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Linear transport equation

Linear transport equation

The simplest model for the wave propagation is the linear transport equation:

ut + ux = 0, x ∈ R, t > 0, u(x , 0) = f (x). (1)

u = u(x , t) is a solution of (1) iff u is constant along the characteristic lines x + t = constant.

The solution of (1) is u(x , t) = f (x − t).

Semigroup theory for the transport equation (1). The Hilbert space H := L2(R), the operator
A := −∂x and its domain D(A) := H1(R).

A is dissipative. < Au, u >L2(R)= −
∫
R ∂xuu dx = − 1

2

∫
R ∂x (u2) dx = 0.

A is maximal. For any f ∈ L2(R), there exists an unique solution u ∈ H1(R) of the equation
u + ∂xu = f , which can be explicitly computed as

u(x) =

∫ x

−∞
f (s) exp(s − x) ds =

∫ 0

−∞
f (z + x) exp(z) dz.

By the Minkowski inequality ⇒ u ∈ L2(R):

||u||L2(R) ≤
∫ 0

−∞
||f ||L2(R) exp(z) dz = ||f ||L2(R).

ux = f − u ∈ L2(R) ⇒ u ∈ H1(R).

Transport equation with reversed sign,

ut − ux = 0, x ∈ R, t > 0, u(x , 0) = g(x). (2)

The solution of (2) is u(x , t) = g(x + t).
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Linear transport equation

Three semi-discrete finite difference approximations of ut + ux = 0

forward u′j (t) +
uj+1(t)−uj (t)

h = 0, centered u′j (t) +
uj+1(t)−uj−1(t)

2h = 0,

backward u′j (t) +
uj (t)−uj−1(t)

h = 0.
(3)

Briefly, forward/centered/backward:

u′h(t) = Ahuh(t).

Ah =



. . . · · · · · · · · · · · ·
0 1/h −1/h 0 · · ·

. . .
. . .

. . .
.
.
.

.

.

.
· · · 0 0 1/h −1/h

· · · · · · · · · · · ·
. . .



Ah =



. . . · · · · · · · · · · · ·
−1/2h 0 1/2h 0 · · ·

. . .
. . .

. . .
.
.
.

.

.

.
· · · 0 −1/2h 0 −1/2h

· · · · · · · · · · · ·
. . .


Ah =



. . . · · · · · · · · · · · ·
1/h −1/h 0 0 · · ·
. . .

. . .
. . .

.

.

.
.
.
.

· · · 0 1/h −1/h 0

· · · · · · · · · · · ·
. . .
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Linear transport equation

Peter Lax convergence results

Peter Lax’s equivalence theorem: CONVERGENCE⇔CONSISTENCY+STABILITY.

CONSISTENCY=insert a smooth solution of the continuous model in the discrete one + Taylor
expansions.

STABILITY = von Neumann analysis.

Semi-discrete Fourier transform at scale h: ûh(ξ, t) = h
∑
j∈Z

uj (t) exp(−ixjξ), ξ ∈ [−π/h, π/h].

All the three schemes can be transformed into the first-order differential equation

ûht (ξ, t) = p̂h(ξ)ûh(ξ, t), ûh(ξ, 0) = ûh,0(ξ)

whose solution is

ûh(ξ, t) = ûh,0(ξ) exp(p̂h(ξ)t).

Here, p̂h(ξ) =


1−exp(iξh)

h
, forward scheme

− i sin(ξh)
h

, centered scheme
exp(−iξh)−1

h
, backward scheme.
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Linear transport equation

Properties of the semi-discrete Fourier transform (SDFT)

Definition

Consider a sequence fh := (fj )j∈Z ∈ `2
h related to a grid of size h (i.e. fj = f (xj )), its

semi-discrete Fourier transform at scale h is f̂ h(ξ) := h
∑
j∈Z

fj exp(−iξxj ), with ξ ∈ [−π/h, π/h].

Inverse Fourier transform: fj = 1
2π

π/h∫
−π/h

f̂ h(ξ) exp(iξxj ) dξ.

Remark

Continuous Fourier transform: function f (x), x ∈ R, transformed into function f̂ (ξ), ξ ∈ R.

Semi-discrete Fourier transform: sequence fh := (fj )j∈Z transformed into function f̂ h(ξ),
ξ ∈ [−π/h, π/h].

