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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

The control problem

1 Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of Rn

with smooth boundary Γ, Q = (0,T )× Ω and Σ = (0,T )× Γ:
ut −∆u = f 1ω in Q
u = 0 on Σ
u(x , 0) = u0(x) in Ω.

(1)

1ω = characteristic function of the control subset ω of Ω.
We assume that u0 ∈ L2(Ω) and f ∈ L2(Q) so that (1) admits an unique
solution

u ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

u = u(x , t) = solution = state, f = f (x , t) = control

Goal: To produce prescribed deformations on the solution u by means of
suitable choices of the control function f s.t.

u(x ,T ) ≡ 0.

1EFC & EZ. ADE, 5 (4-6) (2000), 465–514.
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Due to the intrinsic infinite velocity of propagation of the heat equation we
can expect the system to be controllable in any time T > 0 and from any
open non-empty open subset ω of Ω.
Note that for similar properties to hold for wave equations, typically, one
needs to impose geometric conditions on the control subset and the time
of control, namely, the so called GCC (Geometric Control Condition) by
Bardos-Lebeau-Rauch: It asserts, roughly, that all rays of geometric optics
enter the control set ω in time T .

But this kind of Geometric Condition in unnecessary for the heat equation.
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Null controllability is equivalent to an observability inequality:2 More
precisely, to an inequality of the form

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (2)

for the adjoint system
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(x ,T ) = ϕ0(x) in Ω

(3)

This estimate, the so-called observability property, was proved by
Imanuvilov-Fursikov and Lebeau-Robbiano in the 90’s using Carleman
inequalities. As pointed out by L. L. Lions, the control can be obtained
minimising the functional (f ≡ ϕ, ϕ being the minimiser):

J(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx . (4)

2Norbert Wiener, Cybernetics: “The Science of communication and control in
animals and machines” (or Frenchel-Rockafellar’s duality).
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Consider the heat equation or system with a potential a = a(t, x) in
L∞(Q;RN×N)3:

ϕt −∆ϕ+ aϕ = 0

where ϕ takes values in RN .

Theorem: (Fursikov+Imanuvilov, 1996, E. Fernández-Cara+E.
Zuazua, 2000)

‖ ϕ(T ) ‖2
(L2(Ω))N≤ exp

(
C
(

1+
1

T
+T ‖ a ‖∞ + ‖ a ‖2/3

∞

))∫ T

0

∫
ω
|ϕ|2dxdt,

for every solution ϕ, potential a ∈ L∞(Q;RN×N) and time T > 0.

Note that
2/3 ∈ [1/2, 1]

Power 1 would be justified by Gronwall like arguments, and power 2 by the
fact that the heat equation is second order in x. But why power 2/3?

3One of then main reasons to consider these zero order potential perturbations is to
deal with semilinear problems by fixed point arfguments
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

The following Carleman inequality4 holds:5

There exist positive constants C∗, s1 > 0 such that

1

s

∫
Q
ρ−2st(T − t)

[
|qt |2 + |∆q|2

]
dxdt (5)

+s

∫
Q
ρ−2st−1(T − t)−1 |∇q|2 dxdt + s3

∫
Q
ρ−2st−3(T − t)−3q2dxdt

≤ C∗

[∫
Q
ρ−2s |∂tq −∆q|2 dxdt + s3

∫ T

0

∫
ω
ρ−2st−3(T − t)−3q2dxdt

]
for all q ∈ Z and s ≥ s1.
Moreover, C∗ depends only on Ω and ω and s1 is of the form

s1 = s0(Ω, ω)(T + T 2).

4T. Carleman, 1939
5Fursikov + Imanuvilov, 1996
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

The optimality of the 2/3 exponent was proved by Th. Duyckaerts, X.
Zhang and EZ (Annales IHP, 2005), based on the following result by V. Z.
Meshkov, 1991.

