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Elliptic optimal control



Consider the elliptic problem, where u = u(x) is the control and
y = y(x) the state:{

−∆y + y3 = u(x) in Ω

y = 0 on ∂Ω.
(1)

For all u ∈ L2(Ω) there is an unique solution y ∈ H1
0 (Ω) ∩ L4(Ω):

min
H1

0 (Ω)∩L4(Ω)

1

2

∫
Ω
|∇y |2dx +

1

4

∫
Ω
|y |4dx −

∫
Ω
uydx .

Consider the optimal control problem:

min
u∈L2(Ω)

J(u) =
1

2
|y − z |2L2(Ω) +

1

2
|u|2L2(Ω). (2)

The minimum exists1

OP1: Is the global minimiser unique? Is it a strict minimum?
1A consequence of the straightforward application of the Direct Method of

the Calculus of Variations



A bit easier

Consider the finite-dimensional problem

Ay + ||y ||2y = u, (3)

A symmetric and A ≥ α > 0. For all u ∈ RN there is an unique
y ∈ RN :

min
y∈RN

1

2
< Ay , y > +

1

4
||y ||4− < u, y > .

Consider the optimal control problem:

min
u∈RN

J(u) =
1

2
||y − z ||2 +

1

2
||u||2. (4)

The minimum exists.

OP0: Is the global minimiser unique? Is it a strict minimum? 2

2In some very particular cases Dario Pighin (PhD student in our team) has
shown that the global minimiser is not unique



Much easier!

Consider 1-d problem
y + |y |2y = u. (5)

For all u ∈ R there is an unique solution y ∈ R:

min
y∈R

1

2
y2 +

1

4
y4 − uy .

Consider the optimal control problem:

min
u∈R

J(u) =
1

2
|y − z |2 +

1

2
u2. (6)

The minimum exists.

Replace u = y + |y |2y in the functional J. Then, J, written as a
function of y is strictly convex and the minimiser unique:

J(u) =
1

2
|y − z |2 +

1

2
|y + |y |2y |2 =

1

2
|y − z |2 +

1

2

[
y2 + y6 + 2y4

]
.



Back to the PDE: The answer is YES when the target z is small
enough.

If ū is a minimiser

J(ū) =
1

2
|ȳ − z |2L2(Ω) +

1

2
|ū|2L2(Ω) ≤ J(0) =

1

2
|z |2L2(Ω)

and, in particular,
|ū|L2(Ω) ≤ |z |L2(Ω).

If z is small, ū is small too, and so is the solution ȳ . Then
(ȳ)3 ∼ 0 and the elliptic PDE under consideration is nearly linear,
the functional J nearly quadratic and therefore:

1. The minimiser ū is small and unique;

2. It is a strict minimum: D2J(ū) > 0.

What happens when z is large?



The optimality system does not seem to help much

We could analyse the minimiser as a solution of the system of
Optimality (OS), involving the state y and the adjoint or costate
p, the vector (y , p). But the system under consideration doers not
seem to have any monotocity property allowing to conclude the
uniqueness: 

−∆y + y3 + p = 0 in Ω

y = 0 on ∂Ω

−∆p + 3y2p − y = −z in Ω

p = 0 on ∂Ω.

(7)



We change variables u → y

Recall that
u = −∆y + y3.

Then

J(u) = G (y) =
1

2
|y − z |2L2(Ω) +

1

2
| −∆y + y3|2L2(Ω)

=
1

2

∫
Ω

[|y−z |2+|−∆y+y3|2]dx =
1

2

∫
Ω

[|y−z |2+|−∆y |2+y6+6|∇y |2y2]dx

The functional G is now defined in the space [H2 ∩H1
0 ](Ω)∩ L6(Ω)

and looks very nice

But the term
∫

Ω
|∇y |2y 2dx is not necessarily convex.



