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Wave equation and its versions

The wave equation:
Ut — Au = 07

where u; is the time derivative and A is the Laplace operator.

It describes small vibrations of strings (n = 1), membranes (n = 2) and the potential of an
acoustic field (n = 3). Constant coefficients, i.e. homogeneous medium.

Helmholtz equation:
—Au = Au.

Linear transport equation:
ur+b-Vu=0.

The wave equation can be written as a system of first-order equations:

utr = Vvx, Vi = Ux.

Liouville equation:
ur — div (bu) = 0.
Schrédinger equation of Quantum Mechanics whose solution v is a complex valued function:
iut + Au = 0
The beam equation:
utr + Azu =0.
Background on Fourier Analysis April 22,2020 253



Wave equation and its versions

Other versions of the wave equations:

o the telegraph equation
Ut — Uxx +dus =0

e the Airy equation
Ut + Upx =0

o the Klein-Gordon equation
uyt —Au+u=0.

The Lamé system modeling the vibrations of a 3 — d elastic body is a coupled system of wave
equations in the unknown u = (u1, w2, u3):

ur — AMAu — (A + p)Vdivu =0

The Maxwell system describing the propagation of the electromagnetic field:

E; =rotB, By = —rotE, divB =divE =0.

The Eikonal equation appears in the computations of the solutions of the wave equation in
Geometric Optics:
[Vu| =1.
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Wave equation and its versions

The Hamilton-Jacobi equation:
ur + H(Vu,u,)=0.

The Korteweg-de Vries (KdV) equation is a non-linear version of Airy equation allowing the
analysis of the wave propagation in channels and produces solutions like the solitons:

ut + uux + Uxxx = 0.

The Navier-Stokes equations for a homogeneous incompressible viscous flow appears in Fluid
Mechanics
u—Au+u-Vu=Vp, divu=0

The Euler equations for perfect fluids, in which u is the velocity field and p is the pressure.

ut+u-Vu=Vp, divu=0.

The viscous and inviscid Burgers equation:
Ur + uux — uxx =0,  ur + uux = 0.

In the last one, the solutions could develop shock waves in finite time.
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Simple harmonic oscillator

Simple harmonic oscillator equation:

mx" = —kx or mx"" + kx = 0. (1)

o x = x(t) is the distance of the mass to the fixed point
@ m is the mass of the particle

@ k is the rigidity constant of the spring

o x’, x'" are the velocity/acceleration of the particle.

Set w:= \/k/m. Then (1) can be written as

x"(t) + wx(t) =0, x(0) = x°, x'(0) = x*. (2)

1 1 1 1 1
SOLUTION: x(t) = 5 (xo + %) exp(iwt) + 5( 0 %) exp(—iwt) = x%cos(wt) + X;sin(wt).

‘ GENERAL SOLUTION:  x(t) = cos(wt + ¢)

@ A is the amplitude of the oscillation
o w is the angular frequency; v := w/2m is the frequency
@ ¢ is the initial phase.

(2) is a second-order equation in time = two variables in the system:
o the position of the mass, x = x(t)
o the velocity v(t) := x'(t) = —wAsin(wt + @).
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Harmonic oscillator

The total energy e(t) := kinetic + potential = %\x’(t)\2 —+ %2|x(t)\2 is conserved in time

Multiply by x’ in equation (2) = 0 = (x” + w?x) x’ = % [%|x'|2 + “’72\x|2] = (), O

dt

The trajectory t — (x, x’) describes the ellipse w?x? 4 y? = r? in the phase plane, where
y = x'(t) and r? = |x}|? + w?|x0)2.

Simple pendulum equation: x”'(t) + w?sin(x(t)) = 0, where x(t) is the displacement angle from
the equilibrium, w? := g// and / is the length of the pendulum arm.

Small oscillation assumption: If the oscillations about equilibrium are small, we expand sin(x(t))
in power series and keep only the first one, x(t). = simple harmonic oscillator.
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Harmonic oscillators in two dimensions

K1) +wix(t) =0, y'(O)+wiy(t) =0, x(0)=x° x'(0)=x", y(0)=y", y'(0)=y".

wyx = wy = w = GENERAL SOLUTION: x(t) = Acos(wt — «) and y(t) = Bcos(wt — f3).
Set § := o — 3. Then | B?x* — 2AB cos(8)xy + A%y? = A2B?sin’(6) |.

