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Motivation

1 In past decades controllability theory for PDE has evolved
significantly.

2 Some of the most paradigmatic models are by now well understood:
Wave and heat equations, in particular.

3 But theory lacks of unity. Often times rather different analytical tools
are required to tackle different models/problems.

4 Practical applications need of robust control theoretical results and
fast numerical solvers.

5 One of the key issues to be addressed in that direction is the
controllability of PDE models depending on parameters, that
represent uncertain or unknown quantities.

6 In this lecture we present some basic elements of the implementation
of the greedy methods in this context and formulate some
challenging open problems.

7 This leads to a new class of Inverse Problems.
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Motivation

What’s known?

Many fundamental questions are by now well-understood (under the
influence of the pioneering works of D. Russell, J.-L. Lions among
others)

1 Wave equations by means of Microlocal techniques starting with the
pioneering work of Bardos-Lebeau-Rauch (1988).

2 Heat equations by means of Carleman inequalities:
Fursikov-Imanuvilov (1992); Lebeau-Robbiano (1995).

3 Control of nonlinear models: The return method, J.- M. Coron
(1994), Steady-state control, J.-M. Coron - E. Trélat (2004).
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Motivation

What about numerics?

Much less is known!

Pioneering works by R. Glowinski and J. L. Lions (Acta Numerica
(1994)).

Numerics and high frequency filtering for wave equations: S.
Ervedoza & E. Zuazua, SpringerBriefs (2013), M. Tucsnak et al., E.
Fernández-Cara & A. Münch, M. Asch - G. Lebeau - M. Nodet,....

Numerics for heat-like equations based on Carleman inequalities, F.
Boyer - F. Hubert - M. Morancey - J. Le Rousseau ...

Significant work remains to be done to bring the numerical theory to the
same level as the PDE one.

And, overall, robust numerical methods are needed.
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Motivation

What about parameter-depending problems?

Singular perturbations: From wave to heat (López-Zhang-Zuazua
(2000)), viscous to inviscid conservation laws (Coron-Guerrero
(2005), Guerrero-Lebeau (2007))

Homogenisation (Castro-Zuazua (1997), G. Lebeau (1999),
López-Zuazua (2002), Alessandrini-Escauriaza (2008)):

ytt − div(a(x/ε)∇y) = 0; yt − div(a(x/ε)∇y) = 0.

T → 0 for heat equations (exp(−c/T )): L. Miller (2004), G.
Tenenbaum - M. Tucsnak (2007), P. Lissy (2015).

The analysis of these singular perturbation problems needs of significant
ad hoc arguments and exhibits the lack of unified treatment.

Some of the most fundamental issues are still badly understood:
Controllability for the heat equation with rapidly oscillating coefficients in
multi-d? Cost of control as T → 0 (What is cL)?
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Motivation

Regular dependence on parameters

The issue of developing robust and efficient numerical solvers for the
controllability of parameter-dependent problems is still poorly understood.

The state of the art: For each individual realisation of the relevant
parameters check controllability and apply the corresponding numerical
solver.

Limited validity and high computational cost!

Think for example on

ytt − div(a(x , ν))∇y) = 0

For each value of the parameter ν one should check whether the Geometric
Control Condition holds and then develop the corresponding numerical
algorithm on well adapted meshes, filtering high frequencies, etc.
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Averaged control

Consider the finite dimensional linear control system (possibly obtained
from a PDE control problem after space discretisation){

x ′(t) = A(ν)x(t) + Bu(t), 0 < t < T ,
x(0) = x0.

(1)

In (??):

The (column) vector valued function
x(t, ν) =

(
x1(t, ν), . . . , xN(t, ν)

)
∈ RN is the state of the system,

ν is a multi-parameter living in a compact set K of Rd ,

A(ν) is a N × N−matrix,

u = u(t) is a M-component control vector in RM , M ≤ N.
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Averaged control

Given a control time T > 0 and a final target x1 ∈ RN we look for a
control u such that the solution of (??) satisfies the averaged control
property: ∫

K
x(T , ν)dν = x1. (2)

Theorem

a Averaged controllability holds if and only the following rank condition is
satisfied:

rank
[
B,

∫ 1

0
[A(ν)]dνB,

∫ 1

0
[A(ν)]2dνB, . . .

