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Preliminaries on the control of the heat equation

The control problem

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of Rn

with smooth boundary Γ, Q = (0,T )× Ω and Σ = (0,T )× Γ:
yt −∆y = u1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(1)

1ω = the characteristic function of ω of Ω where the control is active,
y0 ∈ L2(Ω) and u ∈ L2(Q) so that (5) admits an unique solution

y ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

y = y(x , t) = solution = state, u = u(x , t) = control

Goal: Drive the system to rest:

y(x ,T ) ≡ 0.
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Preliminaries on the control of the heat equation

Numerical simulations, back to Glowinski and Lions in the
80’s and 90’s
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This is so since controls are just restrictions to ω of solutions of the
adjoint system

−ϕt −∆ϕ = 0

with initial data ϕT at time t = T in very badly conditioned space, the
one of the norm one observes.
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Preliminaries on the control of the heat equation

Bad news

1 Controls oscillate dramatically as time approaches the final time.

2 This produces oscillations in the state too.

3 This effect is further accentuated when the time horizon T is short,
as T → 0.

4 This makes the controllability results of little use in many contexts in
which the state represents a density (population dynamics, Math
Biology).

5 This appears systematically in all models of reaction-diffusion type.
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Preliminaries on the control of the heat equation

Consequences on optimal control

This not only occurs for controllability problems.

Optimal control problems that penalise the final state ||y(T )|| will
experience the same behaviour:

min
u∈L2(ω×(0,T ))

1

2

[∫ T

0

∫
ω
u2dxdt + K

∫
Ω
|y(x ,T )|2dx .

]

The reason for this pathology is that, again, the control is, according to
the Optimality System (OS), of the form

u = −ϕ1ω

where {
ϕt + ∆ϕ = 0 in Q
ϕ = 0 on Σ.

(2)
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Preliminaries on the control of the heat equation

In the context of null-control, when the goal is to drive the state y to rest
(y(T ) ≡ 0) we know that the final datum ϕT of the adjoint system lies in
a very large space that, in terms of the Fourier coefficients on the basis of
the eigenfunctions of the Laplacian, can be written as follows:∑

j≥1

|ϕ̂T
j |2 exp(−c

√
λj) <∞,

and this explains the singular behaviour of controls as t ∼ T :
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Preliminaries on the control of the heat equation

Can we really expect null-control with nonnegative
controls?

The answer is NO! When solving
yt −∆y = u1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(3)

with y0 ≥ 0 and u ≥ 0, then, by the comparison principle of solutions of
the heat equation, we have that

y ≥ z

where z is the solution of the heat equation without control. Thus

y(x ,T ) ≥ z(x ,T ) > 0.
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Constrained control in long time

And so?

Relax the non-negativity constraint of the control a little bit to

u ≥ −δ.

And then,

Theorem

For all δ > 0 there exists a positive time-horizon T (δ) > 0 such that the
null-control of the equation can be achieved, the control being so that

u ≥ −δ.

The same result holds for semilinear dissipative heat equations, parabolic
equations with variable smooth coefficients, etc.
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Constrained control in long time

Sketch of the proof

Goal: Actually prove that
||u||∞ ≤ δ.

Two steps procedure:

1 Phase 1: Do nothing during time interval [0,T − 1] and let the
solution decay.

2 Phase 2: Once y(T − 1) is small enough, control it to zero in the last
time-interval [T − 1,T ].
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Constrained control in long time

Two well-known key facts

1 Dissipativity.

2 Controllability. The controllability of the model, so that in time [0, 1],
the system is controllable and with a bound on the cost of control:

||u||L∞(ω×(0,1)) ≤ C ∗||y0||L2(Ω).
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Constrained control in long time

Second proof: Control along a path of steady-states

1 Allowing to link steady-states, solutions of{
−∆y = u1ω in Ω
y = 0 on ∂Ω,

(4)

along a path of controls u(x , γ) depending continuously on a parameter
γ ∈ [0, 1].

Despacito!

1J.-M. Coron, E. Trélat, SIAM J. Control Optim. 43 (2004), no. 2, 549–569.
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Constrained control in long time

Conclusions

1 We cannot get to the target 0 with non-negative controls,

2 But, we can, if the target, the objective y1 is a positive steady state
solution satisfying {

−∆y1 = u11ω in Ω
y1 = 0 on ∂Ω,

(5)

with
u1 ≥ ν > 0.

And the time T is long enough!!!
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Boundary control

Boundary control

The same results hold in the context of boundary control. In other words,

Theorem

Given a target y1, steady state solution (harmonic function) with
boundary control u1 ≥ ν > 0, the heat equation can be driven to it in time
T large enough with control u ≥ 0.
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The waiting time phenomenon

We have shown that controllability with constraints ca be achieved in long
time. In fact, it is impossible to do it in short time!