2
@ § = +m/2 = the trajectory (x, y) is the ellipse :—22 + ﬁ =1.
@ § = 0 = the trajectory is the straight line Bx — Ay = 0.

@ § = +7 = the trajectory is the straight line Bx + Ay = 0.

wy # w, = (x,y) is a Lissajous curve. It is closed iff wyx/w, € Q, otherwise is open and (x, y)(R") is dense in
the rectangle.
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Harmonic oscillator

Let us consider two solutions x1(t) and xz(t) of the harmonic oscillator:

x1(t) := Arexp(i(wit + ¢1)) and x2(t) := Az exp(i(wat + ¢2)).

o When wi/wy € Q = the superposition is a periodic movement of frequency w = (w1,w?).

o When wi/wy € R\ Q = the superposition of x; and x2 has no temporal periodicity.

If the two frequency are close, i.e. wy» = wi + Aw, then

x(t) := x1(t) +x2(t) = [A1exp(id1) + Az exp(i(p2 + Awt))] exp(iwit) = A(t) exp(i(wit + ¢(t))),

A1 sin g1 + Azsin(¢p + Awt)
A(t) := /A2 + A2 4 2AA — o — Awt), t t)) = .
() \/ 1A+ 2AAz cos(dn — g2 — Awt), - tan(9(t)) A1 cos g1 + Az cos(¢ + Awt)
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Damped harmonic oscillator

The damped harmonic oscillator equation

mx" + Rx' + kx =0, x(0)=x°, x'(0) = x%. 3)

@ R > 0 is the mechanical resistence constant.

The general solution of (3) is a superposition of fundamental solutions obtained by solving the
characteristic equation

mA2 4+ RA+ k=0. (4)
Two roots
—R+VR2 —4mk
Ap=——v— (5)
2m
The solution
1_ A 0 A 0_ 1
x(t) = ay exp(tAy) + a—exp(th_), oy = ﬁ, a_ = ﬁ
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Harmonic oscillator

o UNDERDAMPING. When 0 < R < 2v/mk, A+ € C of real part —R/2m. The solutions of
(3) are harmonic oscillations exponentially damped at rate R/2m:

x(t) = exp(—Rt/2m) [cur exp(ity/4mk — R2/2m) + a_ exp(—it\/4mk — R2/2m)]A

o OVERDAMPING. When R > 2v/mk, A+ € R and the solution does not oscillate. The decay
rate of the solution of (3) is Ay:

x(t) = exp(—Rt/2m) [(wr exp(tV R2 — 4mk/2m) + a_ exp(—t\V/ R? — 4mk/2m)]

o CRITICAL DAMPING. When R = 2v/mk, A+ = A_ and the fundamental solutions are
exp(—Rt/2m) and texp(—Rt/2m):

x(t) = (a4 + a—t)exp(—Rt/2m) = (XO + (xt+ RXO/Zm)t) exp(—Rt/2m).

The decay rate v(R) is as follows:

%, when 0 < R < 2Vmk
’Y(R) = R / R2—4mk
5m — ~—5m > Wwhen R >2vVmk.

Properties of the decay rate:
@ It is increasing when 0 < R < 2v/mk and decreasing when R > 2v'mk
@ Its maximum value is when R = 2v/mk, for which v = \/% However, the maximal rate is
not attained since the solution involves a factor t.
@ When R — o0, the decay rate tends to zero. This phenomenon that, when R is larger than
the critical value 2v/mk, the decay rate is decreasing is called overdamping.
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rmonic oscillator

Underdamping
Critical damping
Overdamping

Amplitude
-

1 The three types of damped motion

N
2/

—

3 Phase portrait damped oscillator

2 Underdamping X(t) = Aexp(—ft) cos(wt)

air thick oil water
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Oscillators with sinusoidal driven forces

x"(t) + 285 (t) + w?x(t) = Acos(@t), x(0)=x%, x'(0) = xL.
SOLUTION x(t) = general+particular := xg(t) + xp(t),
where  xg(t) = exp(—B1t)[Cs exp(t\/ 32 — w?) + C_ exp(—ty/ 5% — w?)]
and  xp(t) = Ccos(wt — §).

xp(t) is a solution iff, for all t > 0,

[A = C((w? — &) cos(8) + 2@Bsin(8)) ] cos(wt) = C((w? — &?)sin(d) — 2@ cos(d))sin(@t).