Parseval identity: ||fh||2
`2
h

:= h
∑
j∈Z
|fj |2= 1

2π
||f̂ h||2

L2(−π/h,π/h)
:= 1

2π

π/h∫
−π/h

|f̂ h(ξ)|2 dξ.

Shannon sinc function: ψ0(x) = sin(πx/h)
πx/h

, which is globally analytic and ψ0(0) = 1.
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Linear transport equation

Properties of the semi-discrete Fourier transform (SDFT)

The sinc function is a particular case of function f in the Paley-Wiener theorem:

Theorem (Paley-Wiener, see Rudin, Real and complex analysis )

If A,C > 0 and f ∈ L2(C) is an entire function s.t. |f (z)| ≤ C exp(A|z|) (exponential growth at most A), for

all z ∈ C, then the Fourier transform f̂ of f has compact support in [−A,A].

Exercise: ψ0 ∈ L2(R) and ψ̂0(ξ) = hχ(−π/h,π/h)(ξ), with χS the characteristic function of set S.

Definition

Set ψj (x) = ψ0(x − xj ) and the sequence fh := (fj )j∈Z ∈ `2
h. The continuous function f ∗(x) :=

∑
j∈Z

fjψj (x) is

called the sinc interpolation of fh.

Important properties of the sinc interpolation (exercise): f̂ ∗(ξ) = f̂ h(ξ) and ||f ∗||L2(R) = ||f||
`2
h
.
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Linear transport equation

Other possible interpolations

piecewise constant, using functions ψ0
j (x) := χ[xj−1/2,xj+1/2]: f 0(x) =

∑
j∈Z

fjψ
0
j (x).

piecewise linear and continuous, using functions ψ1
j (x) := (ψ0

j ∗ ψ
0
j )(x): f 1(x) =

∑
j∈Z

fjψ
1
j (x).

spline interpolation, using functions ψm
j (x) = (ψ0

j ∗ · · · ∗ ψ
0
j )(x) (m successive convolutions):

f m(x) =
∑
j∈Z

fjψ
m
j (x).

||f 0||L2(R) = ||fh||`2
h

and
1
√

3
||fh||`2

h
≤ ||f 1||L2(R) ≤ ||f

h||`2
h
.
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Linear transport equation

Observation

ψ0
0 and ψ1

0 have compact support, but their Fourier transforms ψ̂0
0(ξ) = hsinc(ξh/2) and

ψ̂1
0(ξ) = (ψ̂0

0(ξ))2 are spread.

ψ0 is spread, but its Fourier transform ψ̂0(ξ) = hχ(−π/h,π/h)(ξ) has compact support.

Cf. Heisenberg Uncertainty Principle, is not possible both f and its Fourier transform f̂ to have
compact support:

Theorem (Heisenberg Uncertainty Principle, Stein & Shakarchi, Fourier analysis - an introduction)

Let f ∈ S(R), ||f ||L2(R) = 1. Then(∫
R

|x |2|f (x)|2 dx
)(∫

R

|ξ|2|f̂ (ξ)|2 dξ
)
≥

1

16π2
,

with equality iff f (x) = A exp(−B|x |2), B > 0 and A2 =
√

2B/π. In fact, for all x0, ξ0 ∈ R, ⇒(∫
R

|x − x0|2|f (x)|2 dx
)(∫

R

|ξ − ξ0|2|f̂ (ξ)|2 dξ
)
≥

1

16π2
.

Interpretation in quantum mechanics. The more certain we are about the location of a particle,
the less certain we can be about its momentum and vice versa.
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Linear transport equation

Back to stabilization of numerical schemes...

Set p̂h
∗ = maxξ∈[−π/h,π/h] Re(p̂h(ξ)). Using Parseval identity for the SDFT,

||uh(t)||2
`2
h

=
1

2π

π/h∫
−π/h

|ûh,0(ξ)|2 exp(2tRe(p̂h(ξ))) dξ

≤ exp(2tp̂h
∗)

1

2π

π/h∫
−π/h

|ûh,0(ξ)|2 dξ = exp(2tp̂h
∗)||uh,0||2

`2
h
.

.

Numerical schemes (3) are stable iff p̂h
∗ ≤ 0. Otherwise p̂h

∗ ∼ 1/h and exp(2tp̂h
∗)→∞ as h → 0.

FORWARD: Re(p̂h(ξ)) = 2 sin2(ξh/2)/h ≥ 0, ∀ξ ∈ [−π/h, π/h], and p̂h
∗ = 2/h ⇒ UNSTABLE!!!.

