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Motivation

Sonic boom

Goal: the development of supersonic aircrafts, sufficiently quiet to be
allowed to fly supersonically over land.

The pressure signature created by the aircraft must be such that,
when reaching ground, (a) it can barely be perceived by humans, and
(b) it results in admissible disturbances to man-made structures.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 526.
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Motivation

More generally

It is a well acknowledged fact that, whenever a system admits a
property of asymptotic stability in long time, control mechanisms
should inherit it.

Is it really true?

In particular, it is often “assumed” that, when trajectories of the free
dynamics converge to steady states, time evolution control problems
should be attracted by the corresponding steady-state version.

Is it really true?

How does this fact depend on the model under consideration? Does it
depend on the type of control problem?

Often times optimal shape design problems in aeronautics and
elasticity are addressed in a steady-context. Is this model reduction
justified?
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Motivation

From a practical viewpoint

When building and optimal control or design mechanism, it is natural
to simplify it to first consider the steady-state version.

To which extent and in which regimes is the time-evolution control
problem approximated by the steady-state optimal control/design?

In this lecture we show that the answer depends very heavily on:

1 Controllability properties,

2 The criterion employed to define optimal controls.
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Motivation

Problem synthetic reformulation

T →∞+ Control = Control +T →∞ ?

Note that this commutativity is well-known to fail in some particular
instances such as when performing numerical approximationsa.

aE. Z. Propagation, observation, and control of waves approximated by finite
difference methods. SIAM Review, 47 (2) (2005), 197-243.
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Turnpike theory

Origins

Although the idea goes back to John von Neumann in 1945, Lionel W.
McKenzie traces the term to Robert Dorfman, Paul Samuelson, and
Robert Solow’s ”Linear Programming and Economics Analysis” in 1958,
referring to an American English word for a Highway:

... There is a fastest route between any two points; and if the
origin and destination are close together and far from the
turnpike, the best route may not touch the turnpike. But if the
origin and destination are far enough apart, it will always pay to
get on to the turnpike and cover distance at the best rate of
travel, even if this means adding a little mileage at either end.
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Turnpike theory
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Turnpike theory

Mainly motivated by applications to economic models and game theory
there is a literature concerned with this kind of stationary behavior in the
transient time for long horizon control problems. In that context, such
type of result goes under the name of turnpike theory which was mostly
investigated in the finite dimensional case.

A. J. Zaslavski, Turnpike properties in the calculus of variations and
optimal control. Nonconvex Optimization and its Applications, 80.
Springer, New York, 2006.
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Turnpike theory

A mathematician’s apology

We are mainly motivated by PDE control and design applications.
A number of model cases have been well understood. But there is still a
long way to go...
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Some PDE examples of lack of turnpike

The wave equation
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Typical controls for the wave equation exhibit an oscillatory behaviour, and
this independently of the length of the control time-horizon.
But nobody would be surprised about this fact. It looks like intrinsically
linked to the oscillatory (even periodic in some particular cases) nature of
the wave equation solutions.
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Some PDE examples of lack of turnpike

The heat equation
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Typical controls for the heat equation exhibit unexpected oscillatory and
concentration effects. This was observed by R. Glowinski and J. L. Lions
in the 80’s in their works in the numerical analysis of controllability
problems for heat and wave equations.
Why?
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Some PDE examples of lack of turnpike

Optimal controls are normally characterised as traces of solutions of the
adjoint problem through the optimality system or the Pontryagin
Maximum Principle, and solutions of the adjoint system of the heat
equation

−pt −∆p = 0,

look precisely this way.

Large and oscillatory near t = T they decay and get smoother when t gets
down to t = 0. And this is independent of the time control horizon [0,T ].