~ ~ 2 _ ~2
Thus, tan(d) = Lﬁl, sin(d) = 26 , cos(d) = v
w2 — 2 /(w2 _ (;2)2 + 40232 \/(wQ _ @2)2 + 45232
A
and C=

V(w? = 32)2 + 45232 ’
C4+ are determined from the initial data, solving the system
Ci+C_=x%—Ccos(6) and C(—B8+ VB2 —w?)+ C_(—8 — V2 — w?) = x! — C&sin(6),

so that Ci = %(XO — Ccos(d) + ﬁ (X1 — C&sin(8) + B(x° — Ccos(é)))).
—w
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Resonance phenomenon

@ For a fixed w, as @ increases from 0 to oo, § increases from 0 (for @ = 0), to § = 7 /2 (for @ = w) and
to § = m (for & = o).

@ xg(t) are transient effects that die out for t >> 1/ due to the effect of the damping factor exp(—/St).

@ x,(t) represents the steady state effects containing all the information maintained for large t.

@ wy = \/w? — B2 is the damping frequency.
@ For @ < wyq, the transient response x;(t) greatly distorts the sinusoidal shape of the forcing function.

@ For @ > wy = little distortion of x,(t).

@ The amplitude C = C(@) of x,(t) is maximized when @ = @, := \/w? — 232=resonant frequency.
@ w>wy > w, forallweRand 8> 0.

@) =

A
N

@ For w? > 232, when the damping factor 8 — 0 = C(@,) — oo = x(t) blows-up.
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If neglected, resonances could produce real disasters...

Examples:

A crystal glass can be shattered by the right note.

Tacoma Narrows Bridge (Washington) (July-November 1940). It received the name
Galloping Gertie because of the vertical movement observed by construction workers during
windy conditions and collapsed in November 1940 under high wind.

Making a child swing to swing higher by pushing it at each swing.
Collapse of Broughton Suspension Bridge (1826-1831), due to soldiers walking in step.

Collapse of Kdnigs Wusterhausen Central Tower (Germany) during the storm Quimburga in
November 1972.

Millenium Bridge, London.

Resonant rings.

Earthquakes. During the Mexico City earthquake in 1985, the majority of the many buildings
which collapsed during were around 20 stories tall. These 20 story buildings were in
resonance with the frequency of the earthquake. Other buildings, of different heights and
with different vibration characteristics, were often found undamaged, even though they were
located right next to the damaged 20 story buildings.
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http://www.youtube.com/watch?v=17tqXgvCN0E
http://www.youtube.com/watch?v=lXyG68_caV4
http://www.youtube.com/watch?v=eAXVa__XWZ8&feature=BFa&list=PL9155B7ACDFE4FB62
http://www.youtube.com/watch?v=9UjYOvtTgT8

Harmonic oscillator

Coupled oscillators

First example. Two mass points fixed to two walls by springs with stiffness constant k and coupled by a third
spring of stiffness k.. Problem. Find the general solution for the motion of the two masses whose positions are

x1(t) and x(t).
We apply Newton's second law to obtain two coupled second-order differential equations:
mx; (t) + kxa(t) — ke(xa(t) — xa(t)) =0, mxy'(t) + kxa(t) — ke(xa(t) — x2(t)) = 0,
with initial conditions x;(0) = x?, x{(0) = x{, x2(0) = x? and x}(0) = x3. We rewrite these equations as

k + k, k k + k k.
“xa(t) = () =0, x()+ Sxa(t) = —x(t) = 0. (6)

m

X' (t) +

m

To solve this system, we change the unknowns x; and x, by the normal coordinates g1 = x; + x» and
g2 = x1 — x solving the decoupled system

. k k + 2k
q;'(t) + wf‘h(f) =0, q(t)+ wng(t) =0, with w; =4/ - and wy = 4/ TC,

so that  qi(t) = C11 cos(wit) + C12 sin(wit) and qo(t) = (,'21 cos(wat) + C22 sin(wat),
1 1 1 1
X; + x Xy — X
with Cf:x?{»xg, szil 2 Czlzxffxg, C22:71 2,
w1 w2
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Fourier modes

ktke ke
System (6) can be written as X’ + AX = 0, where X = (x1,x2) and A = ( e ) .
m m

