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Hamilton-Jacobi equations

Let us consider the following initial-value problem:

{ S+ H(Deu) =0, (t,x)€(0,T) xRV (HU)

u(0, x) = uo(x), x € RN,

e The Hamiltonian H : RV — R is usually considered to be either convex
or concave (analogous results for both cases).

e The initial datum v, : RY — R is a given function.
e The unknown is a scalar function u : [0, T] x RV — R.

Plan of the presentation:
¢ Introduction to Hamilton-Jacobi equations:

a. A problem in calculus of variations.
b. The Hopf-Lax formula.
c. Viscosity solutions.

¢ Inverse-time design:

(i) Reachability condition for the target.

(ii) Projection on the set of reachable targets (semiconcave envelopes).
(iii) Initial data reconstruction.

(iv) Numerical implementation.
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From a problem in calculus of variations to a Hamilton-Jacobi equation

References: L.C. Evans, Partial Differential Equations, Section 3.3 and 10.3.
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi
equations and optimal control, Chapter 1.

For a fixed T > 0, let us set the space-time domain
Qr:=(0,T) xRV,
We are given two functions:
o The Lagrangian, or running cost L : RV — R.
e The initial cost vy : RN — R.
For any (t,x) € Qr, we introduce the set of admissible arcs

At,x) = {y € (10, i RY) : y(t) = x}
and the cost functional
t
A= [ L(s)ds+ w(y(0)).

We consider the following optimization problem
minimize J;[y] over all arcs y € A(t, x).

The total cost depends on the velocity
(t)=y(t) vector of the trajectory y(s) along the
* " interval (0, t) and on the initial point y(0).
The terminal point is fixed to be x.

¥(s)

%(0) x=y,

ufs)
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From a problem in calculus of variations to a Hamilton-Jacobi equation

We define the value function u : [0, T] x RN — R as the best final cost
possible:

)= ot = ot L[ L/ @)ds+wro))
Observe that u(0, x) = up(x).
From now on, we assume
Lis convex and lim|g|— o0 I](TCT) = +o0 )
uo € Lip(R").

Using the convexity of L, we can apply Jensen’s inequality to prove the
following result:

Hopf-Lax formula

Under the hypotheses (1), the value function satisfies

u(t, x) = Z'E]L"N [uo(z) +tL (X ; 2)]

for all (¢, x) € (0, T] x RV,

Observe that, as a consequence of (1), the minimum is always attained.
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From a problem in calculus of variations to a Hamilton-Jacobi equation

Using Hopf-Lax formula we can prove Lipschitz regularity for the value
function

lu(t', x") — u(t,x)| < Lo|x — X'| + Ly|t — 1], v(t,x), (', x") € Qr,

for two constants Lo, L1 > 0. Hence, u is differentiable a.e. in Qr.

The Hamilton-Jacobi equation

Let L and u satisfy (1). For any (t, x) € Qr, if u is differentiable at (¢, x), then
it satisfies
ui(t, x) + H(Vxu(t,x)) =0,
where
H(p) := max [p- q — L(q)].
qeR!

Observe that H is the Legendre transform of L. We can write H = L*, and
reciprocally L = H* (recall the property of the Legendre transform L** = L).
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Viscosity solutions

Remark: The value function u, given by the Hopf-Lax formula, is not in
general the unique Lipschitz function satisfying (HJ) almost everywhere in
Qr, along with the initial condition u(0, -) = wo.

Definition
A uniformly continuous function u : [0, T] x RY — R is called a viscosity
solution of (HJ) if the following two statements hold:

- uis a viscosity subsolution of (HJ): for each ¢ € C*([0, T] x RV),
(o, X0) + H(Vxp(to, X)) < 0

whenever (o, Xo) is a local maximum of u — ¢.
- uis a viscosity supersolution of (HJ): for each ¢ € C>([0, T] x R"),

Orp(lo, Xo) + H(Vxp(to, X)) > 0

whenever (o, Xo) is @ local minimum of u — ¢.

References: M.G. Crandall, H. Ishii, P.L. Lions, User’s guide on viscosity
solutions.
P.L. Lions, Generalized solutions of Hamilton-Jacobi equations.
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Viscosity solutions

Let L and uy satisfy the hypotheses (1). The function u given by the Hopf-Lax
formula is the unique viscosity solution to (HJ) satisfying u(0, -) = wp.