First conclusion:
Typical control problems for wave and heat equations do not seem to
exhibit the turnpike property.
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The heat and wave equations revisited
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The heat and wave equations revisited

The control problem

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of Rn

with smooth boundary Γ, Q = (0,T )× Ω and Σ = (0,T )× Γ:
yt −∆y = f 1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(1)

1ω = the characteristic function of ω of Ω where the control is active.
We assume that y0 ∈ L2(Ω) and f ∈ L2(Q) so that (15) admits a unique
solution

y ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

y = y(x , t) = solution = state, f = f (x , t) = control
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The heat and wave equations revisited

Well known result (Fursikov-Imanuvilov, Lebeau-Robbiano,...) : The
system is null-controllable in any time T and from any open non-empty
subset ω of Ω.
The control of minimal L2-norm can be found by minimizing

J0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx (2)

over the space of solutions of the adjoint system:
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(T , x) = ϕ0(x) in Ω.

(3)

Obviously, the functional is continuous and convex from L2(Ω) to R and
coercive because of the observability estimate:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (4)
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The heat and wave equations revisited

If ϕ̄0 is the minimiser of the functional J, the needed control is given by

f = ϕ̄

where ϕ̄ is the solution of the adjoint heat equation corresponding to the
minimiser ϕ̄0.
And, because of this, we observe the tendency of the control to
concentrate all the action in the final time instant t = T .
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The heat and wave equations revisited

But this is so for the control of minimal L2-norm for which the Optimality
System (OS) reads:

yt −∆y = ϕ1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

y(x ,T ) = 0 in Ω

−ϕt −∆ϕ = 0 in Q

ϕ = 0 on Σ.

Note that the fact that the adjoint state ϕ appears isolated as the solution
of the adjoint equation induces this unexpected behavior and the tendency
to concentrate action at t = T .

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 20 / 59



The heat and wave equations revisited

Better balanced controls

Let us now consider the control f minimising a compromise between the
norm of the state and the control among the class of admissible controls:

min
1

2

[ ∫ T

0

∫
Ω
|y |2dxdt +

∫ T

0

∫
ω
|f |2dxdt

]
.

Then the Optimality System reads

yt −∆y = −ϕ1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

y(x ,T ) = 0 in Ω

−ϕt −∆ϕ = y in Q

ϕ = 0 on Σ.

We now observe a coupling between ϕ and y on the adjoint state equation!
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The heat and wave equations revisited

New Optimality System Dynamics

What is the dynamic behaviour of solutions of the new fully coupled OS?
For the sake of simplicity, assume ω = Ω.
The dynamical system now reads

yt −∆y = −ϕ

ϕt + ∆ϕ = −y

This is a forward-backward parabolic system.
A spectral decomposition exhibits the characteristic values

µ±j = ±
√

1 + λ2
j

where (λj)j≥1 are the (positive) eigenvalues of −∆.
Thus, the system is the superposition of growing + diminishing real
exponentials.
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The heat and wave equations revisited

The turnpike property for the heat equation

This new dynamic behaviour, combining exponentially stable and unstable
branches, is compatible with the turnpike behavior.
Controls and trajectories exhibit the expected dynamics:

We observe that the turnpike behaviour is automatically ensured by the
fact that the optimality criterion on the choice of the control is modified
to weight both state and control and provided T >> 1.
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The heat and wave equations revisited

The turnpike property for the wave equation

But this relevant fact, so that modifying the optimality criterion for the
choice of the control, ensures the turnpike property, is not intrinsic to the
heat equation.

The same applies for the wave equation: The control and controlled
trajectories are close to the steady state ones during most of the time
interval of control when T >> 1.

M. Gugat, E. Trélat, E. Zuazua, Systems and Control Letters, 90 (2016),
61-70.

What is behind?
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General theory

Linear abstract theory. Joint work with A. Porretta, SIAM
J. Cont. Optim., 2013.

Consider the finite dimensional dynamics{
xt + Ax = Bu

x(0) = x0 ∈ RN
(5)

where A ∈ M(N,N), B ∈ M(N,M), with control u ∈ L2(0,T ; RM).
Given a matrix C ∈ M(N,N), and some x∗ ∈ RN , consider the optimal
control problem

min
u

JT (u) =
1

2

∫ T

0
(|u(t)|2 + |C (x(t)− x∗)|2)dt .