Parabolic optimal control



Consider the parabolic problem
yt −∆y + y3 = u(x , t)χω in Ω× (0,T )

y = 0 on ∂Ω× (0,T )

y(0) = y0 in Ω.

(8)

For all u = u(x , t) ∈ L2(Ω× (0,T )) and y0 ∈ L2(Ω) there is an
unique solution
y ∈ C ([(0,T ]; L2(Ω)) ∩ L2(0,T ;H1

0 (Ω)) ∩ L4(Ω× (0,T )).

Consider the optimal control problem:

min
u∈L2(Ω×(0,T ))

J(u) =
1

2

∫ T

0
|y − z |2L2(Ω)dt +

1

2

∫ T

0
|u|2L2(Ω)dt. (9)

The minimum exists.

OP2: Is the global minimiser unique? Is it a strict minimum?



Easier...

Same problems in the ODE setting for{
y ′ + Ay + ||y ||2y = Bu in (0,T )

y(0) = y0,
(10)

with A ∈MN×N and B ∈MN×M .
For all u = u(t) ∈ L2(0,T ; RM) and y0 ∈ RN there is an unique
solution y ∈ C ([(0,T ]; RN).

Consider the optimal control problem:

min
u∈L2(0,T ;RM)

J(u) =
1

2

∫ T

0
||y − z ||2dt +

1

2

∫ T

0
||u||2dt. (11)

The minimum exists.

OP2b: Is the global minimiser unique? Is it a strict minimum?



The turnpike property



Many control problems arising in engineering, biomedicine and
social sciences, lead to natural questions of control in long time
horizons.

1. Sustainable growth

2. Cronical diseases

3. New generation of supersonic aircrafts

Challenges:

1. Develop specific tools for long time control horizons.

2. Build numerical schemes capable of reproducing accurately
the control dynamics in long time intervals (geometric
integration, asymptotic preserving schemes).



Origins

Although the idea goes back to John von Neumann in 1945, Lionel
W. McKenzie traces the term to Robert Dorfman, Paul Samuelson,
and Robert Solow’s ”Linear Programming and Economics Analysis”
in 1958, referring to an American English word for a Highway:

... There is a fastest route between any two points; and if
the origin and destination are close together and far from
the turnpike, the best route may not touch the turnpike.
But if the origin and destination are far enough apart, it
will always pay to get on to the turnpike and cover
distance at the best rate of travel, even if this means
adding a little mileage at either end.





Tunrpike property ≡ Asymptotic simplification

The turnpike property...

1. ... ensures that optimal strategies for the steady-state problem
lead to nearly optimal ones for the time-dependent dynamics.

2. ... is employed systematically much beyond the class of
problems for which the principle can be proved to hold
rigorously.

3. ... can be of use in many contexts such as mesh adaptivity,
parameter-dependent problems, etc, to make problems
time-independent.



3 The problem is much simpler in the context of time-independent
optimal controls for the time-evolution problem

yt −∆y + y3 = u(x)χω in Ω× (0,T )

y = 0 on (0,T )× ∂Ω

y(0) = y0 ∈ L2 ,

(12)

with controls u = u(x) independent of time.

Consider the optimal control problem:

min
u∈L2(ω)

JT (u) =
1

2

∫ T

0
|y(t)− z |2L2(ω0)dt +

1

2
|u|2L2(ω) , (13)

3A. Porretta & E. Z., Remarks on long time versus steady state optimal
control, Springer INdAM Series “Mathematical Paradigms of Climate Science”,
F. Ancona et al. eds, 15, 2016, 67-89.



and the steady state version
−∆y + y3 = uχω in Ω

y = 0 on ∂Ω ,

minu∈L2(ω) J(u) = 1
2

[
|u|2L2(ω) + |y − z |2L2(ω0)

]
.

(14)

Γ-convergence arguments allow showing convergence as T →∞:

We have
uT → u in L2(Ω).

OP3: Is the convergence rate exponential?

||uT − u||L2(Ω) ≤ C exp(−αT )



Can this exponential convergence property be seen in the Optimality
System?

