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Guiding problem

Motivation: Shepherd dogs and sheep

The number of individuals is small, yet the interaction dynamics and control strategies is complex

Herding Problem: a few shepherd dogs are required to steer a herd of
sheep.
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Figure: Picture of "Border Collie" and "Sheep" [from Wikipedia]

The system consists of small repelling agents (drivers) and a lot of
escaping agents (evaders):

Guide the evaders in the right direction.

Capture the evaders into a desired area.
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Guiding problem

Motivation: "Guidance by repulsion" model

R. Escobedo, A. Ibafiez and E.Zuazua, Optimal strategies for driving a mobile agent in a
"guidance by repulsion" model, Communications in Nonlinear Science and Numerical Simulation,
39 (2016), 58-72.

[R. Escobedo, A. Ibafiez, E. Zuazua, 2016] suggested a guidance by
repulsion model based on the two-agents framework: the driver, which
tries to drive the evader.

m The evader is influenced by a repulsive force from each driver, its
strength being decreasing as the distance increases.

m The objective of the problem is to simulate optimal locomotion of
drivers to guide the evaders to the desired region.

From this, it is natural to consider multi-evader problem. From the
motivation from sheep, we assume the interactions between evaders.

m Each evader has interactions with other evaders to remain close
together on the positions and velocities.
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Guiding problem

Guiding a large number of evaders

Let x;, v; be the position and velocity of the ith evader (i =1,..., N)
in 2D space and y; is the position of the jth driver (j =1,..., M). Then,
the dynamics can be given by interactions among individuals: for t > 0,

).(,':V,'7 I':].,...,N7
1 N
v = N_1 Z 'a(xk —x;)(vk — v)) + velocity alignment
k=1,k#i
1 N
—|—m Z 'g(xk —x;)(xk — Xx/) <+ position flocking
k=1,k#i
1M
% Z fyj —xi)(yj —xi), i=1,...,N, < evading drivers
j=1
yj=ui(t), j=1,....M < drivers are directly controlled
xi(0) =xP,  vi(0) =vP, y;(0) =y}
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Guiding problem

Studies on the herding problem

Similar consideration have been addressed with repulsive interactions in
control theory:

m Problems on gathering sheep:
Well-posedness of optimal control problems [Burger, Pinnau, Roth,
Totzeck, Tse, 2016]
and its simulations [Pinnau, Totzeck, 2018].
m Repelling birds from the airport: [Gade, Paranjape, Chung, 2015],
m Modeling hunting strategies:
[Muro, Escobedo, Spector, Coppinger, 2011 and 2014],

Question: How we can efficiently simulate the locomotion of drivers
controlling a lot of evaders?
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Optimal Control Problem

Optimal Control Problem

To obtain proper control functions, u;(t), j=1,...,M, t €[0,T], a
natural strategy is to find the optimal control which minimizes a cost
function J:

u” := argmin,J(u).

Since our objective is to guide the evaders to the desired area, we may
set the cost J(u(+)) as, for a given target point x; € R?,

T & 104 X 104 M
J(u) ::/O NZ|Xk—Xf|2+ M Z|Uj|2+ M |yj—xf|2 dt.
k=1 j=1 j=1

We expect that, by minimizing the time integration on |x, — x¢|?, the
optimal control will guide the evaders to xr.
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Optimal Control Problem

Simulation on the optimal control problem

The following figure shows the optimal control problem with 36 evaders
and 2 drivers toward the target (0.5,0.5) in the time horizon [0, 4].
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Figure: Controlled trajectories and the control functions from the optimal
control problem.

The drivers started from (0, —1) and (—1,0) while the evaders are
initially gathered near (0, 0).
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Optimal Control Problem

Gradient descent method

The gradient descent method is widely used to obtain the optimal
control.

This optimization algorithm searches the optimal control from an
iterative approximation of the optimal control,

u = uk — Vv, Ju), k>0.

our of an initial guess u® (for example, u°(t) = 0 for all t € [0, T]) with
a > 0 small enough.

