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Motivation

Brumer, Paul, Shapiro, Moshe, Laser Control of Chemical Reactions,
Scientific American, 0036-8733, March 1, 1995, Vol. 272, Issue 3.
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Motivation

The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole chemistry are
thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics
should be developed, which can lead to the explanation of the
main features of complex atomic systems without too much
computations.

Dirac, 1929.
Yousef Saad, James R. Chelikowsky & Suzanne M. Shontz, Numerical
Methods for Electronic Structure Calculations of Materials, SIAM
REVIEW Vol. 52, No. 1, pp. 354.
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Motivation revisited

To build convergent numerical schemes for nonlinear PDE of dispersive
type: SCHRÖDINGER EQUATION.
Similar problems for other dispersive equations: Korteweg-de-Vries, wave
equation, ...

Goal: To cover the classes of NONLINEAR equations that can be solved
nowadays with fine tools from PDE theory and Harmonic analysis.

Key point: To handle nonlinearities one needs to decode the intrinsic
hidden properties of the underlying linear differential operators (Strichartz,
Kato, Ginibre, Velo, Cazenave, Weissler, Saut, Bourgain, Kenig, Ponce,
Saut, Vega, Koch, Tataru, Burq, Gérard, Tzvetkov, ...)

This has been done succesfully for the PDE models.
What about Numerical schemes?

FROM FINITE TO INFINITE DIMENSIONS IN PURELY
CONSERVATIVE SYSTEMS.....
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Motivation revisited

UNDERLYING MAJOR PROBLEM:

Reproduce in the computer the dynamics in Continuum and Quantum
Mechanics, avoiding spurious numerical solutions.

For this we need to adapt at the discrete numerical level the techniques
developed in the continuous context.

WARNING! NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS

This issue is relevant in numerical analysis but also in modeling were the
discussion between continuous versus discrete models is relevant.
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The semigroup viewpoint

The appropriate functional setting depends on the model under
consideration on a subtle manner.
Consider:

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

A an unbounded operator in a Hilbert (or Banach) space H, with domain
D(A) ⊂ H. The solution is given by

u(t) = eAtu0.

Semigroup theory provides conditions under which eAt is well defined.
Roughly A needs to be maximal (A+ I is invertible) and dissipative
(A ≤ 0).
Most of the linear PDE from Mechanics enter in this general frame: wave,
heat, Schrödinger equations,...
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The semigroup viewpoint

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +

∫ t

0
eA(t−s)f(u(s))ds.

Assuming f : H → H is locally Lipschitz, allows proving local (in time)
existence and uniqueness in

u ∈ C([0, T ];H).

But, often in applications, the property that f : H → H is locally
Lipschitz FAILS.
For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.
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The semigroup viewpoint

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): IF eAtu0 ∈ X, then look for solutions of
the nonlinear problem in

C([0, T ];H) ∩X.

One then needs to investigate whether

f : C([0, T ];H) ∩X → C([0, T ];H) ∩X

is locally Lipschitz. This requires extra work: We need to check the
behavior of f in the space X. But the the class of functions to be tested
is restricted to those belonging to X.
Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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The semigroup viewpoint

THE MORAL OF THIS STORY:

IF WORKING IN C([0, T ]; : H) ∩X IS NEEDED FOR SOLVING THE
PDE, FOR PROVING CONVERGENCE OF A NUMERICAL SCHEME
WE WILL NEED TO MAKE SURE THAT IT FULFILLS SIMILAR
STABILITY PROPERTIES IN X (OR Xh).

THIS OFTEN FAILS!
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Dispersion for the 1− d Schrödinger equation

Consider the Linear Schrödinger Equation (LSE):

iut + uxx = 0, x ∈ R, t > 0, u(0, x) = ϕ, x ∈ R.

It may be written in the abstract form:

ut = Au, A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in L2(R), i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).
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Dispersion for the 1− d Schrödinger equation

Dispersive properties: Fourier components with different wave numbers
propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2 ||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)
−( 1

2
− 1

p
)||ϕ||Lp′ (R), 2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R), then

u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are not only relevant for a better understanding of the
dynamics of the linear system but also to derive well-posedness and
compactness results for nonlinear Schrödinger equations (NLS).
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Dispersion for the 1− d Schrödinger equation

The same L2 theory applies for semilinear equations{
iut + uxx = f(u) x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R,

(1)

provided the nonlinearity f : R→ R is globally Lipschitz.