There exists a unique optimal control u(t) in L2(0,T ; RM), characterized
by the optimality condition

u = −B∗p ,

{
−pt + A∗p = C ∗C (x − x∗)

p(T ) = 0
(6)
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General theory

The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ , of
the stationary control problem

min
u

Js(u) =
1

2
(|u|2 + |C (x − x∗)|2) , Ax = Bu , (7)

which is nothing but a constrained minimization in RN .
The optimal control ū and state x̄ satisfy

Ax̄ = Bū , ū = −B∗p̄ , and A∗p̄ = C ∗C (x̄ − x∗) .
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General theory

We assume that
The pair (A,B) is controllable, (8)

or, equivalently, that the matrices A, B satisfy the Kalman rank condition

Rank
[
B AB A2B . . . AN−1B

]
= N . (9)

Concerning the cost functional, we assume that the matrix C is such that
(void assumption when C = Id)

The pair (A,C ) is observable (10)

which means that the following algebraic condition holds:

Rank
[
C CA CA2 . . . CAN−1

]
= N . (11)
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General theory

Under the above controllability and observability assumptions, we have the
following result.

Theorem

For some γ > 0 for T > 0 large enough we have∫ bT

aT

(∣∣∣u − ū
∣∣∣2 +

∣∣∣x − x̄
∣∣∣2) ds ≤ K

(
e−γaT + e−γ(1−b)T

)
for every a, b ∈ [0, 1].

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 29 / 59



General theory

Proof

Step 1: A dissipativity identity. We have

[(x − x̄)(p − p̄)]t = −
[
B∗(p − p̄)|2 + |C (x − x̄)|2

]
as a direct consequence of

(x − x̄)t + A(x − x̄) = B(u − ū)

u − ū = −B∗(p − p̄)

−(p − p̄)t + A∗(p − p̄) = C ∗C (x − x̄).
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General theory

Step 2. Decay for correlations.

Following [CLLP]1, if B∗ and C are coercive2 we also have

|B∗(p − p̄)|2 + |C (x − x̄)|2 ≥ γ
(
|p − p̄|2 + |x − x̄ |2

)
.

Hence

[(x − x̄)(p − p̄)]t = −|B∗(p − p̄)|2 − |C (x − x̄)|2 ≤ −γ|(x − x̄)(p − p̄)| ,

for some γ > 0.
Hence,

−Ke−γ(T−t) ≤ [(x − x̄)(p − p̄)](t) ≤ Ke−γt

if (x − x̄)(p − p̄) is bounded at t = 0 and t = T .

1P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of Mean
Field Games, Network Heterogeneous Media, 7 (2), 2012.

2These conditions can be relaxed under the controllability-observability conditions
above.
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General theory

Step 3. Convergence of averages.

In fact, the bounds on the extremal values at t = 0 and T = T
immediately yields the turnpike property in an averaged sense.
Indeed, as a consequence of the identity,∫ T

0

(
|u − ū|2 + |C (x − x̄)|2

)
dt = [(x0 − x̄)(p(0)− p̄)]− [(x(T )− x̄)p̄]

and the bounds at the extremal values t = 0 and t = T we then have∫ T

0

(
|u − ū|2 + |C (x − x̄)|2

)
dt ≤ C (12)

with C independent of T and

1

T

∫ T

0

(
|u − ū|2 + |C (x − x̄)|2

)
dt ≤ C

T
→ 0 .

This, of course, also implies the convergence of the averaged minima to
the stationary minimum.
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General theory

Step 4. Bounds on the extremal values.

Using the observability inequality of the pair (A∗,B∗) we have

|(p(0)−p̄)| ≤ c

(∫ T

0
|C (x − x̄)|2 dt

) 1
2

+

(∫ T

0
|B∗(p − p̄)|2 dt

) 1
2

+ |p̄|

 .
(13)

Similarly, in the equation of x − x̄ we use the observability inequality for
(A,C ) which is ensured by (11):

|x(T )− x̄ | ≤ c

(∫ T

0
|u − ū|2dt +

∫ T

0
|C (x(t)− x̄)|2dt + |x0 − x̄ |2

) 1
2

.

(14)
This, together with the identity∫ T

0

(
|u − ū|2 + |C (x − x̄)|2

)
dt = [(x0 − x̄)(p(0)− p̄)]− [(x(T )− x̄)p̄]

yields the needed bounds.
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General theory

Step 5. The exponential turnpike estimate.