CENTERED: Re(p̂h(ξ)) = 0, ∀ξ ∈ [−π/h, π/h], and p̂h
∗ = 0 ⇒ STABLE.

BACKWARD: Re(p̂h(ξ)) = −2 sin2(ξh/2)/h ≤ 0, ∀ξ ∈ [−π/h, π/h], and p̂h
∗ = 0 ⇒ STABLE.

NECESSARY GEOMETRIC CONDITION FOR THE CONVERGENCE OF A NUMERICAL SCHEME: The
domain of dependence of the numerical scheme MUST CONTAIN the domain of dependence of the continuous

model.

Domains of dependence at a point (xj , t):

Continuous transport: the segment joining (xj , t) with (xj − t, 0).

Forward scheme: the semi-strip TO THE RIGHT of x = xj delimited by the times 0 and t.

Centered scheme: the band delimited by the times 0 and t.

Backward scheme: the semi-strip to the left of x = xj delimited by the times 0 and t.
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Linear transport equation

Error estimates

Consistency errors: Consider u a smooth solution of the transport equation
ut(x , t) + ux (x , t) = 0, u(x , 0) = f (x), x ∈ R. Then, by plugging u in the numerical scheme and
using Taylor expansions, we obtain:

backward scheme: ut(xj , t) +
u(xj , t)− u(xj−1, t)

h
= ut(xj , t) + ux (xj , t)︸ ︷︷ ︸

=0, u solves ut+ux=0

−
h

2
uxx (x ′j−1/2, t) := Oj (t), x ′j−1/2 ∈ (xj−1, xj )

centered scheme: ut(xj , t) +
u(xj+1, t)− u(xj−1, t)

2h
= ut(xj , t) + ux (xj , t)︸ ︷︷ ︸

=0, u solves ut+ux=0

+
h2

12
(uxxx (x ′j−1/2, t) + uxxx (x ′j+1/2, t)), x ′j±1/2 ∈ (xj−1/2±1/2, xj+1/2±1/2).

Set the error εj (t) := uj (t)− u(xj , t), where uj (t) is the solution of the backward scheme with
data uj (0) = f (xj ). Then εj (t) solves the problem

ε′j (t) +
εj (t)− εj−1(t)

h
= −Oj (t), εj (0) = 0. (4)
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Linear transport equation

Error estimates

ENERGY METHOD. Multiply (4) by hεj (t) and add in j ∈ Z:

1

2

d

dt

[
h
∑
j∈Z
|εj (t)|2

]
+
∑
j∈Z

(ε2
j (t)− εj (t)εj−1(t))

︸ ︷︷ ︸
= 1

2

∑
j∈Z

(εj (t)−εj−1(t))2≥0

= h
∑
j∈Z

Oj (t)εj (t). (5)

||εh(t)||2
`2
h

:= h
∑
j∈Z
|εj (t)|2. By Cauchy-Schwarz inequality in (5) ⇒ 1

2
d
dt ||ε

h(t)||2
`2
h
≤ ||Oh(t)||

`2
h
||εh(t)||

`2
h

,

so that
d

dt
||εh(t)||

`2
h
≤ ||Oh(t)||

`2
h

and, since ||εh(0)||
`2
h

= 0, ||εh(t)||
`2
h
≤

t∫
0

||Oh(s)||
`2
h
ds.

Assume f ∈ C 2
c (R). Then |Oj (t)| = h|f ′′(x′j−1/2 − t)|/2 and

||Oh(s)||2
`2
h

=
h3

4

∑
j∈Z
|f ′′(x′j−1/2 − s)|2 =

h3

4

∑
j∈Z s.t. x′

j−1/2
−s∈Suppf ′′

|f ′′(x′j−1/2 − s)|2

≤
h3

4

|Supp(f ′′)|
h

||f ′′||2L∞(R) =
h2

4
|Supp(f ′′)|||f ′′||2L∞(R).

Theorem

For any initial data f ∈ C 2
c (R) in the transport equation, the backward semi-discrete scheme with initial data

uj (0) = f (xj ) is convergent of order h in `2
h and the error εj (t) = uj (t)− u(xj , t) satisfies the estimate

||εh(t)||
`2
h
≤

ht

2
||f ′′||L∞(R)

√
|Supp(f ′′)|, ∀t ≥ 0, ∀h > 0.
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Linear transport equation

More about the energy method

The || · ||L2(R)-norm of the solution for the continuous transport equation ut + ux = 0 is conserved
in time. Conservation law of the energy:

d

dt
||u(·, t)||2

L2(R)
= 0.