[Well-posedness of the linear problem + variation of constants formula]

BUT THIS ANALYSIS IS INSUFFICIENT TO DEAL WITH OTHER
NONLINEARITIES, FOR INSTANCE:

f(u) = |u|p−1u, p > 1.
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Dispersion for the 1− d Schrödinger equation

Despite of this, using the dispersive properties of the linear semigroup, the
following can be proved for the NSE:{

iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(2)

Theorem

( Global existence in L2, Tsutsumi, 1987). For 0 ≤ p < 4 and ϕ ∈ L2(R),
there exists a unique solution u in C(R, L2(R)) ∩ Lqloc(L

p+2) with
q = 4(p+ 1)/p that satisfies the L2-norm conservation property and
depends continuously on the initial condition in L2.

This result can not be proved by methods based purely on energy
arguments.
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Lack of numerical dispersion
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Lack of numerical dispersion

The three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (3)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution at the

node xj = jh, and ∆h ∼ ∂2
x:

∆hu =
1

h2
[uj+1 + uj−1 − 2uj ].

The scheme is consistent + stable in L2(R) and, accordingly, it is also
convergent, of order 2 (the error is of order O(h2)).
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Lack of numerical dispersion

In fact, ||uh(t)||`2 = ||ϕ||`2 , for all t ≥ 0.
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Lack of numerical dispersion

LACK OF DISPERSION OF THE NUMERICAL SCHEME
Consider the semi-discrete Fourier Transform

u = h
∑
j∈Z

uje
−ijhξ, ξ ∈ [−π

h
,
π

h
].

There are “slight” but important differences between the symbols of the
operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = − 4

h2
sin2(

ξh

2
), ξ ∈ [−π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ)→ p(ξ), as h→ 0. This confirms
the convergence of the scheme. But this is far from being sufficient for our
goals.
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Lack of numerical dispersion

The main differences are:

• p(ξ) is a convex function; ph(ξ) changes convexity at ± π
2h .

• p′(ξ) has a unique zero, ξ = 0; p′h(ξ) has the zeros at ξ = ±π
h as well.
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Lack of numerical dispersion

LACK OF CONVEXITY = LACK OF INTEGRABILITY GAIN.
The symbol ph(ξ) looses convexity near ±π/2h. Applying the stationary
phase lemma (G. Gigante, F. Soria, IMRN, 2002):

Theorem

Let 1 ≤ q1 < q2. Then, for all positive t,

sup
h>0,ϕh∈lq1h (Z)

|| exp(it∆h)ϕh||lq2h (Z)

||ϕh||lq1h (Z)

=∞. (4)

Initial datum with Fourier transform concentrated on π/2h.
LACK OF CONVEXITY = LACK OF LAPLACIAN.
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Lack of numerical dispersion

Independent work on the Schrödinger equation in lattices:

A. Stefanov & P. G. Kevrekidis, Nonlinearity 18 (2005) 1841-1857.

L. Giannoulis, M. Herrmann & A. Mielke, Multiscale volume, 2006.

It is shown that the fundamental solution on the discrete lattice decays in
L∞ as t−1/3 and not as t−1/2 as in the continuous frame.
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Lack of numerical dispersion

Lemma

(Van der Corput)
Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1

for all x ∈ (a, b). Then ∣∣∣∣∫ b

a
eitφ(ξ)dξ

∣∣∣∣ ≤ ckt−1/k (5)
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Lack of numerical dispersion

LACK OF SLOPE= LACK OF LOCAL REGULARITY GAIN.

Theorem

Let q ∈ [1, 2] and s > 0. Then

sup
h>0,ϕh∈lqh(Z)

‖Sh(t)ϕh‖~sloc(Z)

‖ϕh‖lqh(Z)

=∞. (6)

Initial data whose Fourier transform is concentrated around π/h.
LACK OF SLOPE= VANISHING GROUP VELOCITY.
Trefethen, L. N. (1982). SIAM Rev., 24 (2), pp. 113–136.
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Lack of numerical dispersion

Figure: Localized waves travelling at velocity = 1 for the continuous equation
(left) and wave packet travelling at very low group velocity for the FD scheme
(right).
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Lack of numerical dispersion

CONCLUSION

For the finite difference scheme:

The standard L2-stability condition does not suffice.

We are dealing with properties that have to do with other integrability
and regularity properties. Thus, stability has to be measured in those
functional settings.

Surprisingly enough the finite-difference scheme is not stable in that
sense.
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Remedies Fourier filtering

A REMEDY: FOURIER FILTERING
Eliminate the pathologies that are concentrated on the points ±π/2h and
±π/h of the spectrum, i. e. replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j (t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.
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Remedies Fourier filtering

This guarantees the same dispersion properties of the continuous
Schrödinger equation to be uniformly (on h) true together with the
convergence of the filtered numerical scheme.
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Remedies Fourier filtering

But Fourier filtering:

• Is computationally expensive: Compute the complete solution in the
numerical mesh, compute its Fourier transform, filter and the go back
to the physical space by applying the inverse Fourier transform;

• Is of little use in nonlinear problems.

