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Introduction

Flow control, as many other fields of applied mathematics involves:

Partial Differential Equations: Models describing motion in
the various fields of Mechanics: Elasticity, Fluids,...

Numerical Analysis: Allowing to discretize these models so
that solutions may be approximated algorithmically.

Optimal Design: Design of shapes to enhance the desired
properties (bridges, dams, aeroplanes,..)

Control: Automatic and active control of processes to
guarantee their best possible behavior and dynamics.
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These topics meet together in many relevant applications.

Noise reduction in cavities and vehicles.

Laser control in quantum mechanical and molecular systems.

Seismic waves, earthquakes.

Flexible structures.

Environment: the Thames barrier.

Optimal shape design in aeronautics.

Human cardiovascular system.

Oil prospection and recovery.

Irrigation systems.

Complexity arises in many ways:

Geometry;

Oscillations.
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The logo of the web page “Domain decomposition”, one of the
most widely used computational techniques for solving PDE in
domains (“divide y vencerás”), and a drawing of the human
cardiovascular system illustrating the graph along which blood
circulates.
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Computer simulation → far beyond the fields in which its use is
justified (consistency + stability ≡ convergence).
The risk: To end up getting numerical data whose validity....
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Is this difficulty solvable in practice?

Solvable for problems with well known data.

Much harder for inverse, design and control problems,,,,

In those cases the obtained
final numerical results and
simulations may simply
mean nothing.
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Shape design in aeronautics

Optimal shape design in aeronautics. Two aspects:

Shocks.
Oscillations.

Optimal shape ∼ Active control. The shape of the cavity or airfoil
controls the surrounding flow of air.
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Optimal shape design in aeronautics

Aeronautics: to simulate and optimize complex processes is
indispensable.

Long tradition: J. L. Lions, A. Jameson,...

However, this needs an immense computational effort.

For practical optimization problems, in which at least 100
design variables are to be considered, current methodological
approaches applied in industry will need more than a year to
obtain an optimized aircraft.
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Mathematical problem formulation

Minimize
J(Ω∗) = min

Ω∈Cad
J(Ω)

Cad = class of admissible domains.
J = cost functional (drag reduction, lift maximization, exploitation
cost, overall cost over the life cycle of the aircraft, benefit
maximization, etc).
J depends on Ω through u(Ω), solution of the PDE (elasticity,
Fluid Mechanics,...).

The domains under consideration
are often complex. Geometric and
parametrization issues play a key
role.
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The dependence of the functional
on the domain, through the
solution of the PDE is complex as
well. J it is far from being a nice
convex function.

Analytical difficulties:

Lack of good existence, uniqueness, and continuous
dependence theory for the PDE.

Lack of convexity of the functional.

Lack of compactness within the class of relevant domains...
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In practice

Descent algorithm (gradient based method) on a discrete version
of the problem:

The domains Ω have been discretized (finite element mesh)

The PDE has been replaced by a numerical scheme,

The functional J has been replaced by a discrete version.
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Classical steepest descent:

J : H → R. Two main assumptions:

< ∇J(u)−∇J(v), u−v >≥ α|u−v |2, |∇J(u)−∇J(v)|2 ≤ M|u−v |2.

Then, for
uk+1 = uk − ρ∇J(uk),

we have

|uk − u∗| ≤ (1− 2ρα + ρ2M)k/2|u1 − u∗|.

Convergence is guaranteed for 0 < ρ < 1 small enough.

Compare with the continuous marching gradient system

u′(τ) = −∇J(u(τ)).
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We end up with:

A discrete optimization problem of huge dimensions,

No idea of whether discrete optima, if they exist, will converge
or not to the optimal continuous one.

Analytical difficulties.
Divergence of algorithms.

The worst scenario: When using results provided by divergent
algorithms, for which divergence is hard to detect.
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An example: boundary control of vibrations.

Can we guarantee this kind of pathologies do not arise in realistic
problems of optimal shape design in aeronautics?
How to detect them? How to avoid them?
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Two approaches:
Discrete: Discretization + gradient

Advantages: Discrete clouds of values. No shocks. Automatic
differentiation, ...

Drawbacks:
”Invisible” geometry.

Scheme dependent.

Continuous: Continuous gradient + discretization.

