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Motivation & Goal

Motivation:

PDE with singular potentials arising in combustion theory and
quantum mechanics.

Goal:

Revise the existing theory of well-posedness, asymptotic
behavior, control, etc. when replacing −∆ by −∆− λ

|x |2 both

in the elliptic and in the evolution context.
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Part of the literature on singular elliptic and parabolic problems:

S. Chandrasekhar, An introduction to the study of stellar
structure, New York, Dover, 1957.
I. M. Gelfand, Some problems in the theory of quasilinear
equations, Amer. Math. Soc. Transl., 29 (1963), 295-381.
J. Serrin, Pathological solution of an elliptic differential
equation, Ann. Scuola Norm. Sup. Pisa, 17 (1964), 385–387.
D. S. Joseph & T. S. Lundgren, Quasilinear Dirichlet
problems driven by positive sources, Arch. Rat. Mech. Anal.,
49 (1973), 241-269.
F. Mignot, F. Murat, J.-P. Puel, Variation d’un point de
retournement par rapport au domaine, Comm. P. D. E. 4
(1979), 1263-1297.
P. Baras, J. Goldstein, The heat equation with a singular
potential, Trans. Amer. Math. Soc. 284 (1984), 121–139.
T. Gallouet, F. Mignot & J. P. Puel, Quelques résultats sur le
problème −∆u = λeu. C. R. Acad. Sci. Paris Sér. I, Math.
307 (7) (1988), 289-292.
F. Mignot, J.-P. Puel, Solution radiale singulière de
−∆u = λeu, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988),
no. 8, 379–382.
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Examples:

Example 1:
−∆u − µ(1 + u)p = 0,

p > n/(n − 2), µ =
2

p − 1
(n − 2p

p − 1
).

u(x) = |x |−2/(p−1) − 1

After “linearization”:

−∆v − λ

|x |2
v = f .

with

λ =
2p

p − 1
(n − 2p

p − 1
).

Enrique Zuazua Hardy inequalities, heat kernels and wave propagation



Introduction The Hardy inequality The Dirichlet problem for the parabolic operator The Cauchy problem Control of heat processes Waves Boundary singularities Twisted domains Concluding remarks and open problems

Example 2:
−∆u − λeu = 0, λ = 2(N − 2)

u(x) = −2log(|x |).

After “linearization”:

−∆v − λ

|x |2
v = f .

Elliptic PDE’s with exponential nonlinearities also appear in models
for drift-diffusion.
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Example 3:

−∆u = |∇u|q, u(x) = cq(|x |−(2−q)/(q−1) − 1)

Linearization:

−∆v = q|∇u|q−2∇u · ∇v ∼ −∆v = µ
1

|x |2
x · ∇v .

This type of singular problem, with singularities in the first order
term, can be treated similarly as the previous ones. This is seen
easily when analyzing its coercivity since∫

1

|x |2
x · ∇v vdx =

1

2

∫
1

|x |2
x · ∇(v2)dx =

N − 2

2

∫
v2

|x |2
dx .
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Warning! Linearization is formal in these examples.

Solutions are too singular to allow performing a true linearization
in the corresponding energy spaces.

On the other hand, the complex behavior of solutions with respect
the parameter λ shows that Inverse Function Theorem fails to
apply because of the lack of an appropriate functional setting.

This is an issue that needs and deserves further analysis and
clarification.
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D. Joseph et al., 1973.
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The Cauchy problem


ut −∆u − λ

|x |2 u = 0 in Q

u = 0 on Σ
u(x , 0) = u0(x) in Ω.

Baras-Goldstein (1984), N ≥ 3:

Global existence for λ ≤ λ∗ = (N − 2)2/4;

Instantaneous blow-up if λ > λ∗ = (N − 2)2/4.

Explanation: Hardy’s inequality:

λ∗

∫
Ω

ϕ2

|x |2
dx ≤

∫
Ω
|∇ϕ|2dx .

Optimal not achieved constant: ϕ = |x |−(N−2)/2.