Eigensolutions (X, ¢) of A:
e A=uw? p=(1,1)
o A=uw? p=(1,-1).
Fourier modes:
@ Symmetric mode. If x;(0) = x(0) = A and x{ (0) = x;(0) = 0, then x;(t) = x2(t) = Acos(w: ).
@ Anti-symmetric mode. If x;(0) = —x»(0) = A and x{(0) = x5(0) = 0, then x1(t) = —x»(t) = Acos(w>t)

Second example. Two equal masses m, one coupled to a wall and another one coupled to the first one by
springs of rigidity k:

mxl”(t) + kx1(t) — k(x2(t) — x1(t)) =0, mxz”(t) + k(x2(t) — x1(t)) = 0.
This system can be solved in terms of the Fourier modes:

o x=ut=(5/E) v =1 -(v5-1)2).
o x=uwi= (L2 /E) o= (1, (vE+1)/2)
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Wilberforce pendulum

Third example. The Wilberforce pendulum (spring) is a spectacular example of a system coupling
translational and rotational harmonic motion.

z measures the displacement from equilibrium in the vertical direction and 6 is the rotation:

mi(t) + ke(t) + %e@(t) =0, 10(t)+86(t) + %ez(t) —o.

o Set w2 :=k/m and w} :=4/I

@ The two Fourier modes are:

o Translational mode. A = w? = %(wﬁ +wl + /(w2 —w3)? + r%), = (1,/m/l)
@ Rotational mode. A = w? = %(wf +w? — /(w2 — w22+ ;—2,) = (1,—+/m/l)
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The Cauchy problem for the 1 — d wave equation

The Cauchy problem associated to the 1 — d wave equation:
Utt*“xxzo,XeR,t>0. (7)

D’Alembert observed that the solutions of (7) can be written as a superposition of solutions of
two transport equations, showing that the velocity of propagation is one:

u(x,t) = f(x+t) + g(x — t), (8)
To show that any solution of (7) is of the form (8) is sufficient to observe that the d’Alembert
operator 02 — 02 can be decomposed

82 — 82 := (8 — Ox) (Or + %) .

Introducing the auxiliary variable
v= (0 + ) u, 9

the wave equation can be written as
(Or —0)v=vi —vx =0,

whose solution is
v(x, t) = h(x + t).
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The d’Alembert formula

Equation (9) reduces to
ur + ux = h(x + t).

Observe that w(t) := u(t + xo, t) verifies the equation
w'(t) = h(2t + xo),
whose solutions is (H being a primitive of h.)

H(2t + Xo)
2

H(2t + Xo)

w(t) = 5

+ w(0) = + u(xo,0).

Since u(x,t) = w(t), with xp = x — t we obtain an equivalent representation to (8):

H(x +t)
2

u(x,t) = + u(x — t,0).

This formula allows to compute the unique solution of the Cauchy problem

Utt — Uxx = 0, xeR, t>0
u(x,0) = o(x), ut(x,0) = ¥P(x), xé€R.

using the d'Alembert formula

X+t
sty = COHDTLED L 2 ) g

x—t
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The Fourier transform

The Fourier transform in L(R")

If f € L1(R"), its Fourier transform is defined as f(£) : n/2 f f(x)exp(—ix - &) dx
The inverse Fourier transform is defined as f(x) := W J (&) exp(i€ - x) d€.
Rn

Plancherel-Parseval identities: For all f, g € L' N L2(R"),

(F.8)2 = (F.8)12 = (21)"(f,8) 2 and |[Fll 2 = [[Fll,2 = (2m)¥/2]|F]] 2.

The Fourier transform in L2(R")
For any f € L2, there exists f, € L N LY(R") s.t. fy — f in L>(R"). From the Parseval identity,
I[fe — ﬁ||L2(Rn) = (2m)"||f — fill L2(mny 1€ (f)« is a Cauchy sequence in L2(R").