Remark: The viscosity solution can also be obtained as the limit when e goes
to 0™ of the classical solution u. to the parabolic equation

Ot — eAu. + H(Vxu:) =0, inQr,
u:(0, x) = Up(x), in RV,

Let us define the following nonlinear operator

Sy : Lip(RY) — Lip(RY)
Up —  Stug:=u(T,")

where u(T,-) is the unique viscosity solution to (HJ) at time t = T.
Using the Hopf-Lax formula we can write

St uo(x) = min[ (y)+TL( Ty)]

yeRN
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Inverse-time design

Reference: C. Esteve and E. Zuazua, Preprint arXiv:2003.06914
Let us consider the initial-value problem:

du+ H(Dxu) =0, (t,x) € (0, T) xRN (HJ)
u(0, x) = up(x), x € RN,
where uy is a Lipschitz function and H satisfies
He C3(RN), Hp(p) >0, Vpe RN, and ‘ ,im % = +oo. @
p|— oo

Remark: Note that by the properties of the Legendre transform, L = H* is C?(RN),
strictly convex and superlinear. Therefore, we can use the Hopf-Lax formula to obtain
the viscosity solution to (HJ).

Given a time horizon T > 0 and a target function ur € Lip(RV), construct all the initial
data up satisfying S uy = ur.

Motivation:

- In the context of the calculus of variations problem, let us suppose that we know
the Lagrangian L and the value function u(T, -) for some time T > 0. Can we
construct the initial cost? Is it unique?

- How do perturbations in the initial cost affect to the value function?
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Can we reach any target?

For a time horizon T > 0 and a given target ur € Lip(R"), let us define
Ir(ur) = {uo e Lip(R"); such that S uo = ur}.

- Our final goal is to characterize all the elements in /7 (ur).
- We start by determining whether Ir(ur) contains at least one element or
not.
The natural candidate is obtained by reversing the time in the equation,
considering ur as terminal condition.

Definition

A function w : [0, T] x RY — R is a backward viscosity solution to (HJ) if
the function v(t, x) := w(T — t, x), is a viscosity solution of

v — H(Dxv) =0, in [0, T] x R".

With this notion of solution, the terminal-value problem

{ dw + H(Dxw) =0, (t,x) € (0,T) x RV

w(T,x) = ur(x), x € RN (BHY)

is well-posed (same arguments as for the forward problem (HJ), replacing H
by —H).
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Can we reach any target?

In addition, for each ur € Lip(R"), the backward viscosity solution to (BHJ) is
given by the formula

z

w(t, x) = max {ur(z) —(T-1)L ( T__);)} .

zeRN

We can therefore define the backward operator

srure) = g - 7L (53]

which associates, to any terminal condition ur, the viscosity solution of (BHJ)
attime t = 0.

s
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Can we reach any target?

Let H satisfy (2), ur € Lip(RV) and T > 0. Then Ir(ur) # 0 if and only if
St(S7ur) = ur.

Two unreachable targets

Definition

For any ur € Lip(R"), the function

up == S$(Sy ur)

satisfies Ir(uz) # 0. We call u7 the projection of ur on the set of
reachable targets.
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Geometrical properties of u3 (semiconcave envelopes)

Let N=1or N > 1and H(p) = (Ap, p)/2 for some positive definite matrix
A. Then, for any ur € Lip(R"), the function uj = S} (S; ur) is the viscosity
solution to the obstacle problem

min {v —ur, —An {Dzv = M]} =0. (3)

e Here, for a symmetric matrix X, An[X] denotes its greatest eigenvalue.
e Observe that for T large, equation (3) is an approximation of the
equation for the concave envelope of ur
min {v —ur, —AN [Dzv] } =0.

e The function u7 is the smallest reachable target bounded from below
by ur.
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Initial data reconstruction

Here, we consider that, eventually after applying St o Sy, the target ur is
reachable, i.e. Ir(ur) # 0.

Theorem

Let ur € Lip(R") be such that Ir(ur) # 0 and set the function i := Sy ur.
Then, for any up € Lip(R"), the two following statements are equivalent:

(i) Up € /T(UT);
(i) uo(x) > To(x), Vx € RN and  wp(x) = lo(x), Vx € Xr(ur),
where Xr(ur) is the subset of RN given by

Xr(ur) :== {z — T Hp(Vur(2)); Vz € R such that ur(-) is differentiable at z}

Remarks:

o If Xr(ur) = RN, then Ir(ur) = {iip}. It is the case of solutions that are
differentiable everywhere in [0, T] x RV.

e If X7(ur) is a proper subset of R", there is no backward uniqueness. We
cannot uniquely determine the initial datum.

e In any case, the initial datum is uniquely determined in X7(ur), while in
RM\ Xr(ur) we only have a lower bound. The information in RN \ Xr(ur)
is partially lost at time T.