Theorem

(Meshkov, 1991). Assume that the space dimension is n = 2. Then, there
exists a nonzero complex-valued bounded potential q = q(x) and a
non-trivial complex valued solution u = u(x) of

∆u = q(x)u, in R2, (6)

with the property that

| u(x) |≤ C exp(− | x |4/3), ∀ x ∈ R2 (7)

for some positive constant C > 0.
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Sketch of the proof of the optimality

Step 1: Construction on Rn.
Given the solution u and potential q given by Meshkov, setting

uR(x) = u(Rx), aR(x) = R2q(Rx), (8)

we get
∆uR = aR(x)uR , in Rn (9)

and
| uR(x) |≤ C exp

(
−R4/3 | x |4/3

)
, in Rn. (10)

These functions may also be viewed as stationary solutions of the
corresponding parabolic systems. Indeed, ψR(t, x) = uR(x), satisfying

ψR,t −∆ψR + aRψR = 0, x ∈ Rn, t > 0 (11)

| ψR(x , t) |≤ C exp(−R4/3 | x |4/3), x ∈ Rn, t > 0. (12)

4/3 : 2 = 2/3
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Step 2: Restriction to Ω.
Without loss of generality (by translation and scaling) we can assume that
B ⊂ Ω\ω̄ and {

ψR, t −∆ψR + aRψR = 0, in Q,
ψR = εR , on Σ,

(13)

where εR = ψR

∣∣∣
∂Ω

= uR

∣∣∣
∂Ω
.

Taking into account that both ω and ∂Ω ⊂ Bc for a suitable C :

| ψR(t, x) |≤ C exp
(
−R4/3

)
, x ∈ ω, 0 < t < T ,

| εR(t, x) |≤ C exp
(
−R4/3

)
, x ∈ ∂Ω, 0 < t < T

‖ ψR(T ) ‖2
L2(Ω)∼‖ ψR(T ) ‖2

L2(Rn)=‖ uR ‖2
L2(Rn)=

1

Rn
‖ u ‖2

L2(Rn)=
c

Rn

‖ aR ‖L∞(Ω)∼‖ aR ‖L∞(Rn)= CR2.

We can then correct these solutions to fulfill the Dirichlet homogeneous
boundary condition.
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Estimates on the cost of control for parabolic problems Dependence on lower order potentials

Convective potentials

Equations or systems with convective potentials of the form

ϕt −∆ϕ+ W · ∇ϕ = 0.

For these equations the observability inequality reads:6

‖ ϕ(T ) ‖2
(L2(Ω))N≤ exp

(
C
(

1+
1

T
+T ‖W ‖∞ +‖W ‖2

∞

))∫ T

0

∫
ω
|ϕ|2dxdt.

Optimality can be shown by a Meshkov like construction:

−∆u = W (x) · ∇u

with the same u decaying as exp (−|x |4/3) and the potential W (x) such
that

(|x |+ 1)1/3|W (x)| ≤ C .

6A. Doubova, EFC, M. González-Burgos & EZ, SICON, 2002
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Estimates on the cost of control for parabolic problems Semilinear problems

Consider semilinear parabolic equation of the form
yt −∆y + g(y) = f 1ω in Ω× (0,T )
y = 0 on ∂Ω× (0,T )
y(x , 0) = y0(x) in Ω.

(14)

Theorem

(E. Fernández-Cara + EZ, Annales IHP, 2000) The semilinear system is
null controllable if

g(s)/ | s | log3/2 | s |→ 0 as | s |→ ∞. (15)
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Estimates on the cost of control for parabolic problems Semilinear problems

Note that blow-up phenomena occur if

g(s) ∼| s | logp(1+ | s |), as | s |→ ∞

with p > 1.

Thus, in particular, weakly blowing-up equations may be controlled.

On the other hand, it is also well known that blow-up may not be
avoided when p > 2 and then control fails.

Note that in the control process the propagation of energy in the x
direction plays a key role. When viewing the underlying elliptic
problem ∆y + g(y) a a second order differential equation in x we see
how the critical exponent p = 2 arises. For p > 2 concentration in
space may occur so that the control may not avoid the blow-up to
occur outside the control region ω.
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Estimates on the cost of control for parabolic problems Semilinear problems

Sketch of the proof. Linearization + fixed point.

yt −∆y + h(z)y = f 1ω

h(z) = g(z)/z .

Note that, if z = y , h(z)y = g(y). In that case solutions of the linearized
system are also solutions of the semilinear one.
The cost of controlling the system is of the form:

||f || ≤ ||y0|| exp
(
C
(

1 +
1

T
+ T ‖ g(z) ‖∞ + ‖ g(z) ‖2/3

∞

))
.