Time-evolution optimality system

yt −∆y + y3 = − 1
T

∫ T
0 p(x , t)dt in Ω

y = 0 on ∂Ω

y(x , 0) = y0(x) in Ω

−pt −∆p + 3y2p = y − z in Ω

p = 0 on ∂Ω

p(x ,T ) = 0 in Ω.

(15)

The steady-state version:
−∆y + y3 = −p(x) in Ω

y = 0 on ∂Ω

−∆p + 3y2p = y − z in Ω

p = 0 on ∂Ω.

(16)



4 Consider now the semilinear heat equation:
yt −∆y + y3 = u(x , t)1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(17)

Consider the minimisation problem:

min
f

[1

2

∫ T

0

∫
Ω
|y − yd |2dxdt +

∫ T

0

∫
ω
u2dxdt

]
.

4Extension to 2d NS by S. Zamorano, UChile



The optimality system reads:

yt −∆y + y3 = −p1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

−pt −∆p + 3y2p = y − yd in Q

p = 0 on Σ

p(x ,T ) = 0 in Ω.



And the linearised optimality system, around the optimal steady
solution (ȳ , p̄) is as follows:

ηt −∆η + 3(ȳ)2η = −q1ω in Q

η = 0 on Σ

η(x , 0) = 0 in Ω

−qt −∆q + 3(ȳ)2q+6ȳ p̄η = η in Q

q = 0 on Σ

q(x ,T ) = 0 in Ω.



The linearised optimality system reads as follows:

ηt −∆η + 3(ȳ)2η = −q1ω, −qt −∆q + 3(ȳ)2q = (1− 6ȳ p̄)η

This is the optimality system for a LQ control problem of the model

ηt −∆η + 3(ȳ)2η = f 1ω

and the cost

min
f

[1

2

∫ T

0

∫
Ω
ρ(x)|η|2dxdt +

∫ T

0

∫
ω
f 2dxdt

]
,

ρ(x) = 1− 6ȳ(x)p̄(x).

And the turnpike property holds as soon as ρ(x) ≥ δ > 0:

||yT (t)− ȳ ||L2(Ω) + ||uT (t)− ū||L2(ω) ≤ C [exp(−αt) + exp(−α(T − t))].

This holds if ȳ and p̄ are small enough, and this is automatically
implied as soon as the target yd is small enough. 5

5A. Porretta & E. Z., Long time versus steady state optimal control, SIAM
J. Cont. Optim., 51 (6) (2013), 4242-4273.



The second order optimality conditions for the minimiser of the
steady-state problem guarantee that the corresponding
steady-state functional is semidefinite positive6. But this does not
imply that the time-dependent functional is positive7.

OP4.
Can we get rid of the smallness condition on the target?

OP5.
In case there are several minimisers can we determine the basin of
attraction of each of the turnpikes?

6E. Casas & M. Mateos, EHF2016 Lecture Notes, 2016.
7Private communication D. Pighin



Oscillatory nature of optimal parabolic controls



Sharp estimates for heat control

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain
of Rn with smooth boundary Γ, Q = (0,T )× Ω and
Σ = (0,T )× Γ: 

ut −∆u = f 1ω in Q
u = 0 on Σ
u(x , 0) = u0(x) in Ω.

(18)

1ω = the characteristic function of ω of Ω where the control is
active.
Assume u0 ∈ L2(Ω), f ∈ L2(Q) so that (22) admits an unique
solution

u ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

u = u(x , t) = solution = state, f = f (x , t) = control

Given u0 and T > 0 find f = f (x , t) such that

u(x ,T ) ≡ 0.



Well known result (Fursikov-Imanuvilov, Lebeau-Robbiano,...) :
The system is null-controllable in any time T and from any open
non-empty subset ω of Ω.
The control of minimal L2-norm can be found by minimizing

J0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx (19)

over the space of solutions of the adjoint system:
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(T , x) = ϕ0(x) in Ω.