Advantages: Simpler computations. Solver independent.
Shock detection.

Drawbacks:
Yields approximate gradients.
Subtle if shocks.
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The relevant models in aeronautics (Fluid Mechanics):

Navier-Stokes equations;

Euler equations;

Turbulent models: Reynolds-Averaged Navier-Stokes (RANS),
Spalart-Allmaras Turbulence Model, k − ε model;
....

Burgers equation (as a 1− d theoretical laboratory).
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Euler equations

{
∂tU + ~∇ · ~F = 0, in Ω,
~v · ~nS = 0, on S ,

with suitable boundary conditions at infinity,
U = (ρ, ρvx , ρvy , ρE )= conservative variables, ~F = (Fx ,Fy )=flux

Fx =


ρvx

ρv2
x + P
ρvxvy
ρvxH

 , Fy =


ρvy
ρvxvy
ρv2

y + P
ρvyH

 , (1)

ρ = density , ~v = (vx , vy ) = velocity, E = total energy, P =
pressure, H = enthalpy, where

P = (γ − 1)ρ

(
E − 1

2
(u2 + v2)

)
, H = E +

P

ρ
.
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Solutions may develop shocks or quasi-shock configurations.

For shock solutions, classical calculus fails;

For quasi-shock solutions the sensitivity is so large that
classical sensitivity clalculus is meaningless.
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Burgers equation

Viscous version:

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= 0.

Inviscid one:
∂u

∂t
+ u

∂u

∂x
= 0.
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In the inviscid case, the simple and “natural” rule

∂u

∂t
+ u

∂u

∂x
= 0→ ∂δu

∂t
+ δu

∂u

∂x
+ u

∂δu

∂x
= 0

breaks down in the presence of shocks

δu = discontinuous, ∂u
∂x = Dirac delta ⇒ δu ∂u∂x ????

The difficulty may be overcame with a suitable notion of measure
valued weak solution using Volpert’s definition of conservative
products and duality theory (Bouchut-James, Godlewski-Raviart,...)
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A new viewpoint: Solution = Solution + shock location. Then the
pair (u, ϕ) solves:

∂tu + ∂x(
u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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The corresponding linearized system is:

∂tδu + ∂x(uδu) = 0, in Q− ∪ Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux ]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0,T ),

δu(x , 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau
(2002), Ulbrich (2003), ...
None seems to provide a clear-cut recipe about how to proceed
within an optimization loop.
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A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, to appear.
Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of
shocks.

Alternate within the descent algorithm:

Shock location and smooth pieces of solutions should be
treated differently;
When dealing with smooth pieces most methods provide
similar results;
Shocks should be handeled by geometric tools, not only those
based on the analytical solving of equations.

Lots to be done: Pattern detection, image processing,
computational geometry,... to locate, deform shock locations,....
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Compare with the use of shape and topological derivatives in
elasticity:
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An example: Inverse design of initial data

Consider

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

ud = step function.
Gateaux derivative:

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x , 0)δu0(x) dx + q(0)[u]ϕ0δϕ0,

(p, q) = adjoint state

−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x ,T )−ud )2]

ϕ(T )

[u]ϕ(T )
.
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The gradient is twofold= variation of the profile + shock
location.

The adjoint system is the superposition of two systems =
Linearized adjoint transport equation on both sides of the
shock + Dirichlet boundary condition along the shock that
propagates along characteristics and fills all the region not
covered by the adjoint equations.
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State u and adjoint state p when u develops a shock:
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The discrete aproach

Recall the continuous functional

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

The discrete version:

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − udj )2,

where u∆ = {ukj } solves the 3-point conservative numerical
approximation scheme:

un+1
j = unj − λ

(
gn
j+1/2 − gn

j−1/2

)
= 0, λ =

∆t

∆x
,

where, g is the numerical flux

gn
j+1/2 = g(unj , u

n
j+1), g(u, u) = u2/2.
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Examples of numerical fluxes

gLF (u, v) =
u2 + v2

4
− v − u

2λ
,

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

gG (u, v) =

{
minw∈[u,v ] w

2/2, if u ≤ v ,
maxw∈[u,v ] w

2/2, if u ≥ v ,
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Instabilities arise immediately, even for the lineat transport
equation ut + ux = 0 whose solution is u = f (x − t), if the
numerical scheme does not obey the “upwind” law. Note that at
the discrete level there are several ways to approximate ux :
centered (