Thus f — f in L?(R") and f is called the Fourier transform of f in L2(R").
Properties of the Fourier transform in L2(R9):
o forall f,g € L2(R"), (£,8)2 = (F, &)
o DOF(£) = (i€)*F(€), for any index a s.t. Df € L2(R").
o Fxg() = F(E)B(E).
° ? =f.
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The Fourier transform

Applications of the Fourier transform

Linear Schrodinger equation:  ju; + Au = 0, x

Set U(¢, t)=the Fourier transform of u(x, t). It verifies
i, — |EPT=0, £ R, t>0, uE,0) = F(&).
(€, t) has the explicit expression G(€, t) = B(&) exp(—i|€|*t). Then

ulx,t) = s [ e ew(=ilePe)expl - x) e = sz [ el)explilx —yi7/at) dy.
RP

RN

Wave equation:

(g, t) verifies the equation Ty + |£[?T =0, € €R", t >0, @(&,0) = 0°(&) Ge(£,0) = G'(€) and has the
explicit expression (similar to d’Alembert formula)

@€

ﬁl
ae o= (a"(g) + —) exp(Hitle]) + 3 (ﬁO(E) - £

ilgl

Te| )eXp(*ft\ﬂ)-

Telegraph equation:  wuy — e + 2du; = 0, x ¢

G(€, t) verifies the equation Ty + |£2T + 2dT; =0, € € R, t > 0, @(&,0) = 0°(€) T:(€,0) = 7*(€) and has
the explicit expression

- 1 di’(€) + 7' () I — e
ué, t) = ; > <"f](5) == W) exp (t( —dt/d* - \5‘2))
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Wave equation in three dimensions

g — BDu=0, x eR®, u(x,0)=u’(x), u(x,0)=u'(x).

Spherical means. U(x, t;r):== ¢ u(y,t)do(y), U(x,0;r) := UO(X; r), Ue(x,0;r) :== Ul(x; r).
9B(x,r)

Vx € R3, U(x, t; r) verifies the Euler-Poisson-Darboux equation: Uy — U, — %U, =0, rteR,.

Set U = rU, which verifies the wave equation on the semiline: Uﬂ — (7,, =0, r>0, U(x, t;0) = 0.

r+t
~ 1
Then U(x,t;r)= é(Uo(x; r+t)+ U0 r— 1)+ 5 / FU'(x; F) dF.
r—t
U(x, t; r)

and  u(x,t) = Jigwo U(x, t;r) = ’IiLno "

Kirchoff's formula:  u(x,t) = 7{ (tul(y) + () + Vil(y) - (v — x)) do(y).
8B(x,t)

Domain of dependence of u: the surface B(x, t).
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The Fourier transform

Wave equation in two dimensions

ur — Au=0, x €R?,  u(x,0) = uO(x), w(x,0)=uvl(x).

Hadamard's method of descent. U(x,x’) = u(x), x’ € R, solves the 3 — d wave equation
Uy — AU =0, T(x,x’,0) = u(x,0) = uO(x), T(x,x’,0) = ut(x,0) = u'(x), which can be solved

by the previous spherical means method.

Poisson’s formula:

1 Pul(y) + t(y) + Vil (y) - (v — %)
u(x,t) = > ?{ (@~ |y —xP)12 dy.
B(x,t)
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Fourier series

Given a function f on x € [—L, L], its Fourier series is

f(x):= Z an cos(nmx/L) + Z bnsin(nmx/L),

n>0 n>1
1 / 1 / 1 /
where  ag = i/f(y)dy, an = Z/fy)cos nmy/L)dy and b, = Z/f(y)sin(mry/L)dy.
—L —L —L
PROBLEMS:
@ Does the series on the RHS converge?
e To f?

o At least fiL f(y) dy should exist, so that one cannot compute Fourier series for f(x) = 1/x°.

Although f might not be periodic, its Fourier series is periodic of period 2L.

Definition

f is piecewise smooth if f and f’ are piecewise continuous, i.e. f has a finite number of
discontinuities on (—L, L).

Theorem

| A

For any piecewise smooth function f on x € (—L, L), its Fourier series converges:

@ to the periodic extension of f, f, when f is continuous;

o to the average (f(x+) + f(x—))/2 when f has a jump discontinuity at x.
v
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The Fourier transform

Example 1. When f is the characteristic function of (L/2, L), ag = 1/4, a, = —sin(nm/2)/(n7) and
b, = (cos(nm/2) — cos(nm))/(nm).

When f is an odd function on (—L, L), a, = 0 for all n > 0 = sine Fourier series.