(20)

Obviously, the functional is continuous and convex from L2(Ω) to
R and coercive because of the observability estimate:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (21)



One has in fact∫ T

0

∫
Ω
e

−A
(T−t)ϕ2dxdt ≤ C

∫ T

0

∫
ω
ϕ2dxdt.

Or, in Fourier series,∑
k≥1

exp(−B
√
λk)|ϕ̂T

k |2 ≤ C

∫ T

0

∫
ω
ϕ2dxdt.

OP5: Characterize the best constants A and B



Oscillatory nature of controls

Numerical simulations exhibit an oscillatory nature of controls,
which is very much compatible with the estimates above, that
show that the adjoint state at time T , belong to a very wide space.
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OP5: Can this oscillatory pattern be characterised?



Oscillatory nature of controls

OP6: Can one estimate (lower and upper bounds) the gap between
consecutive zeroes: ∑

k≥1

ak exp(−k2(T − t))

with ∑
k≥1

|ak |2 exp(−ck) < +∞.



Optimal design of waves



Internal stabilization of waves: Let ω be an open subset of Ω.
Consider:

ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.
The energy dissipation law is then

dE (t)

dt
= −

∫
ω
|yt |2dx .

Question: Do they exist C > 0 and γ > 0 such that

E (t) ≤ Ce−γtE (0), ∀t ≥ 0,

for all solution of the dissipative system?



This is equivalent to an observability property: There exists
C > 0 and T > 0 such that

E (0) ≤ C

∫ T

0

∫
ω
|yt |2dxdt.

In other words, the exponential decay property is equivalent to
showing that the dissipated energy within an interval [0,T ]
contains a fraction of the initial energy, uniformly for all solutions.
This estimate, together with the energy dissipation law, shows that

E (T ) ≤ σE (0)

with 0 < σ < 1. Accordingly the semigroup map S(T ) is a strict
contraction. By the semigroup property one deduces immediately
the exponential decay rate.



The observability inequality and, accordingly, the exponential
decay property holds if and only if the support of the
dissipative mechanism, Γ0 or ω, satisfies the so called the
Geometric Control Condition (GCC) (Ralston, Rauch-Taylor,
Bardos-Lebeau-Rauch,...)

Rays propagating inside the domain Ω following straight lines that
are reflected on the boundary according to the laws of Geometric
Optics. The control region is the red subset of the boundary. The
GCC is satisfied in this case. The proof requires tools from
Microlocal Analysis.



The optimal shape design problem.

Given a subdomain ω (or Γ0) for which the stabilization problem
holds, it is natural to address the problem of optimizing the profile
of the damping potential a = a(x) to enhance the exponential
decay rate. Consider

ytt −∆y =−a(x)yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω.

Then, for any a > 0 the exponential decay property holds:

E (t) ≤ Ce−γatE (0), ∀t ≥ 0.

Obviously, the decay rate γa depends on the damping potential a.



It is therefore natural:

I To analyze the nature of the mapping a→ γa.

I One could also analyze the dependence of the decay rate on
the geometry of the subdomain ω (γa depends also on ω).

Against the very first intuition this map is not monotonic with
respect to the size of the damping. A 1− d spectral computation
for constant coefficients yields:



Some known results:

I 1− d : The exponential decay rate coincides with the spectral
abscissa within the class of BV damping potentials. For large
eigenvalues Re(λ) ∼ −

∫
ω a(x)dx/2 (S. Cox & E. Z., CPDE,

1993). Thus:

γa ≤
∫
ω
a(x)dx .

Despite of the overdamping phenomenon, the following
surprising result was proved (Castro-Cox, SICON, 2001): The
decay rate may be made arbitrarily large by approximating
singular potentials of the form a(x) = 2/x for the space
interval Ω = (0, 1). Note that is linked to the well known
efficiency for the method of Perfectly Matching Layers (PML)
for the computation of waves, as an alternative to transparent
boundary conditions.