But g(z) ∼ logp(z). Thus

||f || ≤ ||y0|| exp
(
C
(

1 +
1

T
+T logp(||z ||)+log2p/3(||z ||)

))
.

When ||z || is large the term logp(||z ||) dominates but can be compensated
by taking T small enough.

Control quickly ! (∼ rapidito)
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Estimates on the cost of control for parabolic problems Sharp geometric constants

For the heat equation
−ϕt −∆ϕ = 0

we have∫
Ω

exp(−A/(T − t))ϕ2dxdt ≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω)

which is much stronger than

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω).

This inequality is sharp!

What is the best constant A > 0? How does it depend on the
geometry of Ω and ω?
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Estimates on the cost of control for parabolic problems Sharp geometric constants

This kind of exponential weight is sharp

The “ monster”

u(x , t) = cos

(
Ax1

2t

)
exp(A2/4t)G (x , t) , (16)

where G is the fundamental solution of the heat equation in Rd , i.e.

G (x , t) = (4πt)−d/2 exp(−|x |2/4t) ∀(x , t) ∈ Rd × R+. (17)

solves the heat equation:

ut −∆u = 0 in Rd × R+ . (18)

Note that u is the real part of the inverse Fourier transform of eAξ1Ĝ .
Accordingly, u can be viewed as a derivative of infinite order of the
fundamental solution G .
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Estimates on the cost of control for parabolic problems Inverse Kannai transform

The monster = [Kannai]−1

The Kannai transform allows transferring the results we have obtained
for the wave equation to other models and in particular to the heat
equation (Y. Kannai, 1977; K. D. Phung, 2001; L. Miller, 2004)

et∆ϕ =
1√
4πt

∫ +∞

−∞
e−s

2/4tW (s)ds

where W (x , s) solves the corresponding wave equation with data (ϕ, 0).

Wss + AW = 0 + Kt − Kss = 0 → Ut + AU = 0,

The reverse Kannai transform:7 Our proof is based on an inverse Kannai
transform that, to the best of our knowledge, was unknown until now:

W (s) =

∫
R+

1

(4πt)1/2
sin

(
sS

2t

)
exp

(
s2 − S2

4t

)
U(t) dt.

7S. Ervedoza & EZ, ARMA, 2011
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Estimates on the cost of control for parabolic problems Numerical methods

Null controls for the heat equation are hard to compute because of the
very strong irreversibilty of the system, the very weak observability
inequalities, etc.
R. Glowinski and J. L. Lions.8 propose a remedy based on Tychonnoff
regularization. It consists on adding a regularizing term to the functional
to be minimized (or its discrete version):

J0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

∫
Ω
ϕ(0)u0dx . (19)

Namely:

Jε0(ϕ0) =
1

2

∫ T

0

∫
ω
ϕ2dxdt +

ε

2
||ϕ0||2L2 +

∫
Ω
ϕ(0)u0dx . (20)

In our paper with EFC we show that the convergence of minimisers as
ε→ 0 is very slow: logarithmic convergence rate.

8R. Glowinski and J.L. Lions, Acta Numerica, 1996.
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Models involving nonlocal terms

Consider the following controlled heat equation involving nonlocal in space
terms:9 

yt −∆y +
∫

Ω K (x , ξ)y(ξ, t) dξ = v1ω in Q,
y = 0 on Σ,
y(x , 0) = y0(x) in Ω

(21)

And let us analyse its null controllability property, which is equivalent to
the observability inequality∣∣∣φ(· , 0)

∣∣∣2 ≤ C

∫
ω×(0,T )

|φ|2 dx dt ∀φT ∈ L2(Ω) (22)

for the solutions of the adjoint system
−φt −∆φ+

∫
Ω K (ξ, x)φ(ξ, t) dξ = 0 in Q,

φ = 0 on Σ,
φ(x ,T ) = φT (x) in Ω.