Hence, we need to calculate the gradient of the cost V,J(u*) iteratively
on each step of optimization algorithm.
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Optimal Control Problem

Gradient of the cost function

The gradient of the cost function, VuJ(uk), can be obtained from the
controlled dynamics with u from the Pontryagin Maximal Principle.
From the optimal control problem

)-(: FX(X,V,y), T
v=F'(x,v,y), and J= / L(x,v,y)dt,
y = F(x.v.y), ’
we define the backward dynamics of adjoint variables p(t), q(t), r(t),

te[0,T],
—p" =pTViF +q Vi FY + r TV FY + Vil
—q" =p ' VuF*+q"VuF¥ + TV, FY + VL,
—iT =p "V F*+q"VyFY + TV, FY + VL,
p'(T)=0,q"(T)=0, r'(T) =0,
Then, the gradient of the cost is given by the derivative of Hamiltonian,
Vol =Vulp- F*+q-F' +r-F¥ + L] =r+ (a2/M)u. (1)
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Optimal Control Problem

Implementation of Gradient Descent

Algorithm 1 Pseudocode for the Optimal Control Problem

1: The step size a > 0 and tolerance ¢ > 0 are given.
2: function OCP((x°%,v°,y%), ug(t), [0, T])
3: Define the cost function J over [0, T].

4: Initialize the control, u(t) = ug(t).

5: while ||DyJ|| < € (or any stopping criteria) do

6: Compute the controlled trajectories (x(t), v(t),y(t)) from the
initial data (x%,v°,y°).

7: Compute the adjoint time evolution (p(t), q(t), r(t)).

8: Calculate the gradient D, J(t) = r(t) + (aa/M)u(t).

o: Update u(t) = u(t) — aD,J(t).

10: end while

11: return u(t).

12: end function
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Optimal Control Problem

Difficulties

m Note that, in gradient descent methods, we need to compute the
controlled dynamics and its adjoint at each step of optimization.

m The problem is that, in order to compute the derivatives at a fixed
time, we need to consider N — 1 interacting evaders for each evader.

Hence, it takes O(/N?) computational complexity for N evaders.

m This is same for the controlled dynamics and its adjoint system.
Finding the optimal control becomes unfeasible as N increases.

m We want to construct an approximative model for the dynamics to
reduced computational cost.
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Random Batch Method

Approximative dynamics: Random Batch Methods (RBM)

The random batch methods (RBM) [Shi Jin et al., 2020, JCP] is an
approximation method for large systems of particles (evaders),
particularly suitable when the particles are homogeneous.

For example, we need the following positional interactions in the
computation of v;:

N
/\/ 1, ;;Ig K — Xi)(Xk — ;) < position flocking

The interactions are averaged from the pairs of evaders, only
depending on the relative position.

Instead of computing N — 1 interactions, for a given 1 < P < N, the
RBM approximates dynamics out of P — 1 interactions on each evader.
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Random Batch Method

Random Batch Methods (RBM)

More precisely, for a small duration of time At, we split the set of
particles into random small subsets (batches) which contain, at most, P
particles. Then, one only considers the interactions within each

batch.
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Figure: Grouping 10 particles into pairs (batches with size P = 2).

This choice of grouping needs to be independent for each time

intervals, namely, [t,, t,+1] from t, = nAt, n > 0.
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Random Batch Method

Random Batch Methods (RBM)

The connectivity at fixed time can be represented by the following
adjacency matrix:

. J1 if i jarein the same batch,
Y710 otherwise,
Aj(t) == AL for t € [ta, tat1),

Hence, this is a switching network system for t € [0, T].
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Figure: Network representations on two different connectivities, Ag- and At
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Random Batch Method

Random Batch Methods (RBM)

Hence, the interaction term in v;,

N

1

N_1 Z g(xi — xi)(xk — x;)

k=1,k£i
is approximated by
1 N
1 2 A8 —xi)(xi — xi).

k=1,ki

For example, if we do RBM approximation for T = 4 and At = 0.01,
then Ajj(t) is changed 400 times to average random effect for t € [0, 4].

Note that the number of computation is reduced to O(N(P + M)) from
O(N(N + M)) in the original system.
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Random Batch Method

Implementation of Random Batch Methods

Algorithm 2 Approximated controlled dynamics from the RBM

1: The time discretization At > 0 and batch size P > 1 are given.
2: function RBM-State((x%,v°, y%), u(t), [0, T])
3: Set a random seed for the choices of batches.

4 for n from 0 to [T /At] do
5: Divide {1,2,..., N} into random batches with size P.
6: fori=1,...,Ndo
7: Compute x;(t,11) and v;(t,11) from x,(t,) and vk(t,), the
states of kth evaders in the same batch as ith evader, and y(t,).
8: end for
: Compute y(t,+1) from y(t,) and u(t,).
10: end for
11: return x(t,), v(t,) and y(t,) for all n.

