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Damped waves

Internal stabilization of waves:

Let ω be an open subset of Ω. Consider:
ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.
The energy dissipation law is then

dE (t)

dt
= −

∫
ω
|yt |2dx .

Question: Do they exist C > 0 and γ > 0 such that

E (t) ≤ Ce−γtE (0), ∀t ≥ 0,

for all solution of the dissipative system?
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Damped waves

This is equivalent to an observability property1: There exists C > 0 and
T > 0 such that

E (0) ≤ C

∫ T

0

∫
ω
|yt |2dxdt.

This estimate, together with the energy dissipation law, shows that

E (T ) ≤ σE (0)

with 0 < σ < 1. Accordingly the semigroup map S(T ) is a strict
contraction. By the semigroup property one deduces immediately the
exponential decay rate.

1J. Rauch & R. Taylor, Exponential decay of solutions to hyperbolic equations in
bounded domains, Indiana Univ. Math. J . 24 (1974), 79-86.

Enrique Zuazua (FAU-AvH ) Waves in non smooth media March 31, 2020 5 / 23



Damped waves

The observability inequality and, accordingly, the exponential decay
property holds if and only if the support of the dissipative
mechanism, Γ0 or ω, satisfies the so called the Geometric Control
Condition (GCC) (Ralston, Rauch-Taylor, Bardos-Lebeau-Rauch2 ,...)

Rays propagating inside the domain Ω following straight lines that are
reflected on the boundary according to the laws of Geometric Optics. The
control region is the red subset of the boundary. The GCC is satisfied in
this case. The proof requires tools from Microlocal Analysis.

2C. Bardos, G. Lebeau, and J. Rauch, “Sharp sufficient conditions for the
observation, control and stabilization of waves from the boundary”, SIAM J. Cont.
Optim., 30 (1992), 1024–1065.
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Damped waves

Qualitative change from 1− d to multi-d

Trapped ray

T
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Ω

A trapped ray escaping the damping region ω makes it impossible the
decay rate to be exponential. Each trajectory tends to zero as t →∞ but

the decay can be arbitrarily slow.
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Damped waves

Overdamping!

Thee decay rate γ depends on the amplitude of the damping.
Against (?) the very first intuition, this map is not monotonic with respect
to the size of the damping. A 1− d spectral computation for constant
coefficients yields:
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Damped waves

Some known results: 1− d

1− d : The exponential decay rate coincides with the spectral abscissa
within the class of BV damping potentials. For large eigenvalues
Re(λ) ∼ −

∫
ω a(x)dx/2. 3 Thus:

γa ≤
∫
ω
a(x)dx .

k k/2 0

0

400

Re( )

Im
ag

(
)

Real (blue) and imaginary (red) eigenvalues  of the damped wave equation utt uxx+kut=0, x in (0,1), k=100*

3S. Cox & E. Z., The rate at which the energy decays in a damped string. Comm.
P.D.E. 19 (1&2). 213–243. 1994.
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Damped waves

The singular potential

a(x) =
2

x

produces an arbitrarily fast decay rate. 4

Connections with:

Transparent boundary conditions.

Perfectly matching layers.

4C. Castro and S. Cox, Achieving arbitrarily large decay in the damped wave
equation. SIAM J. Cont. Optim., 39 (6), 1748–1755, 2001.
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Damped waves

Multi−d

In the multidimensional case the situation is even more complex. The
decay rate is determined as the minimum of two quantities5:

The spectral abscissa;

The minimum asymptotic average (as T →∞) of the damping
potential along rays of Geometric Optics.
The later is in agreement with our intuition of waves traveling along
rays of Geometric Optics.

5G. Lebeau, Equation des ondes amorties, Algebraic and geometric methods in
mathematical physics (Kaciveli), 1993, 73-109, Math. Phys. Stud., 19, Kluwer Acad.
Publ., Dordrecht, 1996.
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Damped waves

Geometric configuration in which the spectral abscissa does not suffice to
capture the decay rate. The decay rate vanishes due to a trapped ray, but
the spectrum is uniformly shifted in the left complex half space.
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Damped waves

Truth = Spectrum + Rays

Truth = Fourier ∪ D’Alembert
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Optimal sensors and actuators

Consider the conservative wave equation:6
ztt −∆z = 0 in Q = Ω× (0,T )
z = 0 for x ∈ ∂Ω; t ∈ (0,T )
z(x , 0) = z0(x), zt(x , 0) = z1(x) in (0, π).

