Nested subspaces Vj form a Multi-Resolution Analysis of L2(R) if:
{0}⊂ · · ·⊂V−1 ⊂V0 ⊂V1 ⊂ · · ·⊂ L2(R) and moreover,

• for all f ∈ L2(R), ∥PVj f − f∥L2 → 0 as j →+∞ also, PVj f → 0 as j →−∞.
• if f (x) ∈Vj, then f (x/2) ∈Vj−1 and for all k ∈ Z, f (x−2 jk) ∈Vj.
• there exists a shift-invariant orthonormal base of V0 given by the scaling function

φi(x) = φ(x− i) for i ∈ Z.

In this definition, PVj stands for the orthogonal projector onto the subspace Vj. Intu-
itively, it asks for the Vj’s to be linear subspaces of functions with increasing spatial
resolution: when j decreases, functions in Vj tend to become constants. Oppositely,
when j increases, they are allowed to oscillate with high instantaneous frequency.
The wavelet spaces Wj are defined as the orthogonal complement of Vj inside Vj+1:
for all j ∈ Z, Vj+1 = Vj ⊕Wj. From φi, the base of V0, a base of Vj is deduced by
simple dilatation,

φ j,n(x) =
√

2 jφn(2 jx) =
√

2 jφ(2 jx−n). (6.23)

Thus, the orthogonal projection of f onto Vj reads:

PVj f = ∑
n∈Z

< f ,φ j,n > φ j,n, < f ,φ j,n >=
∫

R
f (x)φ j,n(x).dx, (6.24)

which is the best approximation of f in Vj in the least-squares sense. At this level,
one has all the necessary elements to devise a “scale-limited, relaxed gradient algo-
rithm”, in component-wise form, by plugging each φ j,n into (6.22) for a given scale
j ∈ Z. Clearly, different choices for φ exist: the Haar function, the multi-fractal
Daubechies-4, the smoother Symmlet, etc ...

For specific applications to aerodynamics problems related to sonic-boom im-
prints, so–called “F-functions” are preferred initial profiles (hence controls). A F-
function can be represented by a finite set of parameters,

F(x) =
5

∑
i=1

αiFi(x), < Fi,Fj >= δi, j.



6 Filtered inverse design of Burgers equation 175

Hence the former algorithm (6.22) applies as soon as the basis functions Fi are
orthogonalized, for instance by means of a Gram-Schmidt procedure: Fig. 6.1 shows
forward.in-time evolution of F with the control-to-state map ST .

6.5 Preliminary numerical illustrations

Hereafter, the time at which the target is meant to be reached by the (forward) en-
tropy solution of Burgers equation is normalized at unity: T = 1. The smallness as-
sumption raised in Remark 6.1 corresponds to ∥ū∥∞ ≤ 1. Our examples are treated
with 28 = 256 points, and an adaptive step-size ηn is used in the gradient algorithm:

∀n,k, ηn = 2


 ∑ j |pn,k=0

j pn,k=T/∆ t
j |2

∑ j |pn,k=0
j |2 ∑ j |pn,k=T/∆ t|2

j




1
2

6.5.1 Filtered gradient and hybrid methods

The simplest filtering is obtained through the Haar scaling function, which is just
the indicator of x ∈ (0,1): see Fig. 6.6 for the inverse design of a nonnegative N-
wave with increasing resolutions. Differently, Fig. 6.7 displays the inverse design
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Fig. 6.6 Haar filters of increasing resolution; no filtering corresponds to maximal resolution.

of the same target, but with scaling functions corresponding to Daubechies-4 (left)
and Symmlet-6 (right). For completeness, forward evolution by wavefront tracking,
highlighting forward wave interactions (and cancellations), is displayed below.

6.5.2 A target given by a (small) sine wave

When there exists only one inverse design to a smooth target ū ∈C∞, wavelet filter-
ing may be used in order to ease the iterations of the gradient algorithm: selecting
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Fig. 6.7 Inversions with Daubechies-4 (left) and Symmlet-6 (right); forward evolution by WFT.

scaling functions φ j,n with many vanishing moments, the inverse design at T = 1 of

ū(x) =±0.35sin(2π
x+1

3
)χ|x+1|< 3

2
, T ≤ 30

7π
≃ 1.36,

can be recovered, see Fig. 6.8. Despite a limited amount of grid points, the decay
of the cost functional JT is close to a factor 103 with 100 iterations of the adaptive
filtered gradient algorithm. Of course, as the inverse design is unique, it matches the
smooth solution of the backward Burgers equation (6.8) with final data ū.

6.5.3 Targets given by several N-waves

N-waves realize the large-time behavior (so–called “intermediate asymptotics”) of
compactly supported initial data: one shouldn’t expect uniqueness of inverse designs
when prescribing such type of (discontinuous) targets. Hereafter, we consider the
final data used in Fig. 6.5, that is,

ū(x) = β (
5
4
+ x)χ|x+1|<1, T ≤ 1

β
, β > 0.