The conclusion holds employing the exponential decay of the correlation
term and the fact that∫ bT

aT

(
|u − ū|2 + |C (x − x̄)|2

)
dt

= [(x(aT )− x̄)(p(aT )− p̄)]− [(x(bT )− x̄)(p(bT )− p̄)].
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General theory

What is the reason?

It is a direct consequence of the hyperbolicity of the underlying dynamics,
whose steady state solutions are characterised by the system

Ax̄ + BB∗p̄ = 0

−A∗p̄ + C ∗Cx̄ = C ∗Cx∗

generated by the operator matrix

Ã =

(
A BB∗

C ∗C −A∗

)

Note however that the hyperbolicity of this matrix operator needs of
controllability conditions.
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General theory

In other words, the fact that the spectrum of the operator matrix Ã is
symmetric to the left and right half complex plane, ensures the
stability+unstability pattern.

Two key ingredients are needed for the turnpike property to arise for the
optimal control problem:

1 The cost criterion for the optimal control needs to penalise both state
and control.

2 The system needs to be controllable.

In particular, it is worth underlying that controllability is needed for the
turnpike property to hold !!!

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 36 / 59



General theory

The turnpike path
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General theory

The turnpike dynamics
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General theory

Extensions

Some extensions:

1 Extension of this linear finite-dimensional theory to a linear abstract
setting of infinite-dimensional semigroups, including wave and
heat equations.
Note that, since (null) controllability is required, turnpike holds for
the heat equation with any support ω of the control, but that, for the
wave equation, ω is required to fulfill the Geometric Control
Condition (by Bardos-Lebeau-Rauch).
When the GCC fails, weaker turnpike properties are achieved, with
slower convergence rates (not exponential ones).
Porretta-Zuazua, SICON, 2013.

2 Nonlinear finite-dimensional systems.
E. Trélat & E. Zuazua, The turnpike property in finite-dimensional
nonlinear optimal control, JDE, 218 (2015) , 81-114.
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General theory

Strategy of proof for the finite-dimensional nonlinear
problem (E. Trélat & E. Z.)

1 Write down the Optimality System (SO) for the nonlinear time
evolution problem.

2 Linearise the OS around the steady optimal state-control to get the
linearised OS.

3 Check the hyperbolic structure of the linearised OS and its turnpike
character.

4 Get back to the nonlinear problem by local perturbation theory.
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General theory

Some other bibliographical references

1 Turnpike theorems have been derived in the 60’s for discrete-time
optimal control problems arising in econometry (McKenzie, 1963).

2 Continous versions by Haurie for particular dynamics (economic
growth models). See also Carlson-Haurie-Leizarowitz 1991, Zaslavski
2000.

3 More recently, in biology: Rapaport 2005, Coron-Gabriel-Shang 2014;
human locomotion: Chitour-Jean-Mason 2012; MPC: Grüne
2012-2014.

4 Rockafellar 1973, Samuelson 1972: saddle point feature of the
extremal equations of optimal control.

5 Different point of view by Anderson-Kokotovic (1987),
Wilde-Kokotovic (1972):
exponential dichotomy property → hyperbolicity phenomenon.

6 Application to a Lotka-Volterra model in population dynamics: A.
Ibañez (2016).
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Numerical experiments
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Numerical experiments

Example in control-affine case (E. Trélat & E. Z.)

ẋ1(t) = x2(t), x1(0) = 1,

ẋ2(t) = 1− x1(t) + x2(t)3 + u(t), x2(0) = 1

min
1

2

∫ T

0

(
(x1(t)− 1)2 + (x2(t)− 1)2 + (u(t)− 2)2

)
dt

Optimal solution of the static problem:

x̄2 = 0, 1− x̄1 + x̄3
2 + ū = 0

min
x2=0

1−x1+x3
2 +u=0

(
(x1 − 1)2 + (x2 − 1)2 + (u − 2)2

)
whence

x̄ = (2, 0) , ū = 1, λ̄ = (−1,−1)