Warning! In dimension N = 2 this inequality fails....λ∗ = 0 (see
Tintarev’s talk).
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Preliminaries on Hardy inequalities:

The classical Hardy inequality ensures that

(N − 2)2

4

∫
RN

ϕ2

|x |2
dx ≤

∫
RN

|∇ϕ|2dx .

The proof is easy:

ϕ(x)

|x |
= −

∫ ∞
1

x

|x |
· ∇ϕ(tx)dt.

And apply the Minkowski inequality in L2(RN).

Of course, it also holds in H1
0 (Ω) for any domain Ω.

It guarantees the coercivity of the operator −∆− λ/|x |2 in
H1

0 (Ω), for λ < λ∗ = (N − 2)2/4.
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Hardy-Poincaré inequality

But this inequality fails to yield coercivity for the critical value
λ∗ = (N − 2)2/4.
H. Brézis-J. L. Vázquez, 1997:

λ∗

∫
Ω

ϕ2

|x |2
dx + C (Ω)

∫
Ω
ϕ2dx ≤

∫
Ω
|∇ϕ|2dx , ∀ϕ ∈ H1

0 (Ω).

Later improved 1: 0 < s < 1,

λ∗

∫
Ω

ϕ2

|x |2
dx + C (Ω)||ϕ||2s ≤

∫
Ω
|∇ϕ|2dx , ∀ϕ ∈ H1

0 (Ω).

−∆− λ∗
|x |2 I is almost as coercive as −∆.

1J. L. Vázquez & E. Z. The Hardy inequality and the asymptotic behavior
of the heat equation with an inverse square potential. J. Funct. Anal., 173
(2000), 103–153.
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For the critical value λ∗, the elliptic operator −∆− λ∗
|x |2 I plays the

role of −∆ but in the slightly larger space H(Ω), the closure of
D(Ω) with respect to the norm

||ϕ||H =
[ ∫

Ω

[
|∇ϕ|2 − λ∗

∫
Ω

ϕ2

|x |2
]
dx
]1/2

.

The elliptic and parabolic/hyperbolic theories are then the same by
replacing H1

0 (Ω) by H(Ω).

But note that this only happens in the bounded domain case since
the Poincaré remainder term can not catched up in the whole
space RN .
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Idea of the proof:

Ω = B(0, 1); ϕ = ϕ(r)→ ψ(r) = r (N−2)/2ϕ(r).

||ϕ||H =
[ ∫ 1

0
|ϕ′(r)|2r dr

]1/2
.

Over the space of radially symmetric functions

−∆− λ∗
|x |2

I in R3 ∼ −∆ in R2.

This guarantees coercivity in Hs , for 0 < s < 1.

When λ > λ∗ this transformation yields

−ψ′′ − ψ′

r
− c

ψ

r2
= f ,

with c > 0. Consequently we have a non-admissible perturbation
of the 2-d Laplacian. The equation does not make sense in the
context of distributions....
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The Dirichlet problem for the parabolic operator: Three cases.


ut −∆u − λ

|x |2 u = 0 in Ω× (0,∞)

u = 0 on Γ× (0,∞)
u(x , 0) = u0(x) ∈ L2(Ω) in Ω.

0 < λ < λ∗: u∈ C
(
[0,∞)] ; L2(Ω)

)
∩ L2

(
0,∞;H1

0 (Ω)
)
.

λ = λ∗: u∈ C
(
[0,∞)] ; L2(Ω)

)
∩ L2(Ω) (0,∞;H(Ω)) .

λ > λ∗: Lack of well-posedness.

Furthermore, in the first two cases the L2-norm of solutions decays
exponentially.
Solutions have to be interpreted in the semigroup sense.
Uniqueness does not hold in the distributional one. For instance,
for

λ = λ∗, u(x) = |x |−(N−2)/2log(1/|x |),

is a singular stationary solution. It is not the semigroup solution.
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The Cauchy problem

Consider now the Cauchy problem in the whole space{
ut −∆u − λ

|x |2 u = 0 in RN × (0,∞)

u(x , 0) = u0(x) ∈ L2(RN) in Ω.