uj+1−uj−1

2∆x ); forward (
uj+1−uj

∆x ); and backward (
uj−uj−1

∆x ).
This matters!
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The Γ-convergence of discrete minimizers towards continuous ones
is guaranteed for the schemes satisfying the so called one-sided
Lipschitz condition (OSLC):

unj+1 − unj
∆x

≤ 1

n∆t
,

which is the discrete version of the Oleinick condition for the
solutions of the continuous Burgers equations

ux ≤
1

t
,

which excludes non-admissible shocks and provides the needed
compactness of families of bounded solutions.
As proved by Brenier-Osher, 1 Godunov’s, Lax-Friedfrichs and
Engquits-Osher schemes fulfil the OSLC condition.

1Brenier, Y. and Osher, S. The Discrete One-Sided Lipschitz Condition for
Convex Scalar Conservation Laws, SIAM Journal on Numerical Analysis, 25 (1)
(1988), 8-23.
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A new method: splitting+alternating descent

Generalized tangent vectors (δu0, δϕ0) ∈ Tu0 s. t.

δϕ0 =

(∫ ϕ0

x−
δu0 +

∫ x+

ϕ0

δu0

)/
[u]ϕ0 .

do not move the shock δϕ(T ) = 0 and

δJ =

∫
{x<x−}∪{x>x+}

p(x , 0)δu0(x) dx ,{
−∂tp − u∂xp = 0, in Q̂− ∪ Q̂+,
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}.

For those descent directions the adjoint state can be computed by
“any numerical scheme”!
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Analogously, if δu0 = 0, the profile of the solution does not
change, δu(x ,T ) = 0 and

δJ = −
[

(u(x ,T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·,T )]ϕ(T )
δϕ0.

This formula indicates whether the descent shock variation is
left or right!

WE PROPOSE AN ALTERNATING STRATEGY
FOR DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only
affect the shape away from it.
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Splitting+Alternating wins!
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Results obtained applying Engquist-Osher’s scheme and the one
based on the complete adjoint system

Splitting+Alternating method.
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After 30 iterations:
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Splitting+alternating is more efficient:

It is faster.

It does not increase the complexity.

Rather independent of the numerical scheme.

Extending these ideas and methods to more realistic
multi-dimensional problems is a work in progress and much
remains to be done.
Numerical schemes for PDE + shock detection + shape, shock
deformation + mesh adaptation,...
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Influence of shock wave location (Drag Minimization).
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Conclusions: Inner + outer boundaries

Much remains to be done in the interfaces between PDE,
numerical analysis and optimal design:

Well-posedness of relevant models;
New approximation schemes for linearized and adjoint
equations;
Rigorous proof of convergence of new descent algorithms
(shock handeling, regularization,...)

An important effort has to be done to bring all this
mathematical understanding and theory to real applications:
Make all this to become algorithmic and insert it into the
relevant software to be used in (in particular) aeronautical
engineering.
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Thanks to: E. Andrés, T. Baeza, C. Castro, M. Cea, L. Ignat, C.
Lozano, A. Marica, F. Palacios, ...
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The Hopf-Cole transform

Let u = u(x , t) be a solution of

ut − νuxx + (u2)x = 0.

such that | u(x , t) | + | ux(x , t) |→ 0 as | x |→ ∞.
Then

v = v(x , t) =

∫ x

−∞
u(s, t)ds (2)

solves
vt − νvxx+ | vx |2= 0. (3)

Define then
w = v(x , t/ν)

that satisfies

wt − wxx +
1

ν
| wx |2= 0. (4)
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On the other hand,
z = w/ν (5)

satisfies
zt − zxx+ | zx |2= 0. (6)

Introduce, at last,
η(x , t) = e−z (7)

that solves the heat equation

ηt − ηxx = 0. (8)

Undoing the change of variables

u = vx
v(·, t/ν) = w(·, t) = νz(·, t) = −ν log(η).