12: end function
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Random Batch Method

Simulations on the RBM

The approximation error from the RBM is still open, not estimated
rigorously in general systems. In numerical simulations, RBM properly
approximates the distribution of evaders, while tracking each particle is

difficult.
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Figure: RBM approximation on trajectories of the evaders, one evader along
time t € [0, 4] (left) and the whole evaders at a fixed time t = 10 (right). The
colored region is drawn from 200 RBM approximations. The guiding problem is
simulated with constant controls pushing evaders in the northeast direction.
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Random Batch Method

Simulations on the RBM

For N =36, M =2 and P = 2, the computation on the approximated
time evolution (t € [0, 10], At = 0.01) takes 3.87 milliseconds, which is
nearly 10% of the time from the complete system, 37.72 milliseconds.

Time-evolution | Computation time (Ratio) Interactions (Ratio)
Full system 37.7220 (9.759) 8136 (10.27)
RBM (P = 2) 3.8654 (1.000) 792 (1.000)
RBM (P = 4) 6.6993 (1.733) 1224 (1.545)
RBM (P = 6) 8.9043 (2.304) 1656 (2.091)
RBM (P = 9) 11.3447 (2.935) 2304  (2.909)
RBM (P = 18) 19.4503 (5.032) 4248 (5.364)

Table: The computation time (in milliseconds) to calculate the controlled
trajectories of t € [0,10]. The number of interactions is also denoted to
compare with the time. The standard Euler forward method is used and
averaged for 1000 simulations.
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Random Batch Method

RBM for the adjoint system

Note that, on the RBM approximated dynamics, the Pontryagin maximal
principle can be applied to deduce the adjoint system and the gradient of
the cost.

Since the adjoint system is also described by the connectivity matrix
A(t), the computational complexity is also O(N(P + M)).

In conclusion, we can find the optimal control of the RBM reduced
model with O(N(P + M)) computational cost. This is an
approximative control for the original system.
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Random Batch Method

Implementation of RBM on the adjoint system

Algorithm 3 Approximated adjoint dynamics from the RBM
1: The time discretization At > 0 and batch size P > 1 are given.
2: function RBM-AdjointState((p°, q°, r%), (x(t), v(t), y(¢)), [0, T])

3: Set a random seed, the same one as in forward dynamics, RBM-
State().

4: for n from [T /At] to 0 do

5: Divide {1,2,..., N} into random batches with size P.

6: fori=1,...,N do

7 ComPUte pi(tn) and qi(tn) from pk(tn+1) and qk(tn+1)
of kth evaders in the same batch as ith evader, and
(x(tn1)s v(tat1), Y(tn+1))-

8: end for

9: Compute r(t,y1) from r(t,) and (x(tnt1), V(tn+1), Y(tnt1))-

10: end for

11: return p(t,), q(t,) and r(t,) for all n.
12: end function
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Random Batch Method

Simulation on the optimal control from the RBM

The following figure shows the optimal control from the RBM reduced
model, applied to the original dynamics.
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Figure: Controlled trajectories and the control functions from the RBM.

The performance of the control J(u) is similar to the optimal control
(from 0.6646 to 0.6665), while the computation time is reduced from
767.96 to 95.95 seconds.

23/36



Model Predictive Control

Table of Contents

B Model Predictive Control (MPC) with RBM

24 /36



Error accumulates along time

Model Predictive Control

Note that the approximation error, as in other numerical methods, grows

while the system evolves.
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Figure: The errors on the positions (left) and velocities (right) in £>-norm. The
colored region is drawn from 200 RBM approximations.

This may lead to the failure of control objectives, when the error is
unfortunately large in the long-time horizon.
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Model Predictive Control

Model Predictive Control (MPC)

To overcome this difficulty, we adopt the process of Model Predictive
Control (MPC).

MPC is a control design, aimed to adapt the control obtained for the
reduced dynamics to the full system in an iterative manner.

The basic idea is that, at each discrete time 7, := m7 for m > 0, we
update the current information of the controlled system and
calculate the optimal control again for the next time.

In this manner, the MPC strategy takes account of the gap between the
trajectories of the complete and the reduced dynamics.

26 /36



Model Predictive Control

Model Predictive Control (MPC)

For this to be done, first, at t = 0, we compute therptimaI control of
the reduced model for an artificial time-horizon [0, T]. (For example,
T = T). This control will be applied to the original system for t € [0, 7].