The centered semi-discrete scheme is also conservative:

d

dt
||uh(t)||2

`2
h

= 0.

The backward semi-discrete scheme is dissipative since the energy decreases in time:

d

dt
||uh(t)||2

`2
h

+ h||∂h,−uh(t)||2
`2
h

= 0, where ∂h,−fj :=
fj − fj−1

h
.

The forward semi-discrete scheme is anti-dissipative since the energy increases in time:

d

dt
||uh(t)||2

`2
h
− h||∂h,+uh(t)||2

`2
h

= 0, where ∂h,+fj :=
fj+1 − fj

h
.
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Linear transport equation

Fully discrete schemes for the transport equation

Leap-frog scheme:
uk+1
j − uk−1

j

2dt
+

ukj+1 − ukj−1

2dx
= 0.

Consistency ⇒ exercise

Stability ⇒ von Neumann method. Set ûh,k (ξ) - the semi-discrete Fourier transform at scale h of
the solution at time tk , (ukj )j and µ := dt/dx - the Courant number. The sequence (ûh,k (ξ))k
verifies the second-order recurrence:

ûh,k+1(ξ) + 2iµ sin(ξh)ûh,k (ξ)− ûh,k−1(ξ) = 0.

The two roots of the characteristic polynomial are:

λ±(ξ) = −iµ sin(ξh)±
√

1− µ2 sin2(ξh).

When µ < 1, 1− µ2 sin2(ξh) > 0 for all ξ, so that λ±(ξ) ∈ C of the same imaginary part
and of opposite real parts. Also |λ±(ξ)|2 = µ2 sin2(ξh) + 1− µ2 sin2(ξh) = 1. The stability
is guaranteed by the fact that both roots λ±(ξ) are simple and of modulus 1, for any ξ.
When µ = 1, 1− µ2 sin2(ξh) > 0, excepting the case ξh = π/2 and ξh = 3π/2, for which
there is a double root of unit modulus ⇒ INSTABILITY.
When µ > 1, there exists ξµ ∈ (0, 2π/h) s.t. 1− µ2 sin2(ξh) > 0 for all ξ ∈ (0, ξµ) and
1− µ2 sin2(ξh) ≤ 0 for all ξ ∈ [ξµ, 2π). In this last case, the method is UNSTABLE:

λ±(ξ) = −i(µ sin(ξh)∓
√
µ2 sin2(ξh)− 1) and |λ−(ξ)| = µ sin(ξh) +

√
µ2 sin2(ξh)− 1 > 1.
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Linear transport equation

Fully discrete schemes for the transport equation

backward Euler EXPLICIT:
uk+1
j − uk

j

dt
+

uk
j − uk

j−1

dx
= 0.

Stability ⇒ von Neumann method. The sequence (ûh,k (ξ))k verifies the first-order recurrence:

ûh,k+1(ξ) = [1 + µ(exp(iξh)− 1)]ûh,k (ξ).

For the stability is sufficient to guarantee that |1 + µ(exp(iξh)− 1)| ≤ 1:

|1 + µ(exp(iξh)− 1)|2 = (1 + µ(cos(ξh)− 1))2 + µ
2 sin2(ξh) = 1 + 2µ(µ− 1)(1− cos(ξh)) ≤ 1 iff µ ≤ 1.

backward Euler IMPLICIT:
uk+1
j − uk

j

dt
+

uk+1
j − uk+1

j−1

dx
= 0.

Stability ⇒ von Neumann method. The sequence (ûh,k (ξ))k verifies the first-order recurrence:

ûh,k+1(ξ) =
1

1 + µ(1− exp(iξh))
ûh,k (ξ).

For the stability is sufficient to guarantee that |1 + µ(1− exp(iξh))| ≥ 1:

|1 + µ(1− exp(iξh))|2 = (1 + µ(1− cos(ξh)))2 + µ
2 sin2(ξh) = 1 + 2µ(µ + 1)(1− cos(ξh)) ≥ 1, ∀µ > 0

UNCONDITIONAL STABILITY ⇔ NO CONDITION on µ to guarantee stability.