On Fig. 6.9, inverse designs corresponding to β = 0.45,0.75 and 0.95 are displayed
(top to botton) for T = 1, along with the decay of the objective functional JT and
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Fig. 6.8 Inverse design of sine waves with an hybrid method involving Coiflet-3 and Symmlet-6.

the values taken by the adaptive step-size. Filtering was made so that the first it-
erations are filtered with a smooth Coiflet-3 scaling function, but the subsequent
ones (details at small scale) are treated with a multi-fractal Daubechies-4. Switch-
ing from one another is done between 10 and 20 iterations of the gradient algorithm,
as one can see by means of the brutal variation of the adaptive step-size. The gen-
eral convergence of the algorithm deteriorates with the increasing values of β , so
that our inversion time T = 1 gets closer to the critical time prescribed by the ex-
istence Theorem 6.1. For bigger inversion times, the target ceases to be reachable,
and numerical inverse designs display spikes, see also [2, §6.4]. Of course, by using
different scaling functions, it is possible to get alternative inverse designs, see Fig.
6.10, along with all convex combinations which can be built from each two of them.

6.5.4 F-functions as combinations of “Haar and spikes”

By looking at Fig. 6.1, one may hope to recover interesting inverse designs starting
from truncated N-waves at time T = 1 like,

ū(x) =
3
4

min
(

4
5
,max

(
−1

2
,

5
4
+ x

))
χ|x+1|<1, T ≤ 4

3
.
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Fig. 6.9 Inverse design of N-waves with an hybrid method involving Coiflet-3 and Daubechies-4.

Fig. 6.10 Inverse design for β = 0.45 with hybrid methods involving Haar and Symmlet wavelets.
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Our (mostly empirical, inspired by [43]) computational approach consists in

• setting up a very coarse Haar scaling function during the 10 first iterations,
• then, switching to a slightly finer one to correct smoother regions,
• during the whole process, alternating between a standard wavelet filtering and a

“spike filtering”, in which cumulative integrals of corrections
∫ x1

x0
p(0,x)dx, are

concentrated at a given location x ∈ (x0,x1).

Preliminary results are displayed on Fig. 6.11, to be compared with Fig. 6.1.

Fig. 6.11 Inverse designs similar to F-functions of a truncated N-wave with “Haar and spikes”.

6.6 Conclusions

A few aspects of inverse design for convex scalar conservation laws, exemplified by
1D Burgers equation, were reviewed in the present note. In particular, the huge
variety of initial data leading to an entropy-admissible, piecewise discontinuous
target is revealed by Theorem 6.2. An iterative gradient algorithm relying on nu-
merically usually produces the “backward entropy solution”, mostly because nu-
merically solving linearized backward transport equations brings out corresponding
“reversible solutions”. In order to circumvent that issue, and to be able to produce
different, more steeply-varying numerical inverse designs, a filtering procedure was
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applied, by adequate wavelet projectors. The convergence of such a process pro-
gressively degrades as targets become close to a non-admissible profile, though.

Acknowledgements Both the authors thank Prof. Andreas Griewank who suggested to study con-
vex combinations of inverse designs during a meeting in september 2015.
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113–118

10. A. Bressan, A. Marson, A variational calculus for discontinuous solutions of systems of con-
servation laws, Comm. in Partial Differential Equations 20 (1995) 1491–1552.

11. J.M. Burgers, Application of a model system to illustrate some points of the statistical theory
of free turbulence, Proc. Konink. Nederl. Akad. Wetensch. 43 (1940) 2–12.

12. C. Castro, F. Palacios, E. Zuazua, An alternative descent method for the optimal control of
the inviscid Burgers equation in the presence of shocks, M3AS (2008).

13. R.O. Cleveland, Propagation of sonic-booms through a real stratified atmosphere, Ph.D. dis-
sertation, The University of Texas at Austin (1995).

14. J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl.
Math. 9 (1951) 225–236.

15. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math.
Wissenschaften Series 325, Springer-Verlag, 2010.

16. I.C. Daubechies, A.C. Gilbert, Harmonic analysis, wavelets, and applications, in Hyperbolic
Equations and Frequency Interactions, Luis Cafarelli and Weinan E, eds., IAS/Park City
Mathematics Series, Vol. 5, 1998.

17. L.C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics,
19. American Mathematical Society, Providence, RI, 2010..

18. A. Fikl, V. Le Chenadec, T. Sayadi, P.J. Schmid, A Comprehensive Study of Adjoint-Based
Optimization of Non-Linear Systems with Application to Burgers’ Equation, 46th AIAA
Fluid Dynamics Conference – DOI: 10.2514/6.2016-3805.