I In the multidimensional case the situation is even more
complex. In this case it is not longer true that the spectral
absicssa characterizes the exponential decay rate. There are
actually two quantities that enter in such characterization (G.
Lebeau, 1996):

I The spectral abscissa;

I The minimum asymptotic average (as T →∞) of the
damping potential along rays of Geometric Optics. The later
is in agreement with our intuition of waves traveling along
rays of Geometric Optics.



This is a typical situation in which the spectral abscissa does not
suffice to capture the decay rate. The damping mechanism is
active on the outer neighborhood of the exterior boundary. When
the domain is the ellipsoid this produces the exponential decay.
But, in the presence of the two holes, the exponential decay rate is
lost, due to the existence of a trapped ray that never meets the
damping region. In this case the decay rate is zero but the
spectrum is not essentially affected if the holes are small enough.
Thus the spectrum is unable to characterize the null decay rate.



The optimal design of the damping potential with constraints
(size, shape, etc.) is still widely open.

I Hébrard-Henrot, SCL, 2003. They show the complexity of the
problem in the 1− d case for small amplitude damping
potentials located on the union of a finite number of intervals.

I Hébrard-Humbert, 2003: Optimization of the shape of ω in a
square domain in view of the geometric optics quantity
entering in the characterization of the decay rate.

I Cox-Henrot, Ammari-Tucsnak, 2002: 1− d problems with
damping terms located at a single point through a Dirac
delta. Eigenvalues are complex valued, and they depend both
on the amplitude of the damping and the diophantine
properties of the point support.

I A. Münch, P. Pedregal, F. Periago 2005, ...: Young measures,
relaxation, Level set methods.

I And many others...



Hébrard-Humbert, 2003



A. Munch, 2005.



The main difficulties are related to the fact that there is no
variational principle characterizing the decay rate, and to the
complex way in which the eigenvalues depend on the damping
potentials, and the different way they do it for
low/high/intermediate frequencies, for small/large amplitudes of
the damping potentials, with respect to the shape of the support,
....
Futhermore, not always all authors deal with the same problem.
For instance, the optimal damping for a given initial datum may
differ significantly from the optimal damping when considering
globally all possible solutions...



This is the case even for constant damping potentials k . The
optimal damping for the `-th eigenfunction is k = 2

√
µ`.

Open problem # 1.1: Characterize the optimal dampers for given
initial data. How do they depend on their regularity? What about
initial data with a finite number of Fourier components?
Open problem # 1.2: Given the subdomain ω, characterize the
optimal damping potential for all finite energy solutions.
Open problem # 1.3: Given a total amount of possible damping,
to characterize the optimal subdomain ω for its location.
Open problem # 1.4: Optimal dampers for the billiard. What is
the subdomain that absorbs faster all rays? How this depends on
the geometry of Ω? How it depends on the number of connected
components of ω and on its size? What about variable
coefficients/metrics?



Let us now report on some recent joint work with Y. Privat and
E. Trélat that indicates what the expected answer could be.
Our analysis is concerned with the very closely related problems of
optimal placement of observers and controllers for the conservative
dynamics, in one space dimension.


ytt − yxx = 0 in Q = (0, π)× (0,T )
y = 0 for x = 0, π; t ∈ (0,T
y(x , 0) = y0(x), yt(x , 0) = y1(x) in (0, π).

The problem is then of variational nature!



We consider four different problems. All concern the search of the
optimal subset ω with a given measure |ω| = L, 0 < L < π so that:
P1.- For fixed finite energy initial data (y0, y1), the energy
concentrated in ω better captures the total one.
P2.- Same question but uniformly on the whole energy space for
(y0, y1).
P3.- For fixed finite energy initial data (y0, y1), the cost of
controlling the system by acting on ω is minimized.
P4.- Same question but uniformly on the whole energy space for
(y0, y1).