(E. Zuazua, FAU - AvH) Finite difference approximations April 2, 2020 14 / 21



Linear transport equation

Fully discrete schemes for the transport equation

Theorem

If |ûh,k+1(ξ, t)| ≤ |ûh,k (ξ)| for all ξ ∈ [−π/h, π/h] ⇒ ||uh,k+1||`2
h
≤ ||uh,k ||`2

h
.

Proof: Parseval identity for the SDFT.

Other fully discrete schemes for the transport equation:

Crank-Nicolson, inspired from the trapezoidal rule for solving ODEs, is unconditionally stable
and of second-order in both time and space:

uk+1
j − ukj

dt
+

1

2

[uk+1
j+1 − uk+1

j−1

2dx
+

ukj+1 − ukj−1

2dx

]
= 0.

Lax-Wendroff, of second-order, conservative, stable iff µ ≤ 1 (exercise)

uk+1
j − ukj

dt
+

ukj+1 − ukj−1

2dx
−

dt

2

ukj+1 − 2ukj + ukj−1

dx2
= 0

Lax-Friedrichs, of first-order, stable iff µ ≤ 1 (exercise)

uk+1
j − 1

2
(ukj+1 + ukj−1)

dt
+

ukj+1 − ukj−1

2dx
= 0.

Definition (A-stability, cf. Iserles, A first course on numerical analysis of ODEs)

A numerical method is A-stable if it preserves the behaviour of the continuous solution as t →∞.
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Linear transport equation

Numerical approximations for the wave equation

The finite difference space semi-discretization: u′′j −
uj+1−2uj+uj−1

h2 = 0.

The explicit leapfrog fully discrete finite difference scheme is stable for µ = dt/dx ≤ 1:
uk+1
j −2ukj +uk−1

j

dt2 −
ukj+1−2ukj +ukj−1

dx2 = 0.

The implicit leapfrog fully discrete finite difference scheme is unconditionally stable:
uk+1
j −2ukj +uk−1

j

dt2 −
uk+1
j+1 −2uk+1

j +uk+1
j−1

dx2 = 0.

The implicit midpoint scheme is unconditionally stable:
uk+1
j −2ukj +uk−1

j

dt2 − 0.5
uk+1
j+1 −2uk+1

j +uk+1
j−1

dx2 − 0.5
uk−1
j+1 −2uk−1

j +uk−1
j−1

dx2 = 0.

The finite element semi-discretization. Find

uh(x , t) =
N∑
j=1

uj (t)φj (x) ∈ V h := span{φ1, · · · , φN} s.t.

d2

dt2

1∫
0

uh(x , t)φ(x) dx +
1∫

0

uhx (x , t)φx (x) dx = 0, ∀φ ∈ V h.

Here φj (x) =


x−xj−1

h
, x ∈ (xj−1, xj )

xj+1−x

h
, x ∈ (xj , xj+1),

0, otherwise.

, Then (uj (t))j satisfies the system:

h
6
u′′j+1(t) + 2h

3
u′′j (t) + h

6
u′′j−1(t)− uj+1(t)−2uj (t)+uj−1(t)

h
= 0.

Finite difference semi-discretization of the 2− d wave equation:

u′′j,k (t)− uj+1,k (t)−2uj,k (t)+uj−1,k (t)

h2
x

− uj,k+1(t)−2uj,k (t)+uj,k−1(t)

h2
y

= 0.
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Linear transport equation

Numerical dissipation and dispersion

Trefethen [6]: Finite difference approximations have more complicated physics than the equations
they are designed to simulate. They are used not because the numbers they generate have

simpler properties, but because those numbers are simpler to compute.

Plane wave solutions: u(x , t) = exp(i(ξx + tω)), where ξ is the wave number and ω is the
frequency.

The PDE or the numerical scheme imposes a relationship between ω and ξ, ω = ω(ξ), called
dispersion relation.

Examples:

Transport equation ut + ux = 0 ⇒ ω(ξ) = −ξ
Wave equation utt − uxx = 0 ⇒ ω(ξ) = ±ξ
Schrödinger equation iut + uxx = 0 ⇒ ω(ξ) = −ξ2.

Centered finite difference semi-discretization for the transport equation
u′j + (uj+1 − uj−1)/2h = 0 ⇒ ωh(ξ) = − sin(ξh)/h

Finite difference semi-discretization of the wave equation u′′j − (uj+1 − 2uj + uj−1)/h2 = 0

⇒ ωh(ξ) = ±2 sin(ξh/2)/h.