Enrique Zuazua FAU - AvH Hamilton-Jacobi equations



Initial data reconstruction

In view of the previous result, for a reachable target ur, we need the following
two ingredients in order to construct all the elements in /7 (ur):

e The function iy obtained as

fio(x) = Sy ur(x) = ma [ur(y) _TL (Y;X)] ;

e and the set X7(ur) C RV, obtained by projecting the differentiability
points of ur by the map

z+— z— T Hy(Vur(2))

Once we have this two ingredients, we can construct I (ur) in the following
way

Ir(ur) = {i + ¢; ¢ € Lip(R") such that ¢ > 0 and supp(y) C R"\ Xr(ur)}.

XT(“T)
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Numerical implementation

We are given a time horizon T > 0 and a target ur.

Step 1: We first project ur on the set of reachable targets by applying

S+ o S7. Note that if the target ur is already reachable, we will have u; = ur.
We can use the Hopf-Lax formula for the backward viscosity solution

st g - L)

and for the forward viscosity solution

* X —
Us(x) = Sf (Sy ur(x)) = min [ST ur(y) + TL ( Ty)] .
We can use any optimization method to approximate maximum and the
minimum in the above formulae.

Using compactness estimates for the Hopf-Lax formula (see
Ancona-Cannarsa-Nguyen, 2014), the maximum (resp. minimimum) in above
formulae can be taken only over the ball B(x, Rr), instead of all R, where

Rr=T sup |Hy(p)l.

|p| <Lip[ug]

Here Lip(uo) is the Lipschitz constant of ug.
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Numerical implementation

Step 2: Now, we need to compute the initial datum &l = S7 u7.
However, this has already been obtained in step 1, since we have the
following identity

S7 (St (Syur)) = Syur, forall ur € Lip(RY).

(see for example [Barron et al., 1999])
Step 3: Finally, we construct the set X7(u7). This is probably the most
challenging part.
- One way is to identify the set of points where u7 is differentiable.
- There is a different (more geometrical) way to characterize Xr(u7) which
does not use the differentiability points of u7. In some situations, this can

be helpful (for example if H is quadratic). See [Esteve-Zuazua, 2020] for
more details.

Example:

”1“
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Numerical implementation

Step 2: Now, we need to compute the initial datum &l = S7 u7.
However, this has already been obtained in step 1, since we have the
following identity

S7 (St (Syur)) = Syur, forall ur € Lip(RY).

(see for example [Barron et al., 1999])
Step 3: Finally, we construct the set X7(u7). This is probably the most
challenging part.

- One way is to identify the set of points where u7 is differentiable.

- There is a different (more geometrical) way to characterize Xr(u7) which
does not use the differentiability points of u7. In some situations, this can
be helpful (for example if H is quadratic). See [Esteve-Zuazua, 2020] for

more details.
/\ /N

Example:
\ ARy

Uy \/ —uy

SR J—T

g
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Conclusions

@ The set /r(ur) is nonempty if and only if Iy = S7 ur satisfies St ip = ur.
@ When H is quadratic or when the space-dimension is 1, u; = S5 (S7 ur)
is the smallest function satisfying Ir(u7) # 0 and uz(x) > ur(x) for all

x € RN

@ If Ir(ur) # 0, then the function Uy = S ur satisfies iy < up for all
Uo € Ir(ur). In addition, there exist a set Xr(ur) C R" where all the
initial data in /+(ur) coincide.

Indeed, any element up € Ir(u7) can be written in the following way:
Uo(X) = To(x) + ¢(x),
where ¢ is any nonnegative Lipschitz function such that
supp(v) C R\ Xr(u7).
@ Backward uniqueness for (HJ) holds if and only if Xr(ur) = RV.
@ The solution of (HJ) at time T is invariant by increasing uo in RY \ X7(ur).

References: - C. Esteve and E. Zuazua, The inverse problem for Hamilton-Jacobi
equations and semiconcave envelopes, Preprint arXiv:2003.06914
- L.C. Evans, Partial Differential Equations, Sections 3.3 and 10.3.
- P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi
equations and optimal control.
- P.L. Lions, Generalized solutions of Hamilton-Jacobi equations.
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