Optimal placement problems are then of variational nature!

It corresponds to the analysis of the behavior of the damped system
with infinitesimally small damping.

Observability:

||z0||2L2(Ω) + ||z1||2H−1(Ω) ≤ C (ω,T )

∫ T

0

∫
ω
z2dxdt.

Inspired in previous works by, among others: P. Hébrard & A. Henrot and
A. Münch, P. Pedregal & F. Periago.

6Y. Privat, E. Trélat & E. Z., Optimal observation of the one-dimensional wave
equation, J. Fourier Anal.Appl., 19 (2013), no. 3, 514–544.
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Optimal sensors and actuators

Fourier series shows that, in general, Fourier modes are mixed in quite an
complicated manner thus making the understanding of these issues
complex:

z(t) =
∑

ẑke
i
√
λk tφk(x).

Thus,∫ T

0

∫
ω
|z |2dxdt =

∑∑
ẑk ẑj

∫
ω
φk(x)φj(x)dx

∫ T

0
e [i
√
λk−i
√
λj ]t .
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Optimal sensors and actuators
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Simulations performed using AMPL + IPOPT
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Optimal sensors and actuators

Main results with fixed initial data

For initial data that are analytic (exponential decay of Fourier
coefficients), there is a unique minimizer with a finite number of
connected components. 7

The optimal set always exists but it can be a Cantor set even for
C∞ smooth data.

α1 α2 α3 α4 π0

ϕ∗
γ ,T(Lπ) ϕ∗

γ ,T(Lπ)

Lπ π0

7Szolem Mandelbrojt, Sur un problème concernant les séries de Fourier, Boulletin de
la SMF, 62 (1934), 143–150.
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Optimal sensors and actuators

Reduction to a spectral problem

The problem becomes much simpler in several cases:

The case T =∞. We then look at the

lim
T→∞

1

T

∫ T

−T

∫
ω
|z |2dxdt.

Randomizing initial data and considering the expected observability
constant (Zygmund lemma, recent works by N. Burq et al.8 9)

In 1-d, Ω = (0, π) in which case solutions are 2π-time periodic.

Cross terms vanish and we are led to the following observability problem:∑
|ẑk |2 ≤ C (ω)

∑
|ẑk |2

∫
ω
φ2
k(x)dx .

8N. Burq & N. Tzvetkov, Random data Cauchy theory for supercritical wave
equations. I. Local theory, Invent. Math. 173 (2008), no. 3, 449–475.

9N. Burq & G. Lebeau, Injections de Sobolev probabilistes et applications, Annales
scientifiques de l’É.N.S., Sér. 4, 46 no. 6, 2013.
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Optimal sensors and actuators

These issues can be considered, as mentioned above, in two different
cases:

Fixed initial data, and therefore fixed weights |ẑk |2 in `1.
All possible initial data of finite energy. Then, the problem becomes
that of finding ω so that the following minimum is maximized:

J(ω) = inf
k

∫
ω
φ2
k(x)dx .

I = sup
|ω|=L

J(ω).

Warning!

This spectral criterium, is not sufficient to fully characterize the
observability constant since a second microlocal one is also required.
We are ignoring the rays!!!

Spectral criterium = Truth /2

We are ignoring the ray contribution...

Are we?
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Optimal sensors and actuators

Spectral criterium: 1− d

Relaxation occurs 10: the optimum is achieved by a density function
ρ(x) so that

∫ π
0 ρ(x)dx = L and not by a measurable set with

bang-bang densities (except for L = π/2). The constant density is
optimal but is not the unique one.

Spillover occurs (1− d): The optimal design for the first N Fourier
modes is the worst choice for the N + 1-th one.

No gap! The infimum over measurable sets and over densities
coincides. The functional is not lower semicontinuous!!!

10P. Hébrard, A. Henrot, A spillover phenomenon in the optimal location of actuators,
SIAM J. Control Optim. 44 (2005), 349–366.
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Optimal sensors and actuators

The spillover phenomenon
Enrique Zuazua (FAU-AvH ) Waves in non smooth media March 31, 2020 22 / 23



Optimal sensors and actuators

The extension of these results to the multi-dimensional case has been
the object of recent work in collaboration with Y. Privat and E. Trélat.

The full problem, without the spectral reduction, is widely open.

What about the optimal location of sensors for the complete dynamics of
the wave equation?
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