Finite difference semi-discretization of the Schrödinger equation
iu′j + (uj+1 − 2uj + uj−1)/h2 = 0 ⇒ ωh(ξ) = −4 sin2(ξh/2)/h2.
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Linear transport equation

Dispersion relations for fully discrete schemes for the transport equation

Leap-frog: sin(dtωh(ξ)) + µ sin(dxξ) = 0, µ = dt/dx , h = dx .

Backward explicit Euler: exp(idtωh(ξ))− 1 + µ(1− exp(−iξdx)) = 0

Backward implicit Euler: 1− exp(−idtωh(ξ)) + µ(1− exp(−iξdx)) = 0

Crank-Nicolson: 2 tan(dtωh(ξ)/2) + µ sin(dxξ) = 0

Lax-Wendroff: exp(idtωh(ξ))− 1 + iµ sin(dxξ) + 2µ2 sin2(dxξ/2) = 0

Lax-Friedrich: exp(idtωh(ξ))− cos(dxξ) + iµ sin(dxξ) = 0.

Definition

A finite difference scheme is dissipative of order 2r if the dispersion relation satisfies
Im(ωh(ξ)dt) ≥ γ|ξdx |2r , for all ξ ∈ [−π/dx , π/dx], γ > 0. A finite difference scheme is
non-dissipative if Im(ωh(ξ)) = 0.

Example non-dissipative schemes: leap-frog, Crank-Nicolson

Example dissipative schemes: Lax-Wendroff, backward explicit Euler, Lax-Friedrich (in figure)...

Effect of dissipation: The amplitude of the numerical solution decays in time.
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Linear transport equation

Group velocity, phase velocity

Wave packet:

u(x , t) =

∫
R

φ̂(ξ) exp(itω(ξ) + iξx) dξ.

Data concentrated around x = 0 and oscillating at frequency ξ0: φ(x) = ψ(x) exp(iξ0x).

Example - finite difference semi-discretization:
ω = ωh(ξ) = 2 sin(ξh/2)/h ∼ ωh(ξ0) + (ξ − ξ0)ω′h(ξ0) ⇒

u(x , t) ∼ exp(iξ0(x + tωh(ξ0)/ξ0))ψ(x + tω′h(ξ0)).

Phase velocity: ωh(ξ0)/ξ0 - the velocity of propagation for the oscillation

Group velocity: ω′h(ξ0) - the velocity of propagation for the envelope ψ.
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Geometric Optics

Light has a dual nature: is particle (photon) and is wave (and oscillates at a certain wavelength).

Geometric Optics (GO) studies the propagation of light particles along trajectories called rays.

Hamilton principle states that the trajectory of a particle between times t1 and t2 minimizes the

action
t2∫
t1

L(q, q′, t) dt, where L = T − V is the difference between kinetic and potential energies,

q is the vector of generalized coordinates and q′ = ∂tq.

Hamiltonian system associated to H = H(p, q): p′(s) = ∇qH(p(s), q(s)),
q′(s) = −∇pH(p(s), q(s)).

For the continuous wave equation, H = H(x , t, ξ, τ) = τ2 − |ξ|2 and the rays of GO verify the
Hamiltonian system:
x ′(s) = ∇ξH(x(s), t(s), ξ(s), τ(s)) = −2ξ(s), t′(s) = ∂τH(x(s), t(s), ξ(s), τ(s)) = 2τ(s)
ξ′(s) = −∇xH(x(s), t(s), ξ(s), τ(s)) = 0 ⇒ ξ(s) = ξ0, τ ′(s) = −∇tH(x(s), t(s), ξ(s), τ(s)) = 0
⇒ τ(s) = τ0.

Null-bi-characteristics. H(x(0), t(0), ξ(0), τ(0)) = 0. Then H(x(s), t(s), ξ(s), τ(s)) = 0 ∀s > 0.

Characteristics. Replace s by t in the Hamiltonian system. Since H(x(0), 0, ξ(0), τ(0)) = 0 has
two roots as equation in τ0, τ0 = ±|ξ0|, then x ′(t) = ±ξ0/|ξ0| ⇒ two characteristics:
x(t) = x0 ± tξ0/|ξ0|. They propagate at unit velocity.

For the finite difference semi-discretization of the wave equation, the Hamiltonian is
H(x , t, ξ, τ) = τ2 − 4 sin2(ξh)/h2 and the characteristics propagate with the group velocity, i.e.
x(t) = x0 ± t cos(ξ0h/2) (exercise).
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