Theorem

Whatever the initial datum y0 and the steady state target y1 associated to
u1 ≥ ν is, the minimal control time under the positivity constraint is
positive:

Tmin > 0,

except in the trivial case where y0 ≡ y1.
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The waiting time phenomenon

Proof of the waiting time

To fix ideas and without loss of generality we assume that y0 ≡ 0.
The target y1 > 0.
But we want to show that, if u ≥ 0, it can not be reached in time T too
short.
By duality, if y(T ) = y1,

〈y1, ϕT 〉+

∫ T

0

∫
∂Ω

u
∂ϕ

∂n
dσ(x)dt = 0,

where 
ϕt + ∆ϕ = 0 in (0,T )× Ω

ϕ = 0 on (0,T )× ∂Ω

ϕ(T , x) = ϕT (x). in Ω
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The waiting time phenomenon

Thus, to conclude, in view of the identity

〈y1, ϕT 〉+

∫ T

0

∫
∂Ω

u
∂ϕ

∂n
dσ(x)dt = 0,

it suffices to find T0 > 0 and a final datum ϕT ∈ H1
0 (Ω) such that, for any

T ∈ (0,T0), the solution of the adjoint system with final datum ϕT

satisfies: 
(
∂ϕ
∂n

)
+

= 0 on (0,T0)× ∂Ω

〈y1, ϕT 〉 < 0, ∀T ∈ [0,T0).

This is assured with an initial datum of the form
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The waiting time phenomenon

Explicit estimates on the waiting time

The proof above not only yields the fact that Tmin > 0, but actually gives
lower bounds on this waiting time, by a careful analysis of the behaviour of
the adjoint solutions.
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Control in minimal time

Controllability in minimal time

Theorem

The system is controllable in minimal time Tmin with a non-negative
measure u as control

The proof is again a consequence of the identity:

〈y1, ϕT 〉+

∫ T

0

∫
∂Ω

u
∂ϕ

∂n
dσ(x)dt = 0,

now applied to the solution of the adjoint heat equation ϕ with Φ1, the
first eigenfunction of the Laplacian, as datum at time T :

ϕ = exp(−λ1(T − t))Φ1(x).
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Numerical simulations in 1-d
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Numerical simulations in 1-d

The numerical method

1 We adopt a discrete approach: Discretise and minimise.

2 We discretise the equation both in space and time, with ∆x and ∆t
small enough. We fix a number of time steps large enough, together
with all the constraints (positivity of the boundary values, initial and
final conditions).

3 We then minimise ∆t using the IPOPT software.

4 We put a (very large upper bound) M on the control:

0 ≤ u ≤ M.
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Numerical simulations in 1-d

Numerical experiments
y 0 ≡ 5, y 1 ≡ 1, analytic estimate on minimal time : T ≥ 0.165297

See
http://cmc.deusto.es/ipopt-and-ampl-use-to-solve-time-optimal-control-problems/
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Numerical simulations in 1-d

Numerical experiments
y 0 ≡ 1, y 1 ≡ 5, analytic estimate on minimal time : T ≥ 0.023076

See
http://cmc.deusto.es/ipopt-and-ampl-use-to-solve-time-optimal-control-problems/
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Numerical simulations in 1-d

Optimality structure: And open problem

The numerical simulations above show that, apparently, the constrained
controls in minimal time have the following properties:

1 They are unique.
2 They are constituted by the union of arcs where the controls vanish

together with impulsional controls of Dirac delta type with support on
a sequence of time instances concentrating at the final time.

This raises an interesting open problem. In view of the structure of the
moment problem, can one find a solution constituted by the accumulation
of a countable number of Dirac masses such that

u(t) =
∑
j≥1

mjδt=τj ,
∑
j≥1

mj <∞

with mj ≥ 0 and 0 < τj < T accumulating at T as j →∞ and such that
the following identity hold for all p ≥ 0?

2 y1

((2p + 1)π)2
− e−(2p+1)2π2T

(2p + 1)π
y0

2p+1 = 2
∑
j≥1

mje
−(2p+1)2π2(T−τj ) .

Proving those results about the actual structure of controls is an open
problem.
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Relationship with the viscous Hamilton-Jacobi equation

As observed by M. Tucsnak, the waiting time phenomenon for the control
under nonnegativity state constraints of the linear heat equation is related
to that on the control of the viscous Hamilton-Jacobi equations proved by
A. Porretta and E. Z. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 2012.
If y solves the heat equation and y(t, x) ≥ 0, the logarithmic change of
variable z(t, x) = − ln y(t, x) leads to the viscous Hamilton-Jacobi
equation

ż −∆z + |∇z |2 = 0 (t > 0, x ∈ Ω), (6)

with the initial condition z(0, x) = − ln yr0(x) and constant target state
z1 = − ln yr1.
The waiting time for the control of this viscous Hamilton-Jacobi equation
was proved using the barrier functions by Lasry and Lions. This is directly
connected with the need of a minimal time for the constrained
controllability of the linear heat equation. Barrier functions are achieved
through the same logarithmic change of variables out of the first
eigenfunction of the Laplacian.
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Conclusions and open problems

Conclusions

We have seen in a number of examples that:

1 There is a waiting phenomenon for controllability under constraints.

2 Constrained controllability can be achieved in a long enough time by
two different methods: dissipativity and/or step-waise.

3 There is a measure control in the minimal time.

4 The numerical simulations show that the minimal time control is
sparse or impulsional, composed by a sequence of diminishing Dirac
deltas.

5 There is a link with the waiting time phenomena for the viscous
Hamilton-Jacobi equation.
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Conclusions and open problems

Open problems

Fully understand the sparsity structure of controls in
minimal time
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