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 43 / 59



Numerical experiments

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 44 / 59



Numerical experiments

Local versus global turnpike
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Numerical experiments

ẋ = −3x + 3x3 + u; x(0) = x0.

min

∫ T

0

(
(x(t)− 1)2 + (u(t)− 1)2

)
dt

The static optimal problem has a unique global solution x̄ = 0.78
(ū = 0.91), and a local one x̄loc = −1.10 (ū = 0.73).
Local versus global turnpike. Costs 4.19 and 2.61 respectively.
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Numerical experiments

All in all: An advanced simulation
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The nonlinear heat equation
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The nonlinear heat equation

A. Porretta & E. Z., INdAm, 2019a

aExtension to 2d NS by S. Zamorano, UChile

Consider now the semilinear heat equation:
yt −∆y + y3 = f 1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(15)

Consider the minimisation problem:

min
f

[1

2

∫ T

0

∫
Ω
|y − yd |2dxdt +

∫ T

0

∫
ω
f 2dxdt

]
.
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The nonlinear heat equation

The optimality system reads:

yt −∆y + y3 = −ϕ1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

−ϕt −∆ϕ+ 3y2ϕ = y − yd in Q

ϕ = 0 on Σ

ϕ(x ,T ) = 0 in Ω.
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The nonlinear heat equation

And the linearised optimality system, around the optimal steady solution
(ȳ , ϕ̄) is as follows:

zt −∆z + 3(ȳ)2z = −ψ1ω in Q

z = 0 on Σ

z(x , 0) = 0 in Ω

−ψt −∆ψ + 3(ȳ)2ψ+6ȳϕz = z in Q

ψ = 0 on Σ

ψ(x ,T ) = 0 in Ω.
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The nonlinear heat equation

The equations describing the dynamics of the linearised optimality system
red as follows:

zt −∆z + 3(ȳ)2z = −ψ1ω

−ψt −∆ψ + 3(ȳ)2ψ = (1− 6ȳϕ)z

This is the optimality system for a LQ control problem of the model

zt −∆z + 3(ȳ)2z = f 1ω

and the cost

min
f

[1

2

∫ T

0

∫
Ω
|z |2dxdt +

∫ T

0

∫
ω
ρ(x)f 2dxdt

]
with

ρ(x) = 1− 6ȳ(x)ϕ(x).

And the turnpike property holds as soon as ρ(x) ≥ δ > 0.
This holds if ȳ and ϕ are small enough, and this is automatically implied
as soon as the target yd is small enough.
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The nonlinear heat equation

The second order optimality conditions for the minimiser of the
steady-state problem guarantee that the functional under consideration is
semidefinite positive3.

Whether this suffices for the turnpike property to hold is under
investigation.

3E. Casas & M. Mateos, EHF2016 Lecture Notes, 2016.
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The nonlinear heat equation

All in all: An advanced simulation

E. Zuazua (FAU - AvH) PDE Control & Time Horizons April 1, 2020 54 / 59



Conclusions
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Conclusions

Comments

The general picture is rather clear, but there are still some interesting
(some of them difficult?) open problems:

• Clarify the turnpike property for nonlinear PDE without smallness
conditions on the target exploiting the second order optimality conditions
for the steady state optimal pair.

• Extend the theory for optimal control problems on the (diffusivity)
coefficients. This has been done by G. Allaire, A. Münch and F. Periago
(SICON 2010) for time-independent coefficients, but whether the turnpike
property holds for time-evolution control coefficients, is to to be done:

yt − div(σ(x , t)∇y) = 0

the diffusivity σ = (x , t) being the control.

• Towards a more global picture: Combine the local analysis presented
here, mainly based on the analysis of the SO and its linearised version, and
the technical inspired in dissipativity property by L. Grüne et al.
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Conclusions

• More general notions such as the periodic turnpike property can also be
investigated for, say, periodic non-autonomous evolutions problems (E.
Trélat, C. Zhang and E. Z., in progress).
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Conclusions

• Development of the turnpike theory for optimal shape design problems.

• Make use of turnpike properties to solve constrained controllability
problems (in large time).
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