Then

u(x , t) = −ν ηx(x , νt)

η(x , νt)
. (9)
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The solution η of this heat equation can be obtained by
convolution with the heat kernel:

G (x , t) = (4πt)−1/2 exp
(
− | x |2

/
4t
)
, (10)

so that
η(x , t) =

[
G (·, t) ∗ η0(·)

]
(x), (11)

where η0 is the initial datum of η.
On the other hand,

Gx(x , t) = − x

4
√
πt3/2

exp
(
− | x |2

/
4t
)
. (12)
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In this way we get

uν(x , t) =

∫
R(x − y)e−H(x , y , t)/νdy

2t
∫
R e−H(x , y , t)/νdy

(13)

where

H(x , y , t) =
| x − y |2

4t
+

∫ y

−∞
u0(σ)dσ. (14)

Enrique Zuazua Flow control in the presence of shocks



The contribution of the integral as ν → 0+2∫
R
f (y)e−H/νdy (15)

around the minimum y = ξ is

f (ξ)

√
2πν

H ′′(ξ)
e−H(ξ)/ν . (16)

In our case

H ′′(ξ) =
1

2t
. (17)

We get∫
R

(x − y)e−H/νdy ∼ (x − ξ)

√
πν

t
e−[tu2

0(ξ)+
∫ ξ
−∞ u0(σ)dσ]ν , (18)∫

R
e−H/νdy ∼

√
πν

t
e−[tu2

0(ξ)+
∫ ξ
−∞ u0(σ)dσ]. (19)

2Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers: Asymptotic Methods and Perturbation Theory ,
Springer, 1999
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Then

uν(x , t) ∼ (x − ξ)

2t
(20)

where ξ is characterized by the equation

ξ = x − 2tu0(ξ), (21)

corresponding to the minima of H.
Thus

uν(x , t) ∼ u0(ξ). (22)

This is, precisely, the solution obtained by the method of
characteristics:

uν(x , t) ∼ u0(ξ). (23)

This is valid when H has only one minimum.

When u0 is increasing and smooth there is only one solution and
we recover the same solution as the one obtained by the method of
characteristics.
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When H has several minima ξ1, . . . , ξN , each of them provides a
contribution of the same form.

When there are two absolute minima ξ1, ξ2, the asymptotic form
of uν would be:

uν(x , t) ∼ u0(ξ1) + u0(ξ2). (24)

What does it mean?
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We now consider the Riemann problem

u0(x) =

{
0, x < 0
1, x > 0.

(25)

We get:

When x < 0, this gives ξ = x and then the limit is
u = u0(ξ) = 0.

When x > 2t we get ξ = x − 2t and then the solution is
u ≡ 1, which coincides with the result that the method of
characteristic yields.

In the intermediate zone we get ξ = x/(1 + 2t) and

u(x , t) =
x

2t
. (26)

The rarefaction wave u = x/2t connects the value u = 0 to the
left and x = 1 to the right.
This is the physical or entropy solution.
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For the Riemann problem

u0(x) =

{
1, x < 0
0, x > 0

(27)

we get a shock like solution.

The method of vanishing viscosity confirms this is the entropy or
physical solution.

In this case, the function H has two local minima, but when
determining the global one we get either the value u ≡ 0 or u ≡ 1
depending on whether we are on the left or right of the shock.
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Shock versus rarefaction waves
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The Oleinick entropy condition

Physical solutions of the Burgers equation satisfy

ux ≤ 1/2t. (28)

Formally, v = ux satisfies

vt + (2uv)x = vt + 2v2 + 2uvx = 0. (29)

By the maximum principle we deduce that

v ≤ w (30)

where w = w(t) is the solution of

wt + 2w2 = 0 (31)

with initial datum w(0) =∞: w(t) = 1/2t.
This formal argument can be fully justified for the physical
solutions that are obtained as zero viscosity limits.

Note that this is compatible with the structure of shock waves
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Summary on entropy solutions of the Burgers equation

Entropy solutions are the physical ones

Entropy solutions are characterized by the zero viscosity limit.

Entropy solutions are characterized also by the Oleinick
inequality.

Entropy solutions are unique (celebrated result by Kruzkov).

All this can be extended to multi-dimensional scalar conservation
laws:

ut + div(~f (u)) = 0.

Note however that, in real applications, we often deal with systems,
where theory if much more complex and only partially complete.
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