Example 2. f(x) = 100 on x € (0, L) and f(x) = —100 on x € (—L,0) = b, = 0 for even n and
b, = 400/(nm) for odd n.

Gibbs phenomenon appears at the discontinuity points when the Fourier series approximates a discontinuous f.

Example 3. f(x) = x on x € (=L, L) = b, = 2L(—1)""'/(n7).

Example 4. f(x) = cos(nx/L), x € (0, L), and f(x) = — cos(wx/L), x € (—L,0) = b, = 0 for odd n and
b, = 4n/(m(n* — 1)) for even n.

When f is an even function on (—L, L), b, =0 for all n > 1 = cosine Fourier series.

Example 5. f(x) = |x| on (=L, L) = ap = L/2 and a, = 2L((—1)" — 1)/(nm)>.

The Fourier series of f is continuous on [—L, L] iff f is continuous and f(L) = f(—L).

EEGE ) @ (i RS Apil 22,2020 2553



The 1 — d wave equation on an interval: Fourier method

Consider the 1 — d wave equation describing the vibrations of a string of length m whose
endpoints are fixed:

Ut — Uxx = 0, O<x<m t>0
u(0,t) = u(m, t) =0, t>0
u(x,0) = u0(x), ue(x,0) = ul(x), 0<x<m.

To find the solutions of (12), we firstly write the Fourier series of the initial data:
oo o0
w(x) = asin(kx), u'(x) = bysin(kx),
k=1 k=1
where the Fourier coefficients are as follows:

uy uy
2 2
ax = f/uo(x) sin(kx) dx and by = f/ul(x) sin(kx) dx.
™ ™
0 0
The solution of (12) is defined as:

oo

u(x,t) = ui(t) sin(kx).

k=1

The Fourier coefficients of the solution at time t are given by

b
uk(t) = ax cos(kt) + Tk sin(kt).
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Wave equation on bounded domains

The Fourier coefficients u(t) obey the simple harmonic oscillator equation:

u 4+ K2u = 0.
The energy of each of these Fourier coefficients is conserved in time:

ex(t) = 5 [IUh(O) + Klur(0)P]

The conservation law E(t) = E(0) holds for the total energy of the solution u of (12):

1 ™
= 5/ |ux(x, t)] |ut(x,t)|2] dx.
0

This total energy has two parts: potential and kinetic energies.
This conservation law can be proved by

o Fourier series, by using the orthogonality of the trigonometric functions:

™ ™

/sin(kx) sin(jx)dx = géjk, /cos(kx) cos(jx) = géjk,
0 0

where §ji is the Kronecker delta, and the conservation of the energies e, for each k > 1.

o the energy method, by multiplying (12) by u: and integrating in x € (0, 7).
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Wave equation on bounded domains

The energy space is H := H}(0,7) x L2(0,7) of norm

_ 2 2 1/2 - [ 2 2
(. &)lis = £ 0,0+ NEl20,my)] = | [ (2 +87) dx
0

For any initial data (ug, u1) € H there exists an unique solution (u, ut) € C([0,00); H) of (12).
This solution belongs to the class

u € C ([0, 0); Hi(o, m)) N c" ([0, c0); L?(0, 7))

and the corresponding energy E(t) is conserved in time.

The fact that the initial data belong to H}(0,7) x L2(0,7) means
oo
> [k akl? + |bil?] < oo
k=1
In fact -
1 /" T
E(0) = */ (2O + [ut ()Pl dx = — > [k |al® + [ b]?] < oo
2 Jo 4=
The existence and uniqueness result Theorem 3 can be proved at least by three methods:
o the method of Fourier series (the one we used)

@ semigroups theory
o Galerkin methods.
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Fourier method for the wave equation in several space dimensions

The multi-dimensional wave equation on a bounded domain Q

utt—Au:0, XEQ7 t>0
u=0, x€0Q, t>0 (14)
u(x,0) = u0(x), u(x,0) = ul(x), x€Q.

The corresponding spectral problem:
—Ap=Xip en Q
{ =0 en 0NQ. (15)
The eigenvalues {);};>1 in (15) constitute an increasing sequence of positive numbers
O< A< Sl <A< = o0
The first eigenvalue is simple and the following one are repeated according to their multiplicity.