At t = 7, we again compute the optimal control for [1, 7 + 7A'] with the
initial data drawn from the original system. This strategy is repeated
until the system evolves for t € [0, T].
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Figure: The diagram of iterative control computation in MPC [Wikipedia].
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Model Predictive Control

Implementation of Model Predictive Control

Algorithm 4 The procedure of MPC with receding time intervals

1: The control time 7 > 0 and predictive time T > 7 are given.
2: procedure MPC-RBM algorithm
3. Set the initial data (x%,v°, y°) for the contorolled system.

4: Initialize the control function u(t) from ug(t) for t € [0, T].

5: Let 7 ;= m7 for m=0,1,...,[T/7] + 1.

6: for m from 0 to [T /7] do

7: Construct the Optimal Control Problem (OCP) for [, Tm+ T]
with the initial data (x(71), v(7m), ¥(7m))-

8: Operate OCP with RBM to get u(t) for [, 7m + T

9: Process the original system with u(t) for t € [Ty, Tmt1]-

10: Get the data x(7im+1), V(7m+1) and y(7m41) for the next loop.

11: end for

12: return the combined control u(t) of [r,, Tm+1] for all m.

13: end procedure
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Model Predictive Control

Simulations of MPC on the full system

The time parameters 7 and T critically affect the performance of the
MPC strategy though there is no general argument to determine them.

If 7 is too large, then the approximation error of the RBM will critically
affect the control function. Hence, we need a small 7, but the
computational cost gets biggger.

On the other hand, if T is too small, then the control cannot catch the
long-time behavior of the system. This may cause an oscillatory behavior
of the system near the target trajectories.

For example, we set T =4, 7 = 1.5 and T = 3 in the simulations of
guiding problems.
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Model Predictive Control

Simulations of MPC with RBM approximation

Since MPC updates the current positions (and velocities) of evaders
periodically, the resulting control captures the evaders in a better way.

Position error = 0.65676 Control cost = 10.0758
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Figure: Controlled trajectories and the control functions from the process of
MPC with the RBM reduced model.

We can also observe that the drivers go around the evaders near the final
time, being ready to guide them even after t = 4, from the effect of T.
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Model Predictive Control

The effect of MPC on a noisy system (without MPC)

The correction of the control can be seen significantly when the system
has a noisy behavior. For example, we may consider the situation that
the evaders suddenly move to the right direction.

Position error = 0.7462 Control cost = 9.9126
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Figure: Controlled trajectories from the Optimal control problem, when the
evaders's velocities are affected by random noise.

The optimal control computed a priori cannot react on such situation.
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Model Predictive Control

The effect of MPC on a noisy system (with MPC)

The strategy of MPC-RBM catches the error on the position at t = 7,
and modifies the control for the next time to minimize the cost function.

Position error = 0.69347 Control cost = 10.5693
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Figure: Controlled trajectories from the MPC-RBM (7 = 1 and T = 3), when
the evaders's velocities are affected by random noise.
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Summary

Summary

m The algorithm combines two arguments, MPC and RBM, in order to
compute a reliable control strategy in a short time.

m RBM reduces the computation cost on the forward and adjoint
dynamics, from the order of O(N?) to O(NP).

m MPC makes the approximative control adapt to the original system
from an iterative computation.

m From a simulation with 36 evaders and 2 drivers, the computation
cost is reduced to 16%, while the performance of control J differs
only about 0.5%.
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Summary

Future directions

In nonlinear systems, the effect of approximation error is not
rigorously studied yet. This needs to be analyzed in the following
different levels:

m On the approximation error of the RBM in general complex systems.

m On the performances of control functions with respect to the errors
in the model.

m On the effect of MPC in the controlled dynamics.

The error estimates of RBM has been done contracting systems [Jin, Li,
Liu, 2020, JCP], though numerical simulations show good performances
[Carrillo, Jin, Li, Zhu, 2019], [Ha, Jin, Kim, 2019].

The analysis of MPC has been focused on the linear systems, for
instance, [Mhaskar, 2006], [Prett, Garcia, 1987].
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Summary

Future directions

Though we only suggested 2D problems, the MPC-RBM algorithm and
the formulation of guiding problem is not restricted to a specific case.

Figure: Left: Herding sheep with drone [Dailypost], Right: the sheep on
non-flat hills [Scottish Farmer]
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