]
= N. (3)

aE. Zuazua, Automatica, 2014.
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Averaged control

Drawbacks:

1 Nothing is said about the efficiency of the control for specific
realisations of ν.

2 Complex (and interesting !) in the PDE setting. 1

Consider the transport equation with unknown velocity v ,

ft + vfx = 0,

and take averages with respect to v . Then

g(x , t) =

∫
f (x , t; v)ρ(v)dv

then, for the Gaussian density ρ:

ρ(v) = (4π)−1/2 exp(−v2/4)

g(x , t) = h(x , t2); ht − hxx = 0.

One can then employ parabolic techniques based on Carleman
inequalities.

1Q. Lü & E. Z. Average Controllability for Random Evolution Equations, JMPA,
2016. Linked to averaging Lemmas (Golse - Lions - Perthame - Sentis)
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Weak greedy algorithms: Finite-dimensional systems

2 Assume that the system depends on a parameter ν ∈ K ⊂ Rd , d ≥ 1, K
being a compact set, and controllability being fulfilled for all values of ν.{

x ′(t) = A(ν)x(t) + Bu(t), 0 < t < T ,
x(0) = x0.

(4)

Controls u(t, ν) are chosen to be of minimal norm satisfying the
controllability condition:

x(T , ν) = x1, (5)

and lead to a manifold of dimension d in [L2(0,T )]M :

ν ∈ K ⊂ Rd → u(t, ν) ∈ [L2(0,T )]M .

This manifold inherits the regularity of the mapping ν → A(ν).

To diminish the computational cost we look for the very distinguished
values of ν that yield the best possible approximation of this manifold.

2M. Lazar & E. Zuazua, Greedy controllability of finite dimensional linear systems,
Automatica, to appear.
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Weak greedy algorithms: Finite-dimensional systems

Naive versus smart sampling of K

Enrique Zuazua (FAU -AvH) Averaged and Greedy Control April 3, 2020 13 / 38



Weak greedy algorithms: Finite-dimensional systems

Our work relies on recent ones on greedy algorithms and reduced bases
methods:

A.Cohen, R.DeVore, Kolmogorov widths under holomorphic
mappings, IMA Journal on Numerical Analysis, to appear

A.Cohen, R.DeVore, Approximation of high-dimensional parametric
PDEs, arXiv preprint, 2015.

Y.Maday, O.Mula, A.T. Patera, M.Yano, The generalized
Empirical Interpolation Method: stability theory on Hilbert spaces with an
application to the Stokes equation, submitted

M. A. Grepl, M Kärche, Reduced basis a posteriori error bounds for
parametrized linear-quadratic elliptic optimal control problems, CRAS
Paris, 2011.

S. Volkwein, PDE-Constrained Multiobjective Optimal Control by
Reduced-Order Modeling, IFAC CPDE2016, Bertinoro.
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Weak greedy algorithms: Finite-dimensional systems

Description of the Method

We look for the realisations of the parameter ν ensuring the best possible
approximation of the manifold of controls

ν ∈ K ⊂ Rd → u(t, ν) ∈ [L2(0,T )]M

(of dimension d in [L2(0,T )]M) in the sense of the Kolmogorov width.3

Greedy algorithms search for the values of ν leading to the most
distinguished controls u(t, ν), those that are farther away one from each
other.

Given an error ε, the goal is to find ν1, ...., νn(ε), so that for all parameter
values ν the corresponding control u(t, ν) can be approximated by a linear
combination of u(t, ν1), ..., u(t, νn(ε)) with an error ≤ ε.

An of course to do it with a minimum number n(ε).
3Ensure the optimal rate of approximation by means of all possible finite-dimensional

subspaces.
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Weak greedy algorithms: Finite-dimensional systems

Step 1. Characterization of minimal norm controls by adjoints

The adjoint system depends also on the parameter ν:

−ϕ′(t) = A∗(ν)ϕ(t), t ∈ (0, T ); ϕ(T ) = ϕ0. (6)

The control is
u(t, ν) = B∗ϕ(t, ν),

where ϕ(t, ν) is the solution of the adjoint system associated to the
minimizer of the following quadratic functional in RN:

Jν
(
ϕ0(ν)

)
=

1

2

∫ T

0
|B∗ϕ(t, ν)|2 dt− < x1, ϕ0 > + < x0, ϕ(0, ν) > .