The following results are proved:
1.- Problems P1 & P3: For initial data that are analytic
(exponential decay of Fourier coefficients), there is a unique
minimizer with a finite number of connected components.
2.- Problem P1: The optimal set always exists but it can be a
Cantor set.
3.- Problem P2: Relaxation occurs (Hebrart-Henrot): the optimum
is achieved by a density function ρ(x) so that

∫ π
0 ρ(x)dx = L and

not by a measurable set with bang-bang densities. In our work we
actually prove the infima of both the relaxed and the classical
problem coincide.
3.- Problem P3: There are (rough) initial data for which the
optimal domain does not exist. There is a relaxation phenomenon
so that
4.- Problem P4: Relaxation occurs.
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Simulations performed using AMPL + IPOPT.



Sharp observability estimates for heat equations



THE CONTROL PROBLEM

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain
of Rn with smooth boundary Γ, Q = (0,T )× Ω and
Σ = (0,T )× Γ: 

ut −∆u = f 1ω in Q
u = 0 on Σ
u(x , 0) = u0(x) in Ω.

(22)

1ω denotes the characteristic function of the subset ω of Ω where
the control is active.
We assume that u0 ∈ L2(Ω) and f ∈ L2(Q) so that (22) admits an
unique solution

u ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

u = u(x , t) = solution = state, f = f (x , t) = control



Well known result (Fursikov-Imanuvilov, Lebeau-Robbiano,...) :
The system is null-controllable in any time T and from any open
non-empty subset ω of Ω.
In other words, for all u0 ∈ L2(Ω) there exists a control
f ∈ L2(ω × (0,T )) such that the corresponding solution satisfies

u(T ) ≡ 0.



The control of minimal L2-norm can be found by minimizing

J0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx (23)

over the space of solutions of the adjoint system:
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(T , x) = ϕ0(x) in Ω.

(24)

Obviously, the functional is continuous and convex from L2(Ω) to
R and coercive because of the observability estimate:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (25)



This estimate,

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω), (26)

was proved by Fursikov and Imanuvilov (1996) using Carleman
inequalities. In fact the same proof applies for equations with
smooth (C 1) variable coefficients in the principal part and for heat
equations with lower order potentials.
On has in fact∫ T

0

∫
Ω
e

−A
(T−t)ϕ2dxdt ≤ C

∫ T

0

∫
ω
ϕ2dxdt.



Open problem # 2.1: Characterize the best constant A in this
inequality:

A = A(Ω, ω).

The Carleman inequality approach allows establishing some upper
bounds on A depending on the properties of the weight function.
But this does not give a clear path towards the obtention of a
sharp constant.



Lower bounds.

L. Miller (2003) , by inspection of the heat kernel, proved

A > `2/2

where ` is the length of the largest geodesic in Ω \ ω.
Recall that:

G (x , t) = (4πt)−n/2 exp
(−|x |2

4t

)
.

then, the following upper bound holds for the Green function in Ω:

GΩ(x , y , t) ≤ Ct−n/2 exp
(−d2(x , y)

(4 + δ)t

)
.



Open problem # 2.2: To get sharp lower bounds. Can the lower
bound A > `2/2 be improved?

Note it is hard to guess any better lower bound. This would
amount to find solutions of the heat equation exhibiting higher
concentration effects than the Gaussian heat kernel itself.



Upper bounds.

Several works have also been devoted to get upper bounds on the
best constant A using Carleman inequalities, Kannai’s tranform
and the control of waves under the so-called Geometric Control
Condition (GCC) (Miller), one-dimensional tools from
non-harmonic Fourier series, moment problems and number theory
(Fatorinni-Russell, Seidman; Tucsnak and Tenenbaum,...).
But, as far as we know, until recently the only sharp result was the
one by Fatorinni & Russell (1971) showing that A = `2/2 in one
space dimension.