Other more efficient methods?
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Remedies Numerical viscosity

A VISCOUS FINITE-DIFFERENCE SCHEME
Consider:  i

duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,
(7)

where the numerical viscosity parameter a(h) > 0 is such that

a(h)→ 0

as h→ 0.
This condition guarantess the consistency with the LSE.
This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2`2 = ||ϕ||2`2 − 2a(h)

∫ t

0
||u(τ)||2~1dτ.

Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).
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Remedies A bigrid algorithm

TWO-GRID ALGORITHM: DO NOT MODIFY THE SCHEME BUT
SIMPLY PRECONDITION THE INITIAL DATA!

Let V h
4 be the space of slowly oscillating sequences (SOS) on the fine grid

V h
4 = {Eψ : ψ ∈ ChZ4 },

where E : ChZ
4 → ChZ stands for the extension operator and let

Π : ChZ → ChZ
4 : be the projection operator

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r,∀j ∈ Z, r = 0,3, φ ∈ ChZ.
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Remedies A bigrid algorithm

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h
4 ,

which acts as a a filter, associating to each sequence on the fine grid a
slowly oscillating one. The discrete Fourier transform of a slowly
oscillating sequence (SOS) is as follows:̂̃

Πφ(ξ) = 4 cos2(ξh) cos2(ξh/2)Π̂φ(ξ).
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Remedies A bigrid algorithm

Both the viscous numerical scheme (with a correctly scaled viscosity
coefficient) and the semi-discrete finite-difference scheme in the class of
SOS data:

Have the right decay and locally regularizing property.

Provide efficient numerical schemes for the numerical approximation
of the NLS and, in particular, to guarantee convergence in the
context of the classical Tsutsumi’s result mentioned above.
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Remedies A bigrid algorithm
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Orders of convergence

Is all this analysis needed?
In practice, we could:

1.- Approximate the L2 initial data ϕ by smooth ones (say, in H1)

2.- Use energy estimates in H1, using Gronwall’s inequality, since
f : H1 → H1 is now locally Lipschitz, to prove convergence of the
scheme for these smooth data.

3.- By this double approximation procedure, derive a family of
numerical solutions converging to the continuous one.

Note that:

This can be done without using dispersive estimate.

Warning! When doing that we pay a lot (!!!) at the level of the
orders of convergence...
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Orders of convergence

An example: The two-grid method yields the polynomial convergence rate:

||uh − Thu||L∞(0,T ;`2(hZ)) ≤ C(T, ||ϕ||Hs)hs/2.

But, when applying the energy method for the finite-difference scheme we
get a logarithmic order of convergence of | log h|−s/(1−s) instead of hs/2.

Approximate ϕ by ϕε smooth so that

||ϕ− ϕε||L2 ∼ ε.

Then
||ϕε||H1 ∼ ε−s.

and
||u− uε||L2 ≤ Cε.

Furthermore, by Gronwall, using H1-estimates:

||uε − uεh||L2 ≤ C exp(C||ϕε||H1).
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Orders of convergence

This, together with the following threshold in the aproximation process
shows that the convergence is logarithmic without dispersive estaimates:

Lemma

Let 0 < s < 1 and h ∈ (0, 1). Then for any ϕ ∈ Hs(R) the functional
Jh,ϕ defined by

Jh,ϕ(g) =
1

2
‖ϕ− g‖2L2(R) +

h

2
exp(‖g‖2H1(R)) (8)

satisfies:

min
g∈H1(R)

Jh,ϕ(g) ≤ C(‖ϕ‖Hs(R), s)| log h|−s/(1−s). (9)

Moreover, the above estimate is optimal.
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Orders of convergence

Gaussian race: Continuous Schrödinger equation versus the
finite-difference semi-discrete one. Initial datum: gaussian centered at π/2
in the Fourier variable.
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Conclusions & References

Conclusions

• Fourier filtering and some other variants (numerical viscosity, two-grid
filtering,...) allow building efficient numerical schemes for linear and
nonlinear Schrödinger equation: widder classes of nonlinearities,
better convergence rates for rough data,...

• A systematic analysis of their computational efficiency is to be done.

• Much remains to be done to be develop a complete theory (multi-d,
variable coefficients,...) and it should combine fine tools from
harmonic analysis, PDE and Numerics.
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