When λ ≤ λ∗ the problem is well-posed because of the Hardy
inequality. The equation generates a semigroup of contractions in
L2(RN).
But is there any decay rate? The classical Hardy inequality does
not answer to this question because of the lack of Hardy-Poincaré
version.
To overcome this difficulty we perform the similarity
transformation:

w(y , s) = tN/4u(t1/2y , t); s = log(t + 1).

The equation then reads:

ws −∆yw −
1

2
y · ∇w − N

4
w − λ w

|y |2
= 0.
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The heat equation in the similarity variables is well-behaved in the
weighted spaces L2(K ) = {

∫
f 2(y)K (y)dy <∞} (see M.

Escobedo & O. Kavian, 1987, ...), with K (y) = exp(|y |2/4).
We prove the following sharp Hardy-Poincaré inequality in these
weighted spaces:

N + 2

4

∫
f 2Kdy +

(N − 2)2

4

∫
f 2

|y |2
Kdy ≤

∫
|∇f |2Kdy

This yields the exponential decay rate for the evolution in similarity
variables in L2(K ) even for λ = λ∗. Returning to the original
variables, for N ≥ 3 and λ = λ∗ we get:

||u(t)||L2(RN) ≤ Ct−1/2||u0||L2(K).
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Control of heat processes:

Once the well-posedness of these problems is well-understood, one
can adopt these techiques, and combine them with the already
existing ones in Control Theory, to extend the existing control
results to models with singularities. This applies to both the heat
and the wave equation.
For instance, consider:

ut −∆u − λ u
|x |2 = f 1ω in Q

u = 0 on Σ
u(x , 0) = u0(x) in Ω.

1ω denotes the characteristic function of the subset ω of Ω where
the control is active.
We assume that u0 ∈ L2(Ω) and f ∈ L2(Q):

λ < λ∗ ⇒ u ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

λ = λ∗ ⇒ u ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2 (0,T ;H(Ω)) .

u = u(x , t) = solution = state, f = f (x , t) = control
Enrique Zuazua Hardy inequalities, heat kernels and wave propagation
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We assume that the control subdomain contains and annulus:

More recently S. Ervedoza 2 has removed this assumption
obtaining the same results for general subdomains ω as in the
context of the heat equation: λ = 0.

2S. Ervedoza, Control and Stabilization Properties for a Singular Heat
Equation with an Inverse-Square Potential, Communications in Partial
Differential Equations, 33: 1996 D2019, 2008
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We address the problem of null controllability: For all u0 ∈ L2(Ω)
show the existence of f ∈ L2(ω × (0,T ) such that:

u(T ) ≡ 0.

Only makes sense if λ ≤ λ∗.
The main result (J. Vancostenoble & E. Z., JFA, 2008; S.
Ervedoza, Comm. PDE, 2008):

Theorem

For all T > 0, annular domain ω and λ ≤ λ∗ null controllability
holds.

Note that, due to the regularizing effect, the subtle change in the
functional setting between the cases λ < λ∗ and λ = λ∗ does not
affect the final control result.
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The control, f = ϕ̃, where ϕ̃ minimizes:

J0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx

among the solutions of the adjoint system:
−ϕt −∆ϕ− λ ϕ

|x |2 = 0 in Q,

ϕ = 0 on Σ,
ϕ(0, x) = ϕ0(x) in Ω.

The key ingredient, needed to prove its coercivity, is the
observability inequality:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω).
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The main tool for obtaining such estimates are the Carleman
inequalities as developed by Fursikov and Imanuvilov (1996).3

Goal: Combine, as done in the well-posedness of the Cauchy and
boundary value problems, Hardy and Carleman inequalities.

3A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution
equations, Lecture Notes Series # 34, Research Institute of Mathematics,
Global Analysis Research Center, Seoul National University, 1996.
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Sketch of the proof:
Step 1. Heat equation.
Introduce a function η0 = η0(x) such that:

η0 ∈ C 2(Ω̄)
η0 > 0 in Ω, η0 = 0 in ∂Ω

∇η0 6= 0 in Ω\ω.
(1)

Let k > 0 such that k ≥ 5 maxΩ̄ η
0 − 6 minΩ̄ η

0 and let

β0 = η0 + k , β̄ =
5

4
maxβ0, ρ1(x) = eλβ̄ − eλβ

0

with λ, β̄ sufficiently large. Let be finally

γ = ρ1(x)/(t(T − t)); ρ(x , t) = exp(γ(x , t)).
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There exist positive constants C∗, s1 > 0 such that

s3
∫
Q ρ
−2st−3(T − t)−3q2dxdt

≤ C∗
∫
Q ρ
−2s
[
|∂tq −∆q|2 + s3t−3(T − t)−31ωq

2
]
dxdt

for all smooth q vanishing on the lateral boundary and s ≥ s1.