The functional is continuous and convex, and its coercivity is guaranteed
by the Kalman rank condition that we assume to be satisfied for all ν.
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Weak greedy algorithms: Finite-dimensional systems

Step 2. Controllability distance

Given two parameter values ν1 and ν2, how can we measure the distance
between u(t, ν1) and u(t, ν2)?

Of course the issue relies on the fact that these two controls are
unknown!!!

Roughly: Compute the residual

||x(T , ν2)− x1||
for the solution of the state equation ν2 achieved by the control u(t, ν1).

More precisely: Solve the Optimality System (OS):

−ϕ′(t) = A∗(ν2)ϕ(t) t ∈ (0, T ); ϕ(T ) = ϕ0
1.

x ′(t) = A(ν2)x(t) + BB∗ϕ(t, ν2), 0 < t < T , x(0) = x0.

Then ∣∣∇Jν2(ϕ0
1)
∣∣ = ||x(T , ν2)− x1|| ∼ ||ϕ0

1 − ϕ0
2||.

Within the class of controls of minimal L2-norm, given by the adjoint,
u = B∗ϕ, the residual ||x(T , ν)− x1|| is a measure of the distance to the
exact control, and also to the true minimiser.
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Weak greedy algorithms: Finite-dimensional systems

Offline algorithm

Step 3. Initialisation of the weak-greedy algorithm. Choose any ν in K ,
ν = ν1, and compute the minimizer of Jν1 . This leads to ϕ0

1.

Step 4. Recursive choice of ν ′s.
Assuming we have ν1, ..., νp, we choose νp+1 as the maximiser of

max
ν∈K

min
φ∈span[ϕ0

j , j=1,...,p]
|∇Jν(φ)|

We take νp+1 as the one realizing this maximum.
Note that

|∇Jν(φ)| = ||x(T , ν)− x1||.

x(T , ν) being the solution obtained by means of the control
u = B∗φ(t, ν), φ being the solution of the adjoint problem associated to
the initial datum φ0 in span[ϕ0

j , j = 1, ..., p].

Step 5. Stopping criterion. Stop if the max ≤ ε.
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Weak greedy algorithms: Finite-dimensional systems

Online part

Step 6. For a specific realisation of ν solve the finite-dimensional reduced
minimisation problem:

min
φ∈span[ϕ0

j , j=1,...,p]
|∇Jν(φ)|.

This minimiser yields:
u(t, ν) = B∗ϕ(t, ν),

ϕ(t, ν) being the solution of the adjoint problem with datum φ at t = T .
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Weak greedy algorithms: Finite-dimensional systems

The same applies for infinite-dimensional systems when A and B are
bounded operators.

Theorem

The weak-greedy algorithm above leads to an optimal approximation
method.
More precisely, if the set of parametres K is finite-dimensional, and the
map ν → A(ν) is analytic, for all α > 0 there exists Cα > 0 such that for
all other values of ν the control u(·, ν) can be approximated by linear
combinations of the weak-greedy ones as follows:

dist(u(·, ν); span[u(·; νj) : j = 1, ..., k]) ≤ Cαk
−α.

4

4The approximation of the controls has to be understood in the sense above: Taking
the control given by the corresponding adjoint solution, achieved by minimising the
functional J over the finite-dimensional subspace generated by the adjoints for the
distinguished parameter-values.
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Weak greedy algorithms: Finite-dimensional systems

Potential improvements

1 Find cheaper surrogates. Is there a reduced model leading to lower
bounds on controllability distances without solving the full Optimality
System?

||x(T , ν)− x1|| ≥??????

2 All this depends on the initial and final data: x0, x1.
Can the search of the most relevant parameter-values ν be done
independent of x0, x1?
In other words, get lower bounds on the controllability distances
between (A1,B1) and (A2,B2).