More recently, in a joint work with S. Ervedoza we have shown
that, whenever the GCC is fulfilled, for time T , then we have the
upper bound:

A ≤ T 2/8.

Note that for a ball Ω, with control on a neighborhood of the
boundary,

T = 2`.

We thus get the sharp upper bound in this case:

A ≤ `2/2.

We use an inverse Kannai transform.



The Kannai transform allows transferring the results we have
obtained for the wave equation to other models and in particular to
the heat equation (Y. Kannai, 1977; K. D. Phung, 2001; L. Miller,
2004)

et∆ϕ =
1√
4πt

∫ +∞

−∞
e−s

2/4tW (s)ds

where W (x , s) solves the corresponding wave equation with data
(ϕ, 0).

Wss −∆W = 0 + Kt − Kss = 0 → Ut −∆U = 0,

Wss −∆W = 0 + iKt − Kss = 0 → iUt −∆U = 0.

This can be actually applied in a more general abstract context
(Ut + AU = 0) but not when the equation has time-dependent
coefficients.



Our proof is based on an inverse Kannais transform that, to the
best of our knowledge, was unknown until now:

W (s) =

∫
R+

1

(4πt)1/2
sin

(
sS

2t

)
exp

(
s2 − S2

4t

)
U(t) dt.

Note however, that, even under the GCC there are no sharp upper
bounds for other domains. For instance for the square with
observation on two consecutive sides we have:

1

2
≤ A ≤ 1.



Open problem # 2.3: Get sharp upper bounds for other domains
fulfilling the GCC.
Open problem # 2.4: Get some upper bounds for domains that do
not fulilll GCC.
Open problem # 2.5: Possible connections with well known results
on decay rates for damped wave equations in which both
microlocal quantities and spectral ones enter, that only coincide in
1− d (see Section #1)???



Robust control of linear finite-dimensional
systems



Partially dissipative linear hyperbolic systems
∂w

∂t
+

m∑
j=1

Aj
∂w

∂xj
= −Bw , x ∈ Rm , w ∈ Rn (27)

A1, ...,Am

symmetric
B =

(
0 0
0 D

)
l n1

l n2

X tDX > 0
∀X ∈ Rn2 − {0}

Goal: Understand the asymptotic behavior as t →∞.
Apply Fourier transform:

∂ŵ

∂t
= (−B − iA(ξ))ŵ where A(ξ) :=

m∑
j=1

ξjAj

Lack coercivity :
〈[B + iA(ξ)]X ,X 〉 = 〈BX ,X 〉 = 〈DX2,X2〉 � c |X |2
is compatible with the decay depending on ξ:

exp[(−B − iA(ξ))t] 6 Ce−λ(ξ)t

PARTIALLY DISSIPATIVE LINEAR HYPERBOLIC SYSTEM
≡

m-PARAMETER (ξ) FAMILY OF FINITE-DIMENSIONAL
PARTIALLY DISSIPATIVE n-DIMENSIONAL SYSTEMS.

The asymptotic behavior of solutions is determined by the behavior
of the function ξ → λ(ξ) giving the decay rate as a function of ξ.



A quantitative measure of the decay rate as a function of ξ:

A1, ...,Am

symmetric
B =

(
0 0
0 D

)
l n1

l n2
A(ξ) :=

m∑
j=1

ξjAj

ξ = ρω ∈ Rm ρ > 0 ω ∈ Sm−1 (mk) ↑ well chosen

N∗,ε(ω) := min{
n−1∑
k=0

εmk |BA(ω)kx |2; x ∈ Sn−1}.



Theorem
(K. Beauchard and E. Z.)
∃ε∗ > 0, c > 0 such that ∀ε ∈ (0, ε∗),

exp[(−B − iρA(ω))t] 6 2e−cN∗,ε(ξ)min{1,ρ2}t .