While this inequality can be applied to deal with perturbations of
the heat equations with potential in suitable Lp spaces, the
singularity of the quadratic potential under consideration is too
large.
Thus we need to derive Carleman inequalities adapted to the
presence of the singularity.
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Step 2. Cut-off.

Cutting-off the domain, we may:

Apply the previous estimate in the exterior domain |x | ≥ r
where the potential λ|x |−2 is bounded;

Concentrate in the case where Ω = B1 and ω is a
neighborhood of the boundary.
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Step 3. Spherical harmonics. To fix ideas N = 3, λ = λ∗ = 1
4 .

The most singular component is the one corresponding to radially
symmetric solutions:

−ϕt − ϕrr − 2
ϕr

r
− ϕ

4r2
= 0.

After the change of variables ψ = r1/2ϕ,

−ψt − ψrr −
ψr

r
= 0.

This is the 2− d heat equation for ψ.
The standard Carleman inequality can be applied getting:∫ 1

0
ψ2(r , 0)r dr ≤ C

∫ T

0

∫ 1

a
ψ2r drdt

Going back to ϕ we recover the observability inequality for ϕ too,
in its corresponding norm:∫ 1

0
ϕ2(r , 0)r2 dr ≤ C

∫ T

0

∫ 1

a
ϕ2r2 drdt.
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Step 4. Higher order harmonics.
Even though for higher order harmonics the elliptic operator
involved is more coercive, the potential is still singular and the
existing Carleman inequalities can not be derived:

−ϕt − ϕrr − 2
ϕr

r
− ϕ

4r2
+ cj

ϕ

r2
= 0,

cj being the eigenvalues of the Laplace-Beltrami operator.
This can be done by making a careful choice of the Carleman
weight, exploiting the monotonicity properties of the potential. 4

4Argument inspired in works by P. Cannarsa, P. Martinez, J. Vancostenoble,
Carleman estimates for a class of degenerate parabolic operators, SIAM J.
Control Optim., 2008.
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The wave equation:

Under the condition λ ≤ λ∗:
ϕtt −∆ϕ− λ ϕ

|x |2 = 0 in Q,

ϕ = 0 on Σ,
ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x) in Ω.

The energy

Eλ(t) =
1

2

∫
Ω

[
|ϕt |2 + |∇ϕ|2 − λ ϕ

2

|x |2
]
dx ,

is conserved, and it is coercive either in H1
0 × L2 for λ < λ∗, or in

H× L2 for λ = λ∗.
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Classical multipliers (x · ∇ϕ) can be applied in this case too (see
talks by Cavalcanti and Perla-mMenzala) :

TEλ(0) +

∫
Ω
ϕt

(
x · ϕ+

N − 1

2
ϕ
)
dx
∣∣∣T
0
≤ R

2

∫
Σ

∣∣∣∂ϕ
∂ν

∣∣∣2dΣ.

Furthermore, in the absence of singularity,∣∣∣ ∫
Ω
ϕt

(
x · ϕ+

N − 1

2
ϕ
)
dx
∣∣∣T
0

∣∣∣ ≤ 2RE0.

In the present case, in principle:

If λ < λ∗ this yields the observability inequality if

T >
2R[

1− λ/λ∗
]1/2

: Eλ(0) ≤ C

∫
Σ

∣∣∣∂ϕ
∂ν

∣∣∣2dΣ.