As we shall see this leads to Inverse Problems of a non-standard form
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Numerical experiments
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Numerical experiments

Semi-discrete wave equation

1 Finite difference approximation of the 1− d wave equation with 50
nodes in the space-mesh.

2 Unknown velocity v ranging within [1,
√

10].

3 Discrete parameters taken over an equi-distributed set of 100 values

4 Boundary control

5 Sinusoidal initial data given: y0 = sin(πx); y1 ≡ 0. Null final target.

6 Time of control T = 3.

7 Approximate control with error 0.5 in the energy.

8 Weak-greedy requires 24 snapshots (ν1, ..., ν24).

9 Offline time: 2.312 seconds (personal notebook with a 2.7 GHz
processor and DDR3 RAM with 8 GB and 1,6 GHz).

10 Online time for one realisation ν: 7 seconds

11 Computational time for one single parameter value with standard
methods: 51 seconds.
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Numerical experiments

Choose a number at random
within [1, 10]
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Numerical experiments

Thank you for choosing π !
The greedy algo leads to:
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Numerical experiments

Semi-discrete heat equation

1 Finite difference approximation of the 1− d heat equation with 50
nodes in the space-mesh.

2 Unknown diffusivity v ranging within [1, 2].

3 Discrete parameters taken over an equi-distributed set of 100 values

4 Boundary control

5 Sinusoidal initial data given: y0 = sin(πx). Null final target.

6 Time of control T = 0.1.

7 Weak-greedy requires 20 snapshots.

8 Approximate control with error 10−4 in each component.

9 The algo stops after 3 iterations: ν = 1.00, 1.18, 1.45.

10 Offline time: 213 seconds.

11 Online time for one realisation ν =
√

2: 1.5 seconds

12 Computational time for one single parameter value with standard
methods: 37 seconds.
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Numerical experiments
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Numerical experiments

Open problems and perspectives

The method be extended to PDE. But analyticity of controls with
respect to parameters has to be ensured to guarantee optimal
Kolmogorov widths. This typically holds for elliptic and parabolic
equations. But not for wave-like equations.
Indeed, solutions of

ytt − v2yxx = 0

do not depend analytically on the coefficient v .
One expects this to be true for heat equations in the context of
null-controllability. But this needs to be rigorously proved.

Cheaper surrogates need to be found so to make the recursive
choice process of the various ν ′s faster.

1 For wave equations in terms of distances between the dynamics of the
Hamiltonian systems of bicharacteristic rays?

2 For 1− d wave equations in terms of spectral distances?
3 For heat equations?
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Greedy algos for resolvents of elliptic operators
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Greedy algos for resolvents of elliptic operators

Problem formulation

5

To better understand the complexity of the problem of applying the greedy
methodology for control systems, independently of the initial and final
data under consideration, it is natural to consider the following diffusive
equation as a model problem.

Let Ω be a bounded domain of Rn, n ≥ 1. Fix 0 < σ0 < σ1 and consider
the class of scalar diffusivity coefficients

Σ = {σ ∈ L∞(Ω); σ0 ≤ σ ≤ σ1 a.e. in Ω}.

For σ ∈ Σ, let Aσ : H1
0 (Ω)→ H−1(Ω) be the bounded operator given by

Aσu = −div(σ∇u).

The inverse or resolvent operator Rσ : H−1(Ω)→ H1
0 (Ω).

The goal is to implement the greedy algo in the class of resolvent
operators.

5Joint work with M. Choulli
Enrique Zuazua (FAU -AvH) Averaged and Greedy Control April 3, 2020 30 / 38



Greedy algos for resolvents of elliptic operators

The existing theory gives the answer for a given right hand side term:

−div(σ∇u) = f .

But we are interested on searching the most representative realisations of
the resolvents as operators, independently of the value of f .
The analog at the control theoretical level would be to do it for the inverse
of the Gramian operators rather than proceeding as above, for each
specific data to be controlled.

The question under consideration is. How to find a surrogate (lower
bound) for

dist(Rσ, span[Rσ1 , ...,Rσk ])

?

The question is easy to solve when dealing with two resolvents R1 and R2.
But seems to become non-trivial in the general case.