(23)

9E. Fernández-Cara, Q. Lü and EZ, SICON, 2016.
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Models involving nonlocal terms

Recall that

s3

∫
Q
ρ−2st−3(T − t)−3q2dxdt

≤ C∗

[∫
Q
ρ−2s |∂tq −∆q|2 dxdt + s3

∫ T

0

∫
ω
ρ−2st−3(T − t)−3q2dxdt

]
which, when applied to our nonlocal model yields,

s3

∫
Q
ρ−2st−3(T − t)−3φ2dxdt

≤ C∗

∫
Q
ρ−2s

∣∣∣∣∫
Ω
K (ξ, x)φ(ξ, t) dξ

∣∣∣∣2 dxdt + ....

The non-local second term in the right hand side cannot be absorbed by
the left hand side.
These difficulties do not arise when dealing with classical potential terms
acting locally in space, i. e. for equations of the form

−φt −∆φ+ K (x , t)φ(x , t) = 0.
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Models involving nonlocal terms

Fourier version of the sharp observability inequality

Recall that∫
Ω

exp(−A/(T − t))ϕ2dxdt ≤ C

∫ T

0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω)

for the solutions of the adjoint heat equation

−ϕt −∆ϕ = 0.

This inequality can be rewritten in terms of the Fourier coefficients ϕ̂T
k of

the final datum ϕT of the adjoint state:10

||ϕT ||2F =
∑
k≥1

|ϕT
k |2 exp(−B

√
λk) ≤ C

∫ T

0

∫
ω
ϕ2dxdt.

This provides the functional setting to work in this nonlocal problem from
a Fourier viewpoint.

10E. Fernández-Cara & E. Z. in ADE, 2000.
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Models involving nonlocal terms

Denote by λ1, λ2, . . . (resp. w1,w2, . . . ) the eigenvalues (resp. the unit L2

norm eigenfunctions) of the Dirichlet Laplacian in Ω. Recall that
0 < λ1 < λ2 ≤ λ3 ≤ · · · , λm ∼ m2/N as m→ +∞ and φ1 > 0 in Ω.

We impose the following conditions on the kernel K ∈ L2(Ω× Ω):

x 7→
∫

Ω K (ξ, x)f (ξ) dξ is analytic for all f ∈ L2(Ω) (24)

 K (x , ξ) =
∑

m,j≥1 kmjwm(x)wj(ξ) in L2(Ω× Ω), with

|K |2R
4
=
∑

m≥1

(∑
j≥1 λ

−1
j |kmj |2

)
λ−1
m e2R

√
λm < +∞.

(25)
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Models involving nonlocal terms

The norm || · ||F provides however a functional setting in which the
non-local lower order term can be treated as a compact perturbation of
the free dynamics.
For any φT ∈ L2(Ω), denote by φ the solution to (23) and write

Φ = p + ζ,

where p is the unique solution to
−pt −∆p = 0 in Q,
p = 0 on Σ,
p(x ,T ) = φT (x) in .

(26)

and
−ζt−∆ζ+

∫
ΩK (ξ, x)ζ(ξ, t)dξ =−

∫
ΩK (ξ, x)p(ξ, t)dξ in Q,

ζ = 0 on Σ,
ζ(x ,T ) = 0 in Ω.

(27)
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Models involving nonlocal terms

In this functional setting (exponentially weighted Fourier norm) and under
the previous analyticity assumptions on the nonlocal potential, the
reminder term ζ can be shown to be a compact perturbation.
Compactness-uniqueness arguments can be developed, reducing the
observability inequality for the nonlocal problem to an unique continuation
problem.
Can one guarantee that the unique eigenfunction

−∆Ψ +

∫
Ω
K (ξ, x)Ψ(ξ)dξ = λΨ

such that
Ψ(x) = 0 in ω

is the null one, Ψ ≡ 0?

This can be easily achieved under the assumption that the kernel K
depends analytically on x .
What other results can be expected in that respect?
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Models involving nonlocal terms

For the wave equation:
ytt −∆y +

∫
Ω K (x , ξ)y(ξ, t) dξ = v1ω in Q,

y = 0 on Σ,
y(x , 0) = z0(x), yt(x , 0) = z1(x) in .

(28)

the same arguments apply but, this time, milder assumptions on the
Fourier coefficients of the kernel are needed since the perturbation
argument can be developed in the standard energy space.

Note however that the analyticity of the kernel with respect to x is needed
for unique continuation to hold.
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