19. A.R. George, R. Seebass, Sonic boom minimization including both front and rear shocks,
AIAA Journal, vol. 9, no. 10 (1971) 2091–2093.

20. M. B. Giles and N. A. Pierce, An introduction to the Adjoint Approach to Design, Turbulence
and Combustion, vol. 65 (2001) 393–415



6 Filtered inverse design of Burgers equation 181

21. M. Giles, S. Ulbricht, Convergence of linearized and adjoint approximations for discontin-
uous solutions of conservation laws. Part 1: linearized approximations and linearized output
functionals, SIAM Journal on Numerical Analysis 48(3) (2010) 882–904

22. M. Giles, S. Ulbricht,Convergence of linearized and adjoint approximations for discontinuous
solutions of conservation laws. Part 2: adjoint approximations and extensions, SIAM Journal
on Numerical Analysis 48(3) (2010) 905–921.

23. Gilmore, P.; Kelley, C. T., An Implicit Filtering Algorithm for Optimization of Functions with
Many Local Minima, SIAM J. Optimization 5 1995.

24. E. Godlewski, P.A. Raviart, The linearized stability of solutions of nonlinear hyperbolic sys-
tems of conservation laws, Math. Comput. Simul. 50 (1999) 77–95.

25. L. Gosse, A Donoho-Stark criterion for stable signal recovery in discrete wavelet subspaces,
J. Comput. & Applied Math. 235 (2011) 5024–5039.

26. L. Gosse & F. James, Numerical approximation of linear one-dimensional conservation equa-
tions with discontinuous coefficients, Math. Comput. 69 (2000) 987–1015.

27. J.A. Hogan, J.D. Lakey, Time-frequency and time-scale methods, Birkhauser, 2005.
28. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Applied

Mathematical Sciences 152 (Springer-Verlag, New York, 2002)
29. E. Hopf, The partial differential equation ut +uux = uxx, Comm. Pure Appl. Math. 3 (1950)

20–23.
30. R. Lecaros, E. Zuazua, Tracking control of the 1D scalar conservation laws in the presence of

shocks, Trends in Contemporary Mathematics, Volume 8, Springer INdAM Series 195–219.
31. Y. Li, S. Osher, R. Tsai, Heat source identification based on ℓ1 constrained minimization,

Inverse Problems and Imaging 8 (2014) 199–221.
32. T.-P- Liu, M. Pierre, Source-Solutions and Asymptotic Behavior in Conservation Laws, J.

Differ. Equations 51 (1984) 419-441.
33. S. Mallat, A wavelet tour of signal processing, Academic Press, 1998.
34. P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equa-

tions, J. Evol. Equ. 6, no. 2, 325-362 (2006)
35. Y. Meyer, Ondelettes sur l’intervalle, Riv. Matem. Iberoamericana 7 (1991) 115–133.
36. Negreanu, M.; Matache, A.M.; Schwab, C., Wavelet Filtering for Exact Controllability of the

wave equation, SIAM J. Scient. Comput. 28 (2006)
37. K.J. Plotkin, State of the art of sonic boom modeling, J. Acoust. Soc. Am. 111 (1), Pt. 2, Jan.

2002.
38. K.J. Plotkin, S.K. Rallabhandi, W. Li, Generalized Formulation and Extension of Sonic Boom

Minimization Theory for Front and Aft Shaping, 47th AIAA Aerospace Sciences Meeting
(Including The New Horizons Forum and Aerospace Exposition) 5–8 January 2009, Orlando,
Florida.

39. A. Pozo, L.I. Ignat, E. Zuazua, Large-time asymptotics, vanishing viscosity and numerics for
1-D scalar conservation laws, Math. Comput. 84 (2015) 1633–1662.

40. S.K. Rallabhandi, Advanced sonic boom prediction using augmented Burgers equation, Jour-
nal of Aircraft 48 (2011), 1245-1253.

41. D. Serre, Systems of Conservation Laws I: Hyperbolicity, Entropies, Shock Waves, Cam-
bridge University Press (1999).

42. D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25
(1983) 379–393.

43. J. Tropp, On the linear independence of spikes and sines. Journal of Fourier Analysis and
Applications, 14 (2008) 838–858.

44. J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singular inverse-
square potential, J. Functional Analysis 254: 1864–1902 (2008).

45. Gilbert G Walter, Xiaoping Shen , Wavelet based on prolete spheroidal wave functions, J.
Fourier Anal. Appl. 10 (2004), 1–26

46. H. Xiao, V. Rokhlin, N. Yarvin, Prolate spheroidal wave functions, quadrature and interpo-
lation, Inverse Problems 17 (2001) 805–838.

47. G.B. Whitham, The Flow Pattern of a Supersonic Projectile, Comm. Pure Applied Math. V,
301-348 (1952).