This leads to a new class of Inverse Problems
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Greedy algos for resolvents of elliptic operators

Distance between two resolvents

It is easy to get a surrogate for the distance between two resolvents R1

and R2 corresponding to two different diffusivities σ1 and σ2:

A1 − A2 = A1(R2 − R1)A2,∣∣∣A1 − A2

∣∣∣ ≤ σ2
1

∣∣∣R1 − R2

∣∣∣.
〈(A1 − A2)u, u〉−1,1 =

∫
Ω

(σ1 − σ2)|∇u|2dx ,∫
Ω

(σ1 − σ2)|∇u|2dx ≤
∣∣∣A1 − A2

∣∣∣∣∣∣u∣∣∣2
H1

0 (Ω)
≤ σ2

1

∣∣∣R1 − R2

∣∣∣∣∣∣u∣∣∣2
H1

0 (Ω)
.

Now taking u = uε so that |∇uε|2 constitutes an approximation of the
identity (for each x0 ∈ Ω) we get

||σ1 − σ2||∞ ≤ σ2
1

∣∣∣R1 − R2

∣∣∣.
This can be understoof in the context of Inverse Problems: The resolvent
determines the diffusivity, with Lipschitz continuous dependence.
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Greedy algos for resolvents of elliptic operators

1d

Unfortunately, this argument does not seem to apply for estimating the
distance to a subspace

R1 −
k∑

j=1

αjRj .

This is a non-standard inverse problems. We are dealing with linear
combinations of k + 1 resolvents and not only 2 as in classical
identification problems

In 1− d the problem can be solved, thanks to the explicit representation
of solutions6

− (σ(x)ux)x = f in (0, 1), ux(0) = 0 and u(1) = 0. (7)

ux(x) = − 1

σ(x)

∫ x

0
f (t)dt = −Tσf a.e. (0, 1). (8)

6Very much as in the context of homogenisation
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Greedy algos for resolvents of elliptic operators

||Rσ − Rσ̃||∗ =
∣∣∣ 1

σ̃(x)
− 1

σ(x)

∣∣∣
L∞((0,1))

.

(
Rτ f −

N∑
i=1

aiRi f

)
x

=

(
N∑
i=1

ai
σi (x)

− 1

τ(x)

)∫ x

0
f (t)dt a.e. (0, 1) (9)

∣∣∣Rτ − N∑
i=1

aiRi

∣∣∣
∗

=
∣∣∣ N∑
i=1

ai
σi (x)

− 1

τ(x)

∣∣∣
L∞((0,1))

. (10)

This means that, in this 1d context, it suffices (?) to apply the greedy
algo in L∞ within the class of coefficients 1/σ(x).

Multi-dimensional extension?
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Back to control
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Back to control

Consider control systems of the form{
x ′(t) = Ajx(t) + Bu(t), 0 < t < T ,
x(0) = x0,

(11)

j = 1, ..., k.
Control operators:

Pj(x
0) = uj(t), j = 1, ...,K .

Find a surrogate for

dist(Pj , span[P`; ` 6= j ]) = sup||x0||=1dist(uj(t), span[u`(t) : ` 6= j ]).

We want an equivalent measure, but easier to be computed.
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Back to control

For two operators (||P1 − P2||) it suffices to consider the inverses, the
Gramians: ||Λ1 − Λ2||.

−ϕ′j(t) = A∗j ϕj(t) t ∈ (0, T ); ϕj(T ) = φ.

x ′j (t) = Ajxj(t) + BB∗ϕj(t), 0 < t < T , xj(0) = 0,

Λj(φ) = xj(T ).

What about
||x1(T )− x2(T )||?

Easier for PDE? For instance, for wave equations, take φ a Gaussian wave
packet so that ϕj are Gaussian beams following the corresponding
bicharacteristic rays. Then solve the controlled system. The output xj(T )
should be close to a Gaussian wave packet as well.
Can we recover out of the distance ||x1(T )− x2(T )|| the distances
between coefficients?
This is an Inverse Problem.
But it seems NOT to be the case for distances to subspaces... How to
handle this more complex and fundamental issue?
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