Remark : (SK)= (Shizuta-Kawashima) ⇔ Kalman rank
condition for (A,B) ⇔ N∗,ε(ω) > N∗,ε > 0, ∀ω ∈ Sm−1.
In general, N∗,ε(ω) may vanish for some values of ω ∈ Sm−1, in
which case the decomposition of solutions and its asymptotic form
is more complex.



The set of degeneracy :
D(B + iA(ξ)) = {ξ ∈ Rm; rank[B|BA(ξ)|...|BA(ξ)n−1] < n}
is an algebraic submanifold

I either |D| = 0 ⇔ N∗,ε > 0 a.e. ⇒ strong L2 stability;
or

I D = Rm : ∃ non dissipated solutions

Open problem # 3.1: Characterize and classify, in terms of
(A,B), the possible sets of degeneracy D.
Open problem # 3.2: Characterize and classify, in terms of
(A,B), the possible degenerate behaviors of N∗,ε(ω) as ω → D.
Open problem # 3.3: Classify the possible asymptotic behaviors
of partially dissipative hyperbolic systems as t →∞.
Open problem # 3.4: Describe the controllability properties of
m-parameter families of finite-dimensional systems:

x ′(t) + iA(ξ)x(t) = Bu(t) where A(ξ) :=
m∑
j=1

ξjAj .



An example:

Theorem
(K. Beauchard & E. Z.)
When n1 = 1, D is a vector subspace of Rm and

N∗,ε(ω) > c min{1, dist(ω,D)2}, ∀ω ∈ Sm−1.

Example: n = m = 2; D = {(ξ1, ξ2) : a1
21ξ1 + a2

21ξ2 = 0}.



Control of Kolmogorov’s equation



Null control of the Kolmogorov equation:

∂f

∂t
+v

∂f

∂x
−∂

2f

∂v2
= u(t, x , v)1ω(x , v), (x , v) ∈ Rx×Rv , t ∈ (0,+∞).

(28)
In a recent work with K. Beauchard, we consider the particular

case where where ω = Rx ×
[
Rv − [a, b]

]
.



Equivalently, one may address the following observability inequality
for the adjoint system:{

∂g
∂t − v ∂g∂x −

∂2g
∂v2 = 0, (x , v) ∈ Rx × Rv , t ∈ (0,T ),

g(0, x , v) = g0(x , v), (x , v) ∈ Rx × Rv .
(29)

∫
Rx×Rv

|g(T , x , v)|2dxdv 6 C

∫ T

0

∫
ω
|g(t, x , v)|2dxdvdt.

Theorem
(K. Beauchard and E. Z.)

In the particular case where ω = Rx ×
[
Rv − [a, b]

]
the

observability inequality holds for the adjoint system and the
Kolmogorov equation is null controllable.



Ideas of the proof:

I Fourier transform in v :{
∂ f̂
∂t (t, ξ, v) + iξv f̂ (t, ξ, v)− ∂2 f̂

∂v2 (t, ξ, v) = û(t, ξ, v)1R−[a,b](v),

f̂ (0, ξ, v) = f̂0(ξ, v).

(30)

I Decay:∣∣∣f̂ (t, ξ, .)
∣∣∣
L2(R)

6
∣∣∣f̂0(ξ, .)

∣∣∣
L2(R)

e−ξ
2t3/12,∀ξ ∈ R, ∀t ∈ R+.

(31)

I Control depending on the parameter ξ with cost

eC(T ) max{1,
√
|ξ|}.

The exponentially large cost of control for high frequencies is
compensated by the exponential (and stronger) decay rate.



Open problem # 4.1: Similar results hold for other geometries of
control sets?
Open problem # 4.2: What about more general classes of
hypoelliptic equations?
Open problem # 4.3: May Carleman inequalities be applied
directly on the Kolmogorov system without using Fourier
transform?
Open problem # 4.4: How are related the notions of
hypoellipticity and hypocoercivity with the property of null
controllability (connections with Open Problems #2.X on the heat
kernel).
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