This makes the observability time to tend to ∞ as λ→ λ∗.
But this does not seem to agree with our intuition that the
singularity should not change the velocity of propagation.
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But things are better: N = 3, λ = λ∗ = 1/4.
Again using spherical harmonics decomposition the most singular
component is the radial one and, after the change of variables
ψ(r , t) = r1/2ϕ(r , t), the problem reduces to

ψtt − ψrr − rψr = 0,

which is the wave equation in 2− d in radial coordinates.
Then observability holds and we recover:

Eλ(0) ≤
∫

Σ

∣∣∣∂ϕ
∂ν

∣∣∣2dΣ

for T > 2R.
In a joint paper with J. Vancostenoble (SIAM J. Math. Anal.,
2009) we developed this analysis in detail for the wave and
Svhrödinger equations showing that the existing observability and
control results can be extended up to the critical value of λ.
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Boundary singularities

Similar problems arise when the singularity is on the boundary:
x = 0 ∈ ∂Ω. The same results apply. But there is there room for
improvement of the Hardy inequalities in that case?
Consider first the thalf space Ω = RN

+ . In spherical harmonics this
corresponds to considering functions that oscillate in the angular
variables, not radially symmetric, and therefore tinvolving only
higher modes in the spherical harmocis decomposition. Actually, it
is well known (Tertikas-Filippas-Tidblom, 2009) that, for all N:

N2

4

∫
RN

+

|u|2

|x |2
dx ≤

∫
RN

+

|∇u|2dx .

This shows that the Hardy constant ”jumps” form (N − 2)2/4 to
N2/4, when the singularity of the potential reaches the boundary.
The same result holds smooth convex domains, for instance (see C.
Cazacu & E. Z., where a complete analysis is developed).
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Twisted domains

Straight cylinder versus twisted one:

The cylinder Ω = ω × R and the twisted domain Ωθ, in which the
cross section ω is twisted with angle θ depending on the parameter
of the axis x3.
In the cylinder:

−∆Ωθ
D − E1 ≥ 0

E1 being the first eigenavlue of the Dirichlet Laplacian in the cross
section ω.
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Twisting gives Hardy inequalities and thus further decay rates.

In the twisted case the following Hardy inequality holds 5)

−∆Ωθ
D − E1 ≥ c

1

1 + x2
3

.

In a joint paper with D. Krejčǐrik we have shown, using a careful
combination of the analytical effects of twisting and similarity
transformations, that the heat semigroup gains a decay rate of the
order of t−1/2 in L2, because of twisting.

5T. Ekholm, H. Kovǎrik and D. Krejčǐrik, A Hardy inequality in twisted
waveguides, Arch. Ration. Mech. Anal. 188 (2008), 245–264.
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Similar phenomena arise in other geometric contexts:

Straight strip versus twisted one:
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Open problems:

Analyze in detail the linearization process. Back to
nonlinear....

Elliptic operators involving singular first order terms.

Stabilization for waves and Schrödinger equations?

Multipolar singularities (both interior and boundary ones).

Wave equation: Better explain the propagation phenomena
using bicharacteristic rays (semi-classical, Wigner,
H-measures,...) and more geometrical tools.

Further analyze the effect of twisting and other geometric
deformations such as bending. Links with the theory of rods,
shells,...?
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J. L. Vázquez & E. Z.. The Hardy inequality and the asymptotic
behavior of the heat equation with an inverse square potential. J.
Functional Analysis, 173 (2000), 103–153.

J. Vancostenoble & E. Z. Null controllability for the heat equation
with singular inverse-square potentials, J. Functional Analysis, 254
(2008), 1864–1902.

J. Vancostenoble & E. Z. Hardy inequalities, Observability and
Control for the wave and Schrödinger equations with singular
potentials, SIAM J. Math. Anal., Volume 41, Issue 4, pp.
1508-1532 (2009).

C. Cazacu & E. Z., Improved multipolar Hardy inequalities, Studies
in Phase Space Analysis with Applications to PDEs, Progress in
Nonlinear Differential Equations and Their Applications 84, M.
Cicognani et al (eds.), pp. 39-57, Springer Science+Business
Media New York 2013.

D. Krejčǐrik & E. Z. The Hardy inequality and the heat equation in
twisted tubes, J. Mathématiques Pures et Appliquées, 94 (2010)
277-303.
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