The sequence of eigenvectors {;};>1 form and orthonormal basis in L%(£), i.e.

/<Pj<Pk dx = §j. (16)
Q

From (16) by multiplying the equation (15) corresponding to Ax by ¢; and integrating in €, by
the Green formula we obtain the orthogonality of the eigenfunctions in H&(Q)

/Vw “Vrdx = A; / PjPkax = Ajjc = M-
Q Q
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Wave equation on bounded domains

We develop the initial data (u°, u') in (27) as follows:
oo o0
WO (x) = Z arpk(x) and vl(x) = Z brpk(x).
k=1 k=

and look for the solution u of (27) in the form

9]

u(x, £) = > uk(t)pr(x)-

k=1
Remark that the coefficients {uy} solve the harmonic oscillator equation:
u,:’(t) + Mug(t) =0, t >0, wuk(0) = a, UL(O) = by,

and then

ug(t) 7akcos<\/;t)

The solution u of (27) admits the Fourier representatlon

u(x, t) = ; (ak cos (ft)

sm (ft)

sm (\/ t)) ok (x).
In the 1 — d case, the eigenvalues and eigenvectors of the Laplacian on Q = (0,7) are
2 2
A = k%, k> 1; op(x) =/ —sin(kx), k>1.
™
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Rectangular and circular membranes

@ When Q is the rectangle Q := [0, L] x [0, H], Am,, := (mn/L)? + (nm/H)? and

@m,n(x,y) == 2sin(mmx/L)sin(nwy/H).
@ When Q is the disc of radius a, A and ¢(x,y) = ¢(r,0) = f(r)g(0) are related to the Bessel functions.
@ g satisfies the problem

g"(0) + ng() = 0 and periodic boundary conditions g(7) = g(—7), g'(7) = g'(—n),

so that u = m?, m € N, g(6) = sin(mf) or g(0) = cos(md).

@ f satisfies the problem
() + o (1) + (A — m)f(r) =0, f(a)=0, [f(0)] < oo.

o f(r) = f(2), with z = VAr = 22f"(2) + 2f'(2) + (22 — m?)F(z) = 0. Then F(z) = c1Jm(2) + & Yim(2),
where J,, and Y, are Bessel functions of first/second kind of order m:
2ac+m 1 r .
(z/2) = = [ cos(my — zsin(y)) dy
T
0

oo (x

Im(2) = Z all( a+m+1)

a=0

and  Yn(z2) = %/sin(zsin(y) — my) dy.
0

@ The eigenvalue X is a solution of Jm(\/Xa) = 0. Zpp:=the n-th zero of J,, = App = (z,,,,,/a)z.
@ More complex domains = domain decomposition methods.
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n on bounded domains

Wave equ:
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Tools to highlight the vibrational modes

Cymatics (from Greek word for wave) is the study of visible sound and vibration, a subset of modal
phenomena. Typically the surface of a plate, diaphragm or membrane is vibrated and regions of maximum
and minimum displacement are made visible in a thin coating of particles, paste, or liquid. Different
patterns emerge in the medium depending on the geometry of the plate and the driving frequency.

Chladni patterns. One of Chladni’s (1756-1827) best-known achievements was to invent a technique to

show the various modes of vibration of a rigid surface. A plate or membrane vibrating at resonance is

divided into regions vibrating in opposite directions, bounded by lines of zero vibration called nodal lines.

Rubens tube. Invented by Heinrich Rubens (1865-1922). A pipe is perforated periodically and sealed at
both ends. One seal is attached to a frequency generator, the other to a supply of a flammable gas. The
pipe is filled with the gas, and the gas leaking from the perforations is lit. The flame height is proportional
to the gas flow. Based on Bernoulli's principle, the gas flow is proportional to the square root of the
pressure difference between the inside and outside of the tube. Where there is oscillating pressure due to
the sound waves, less gas will escape from the perforations in the tube, and the flames will be lower at
those points. At the pressure nodes, the flames are higher.

Wave pendulum.

Interferometry.
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http://www.youtube.com/watch?v=vFRtjZ3NrqM&feature=related
http://www.youtube.com/watch?v=haKcdjB_ns8&feature=fvwrel
http://www.youtube.com/watch?v=yIkyPFLkNCQ
http://www.youtube.com/watch?v=QKW8pNmIs24

Wave equation on bounded domains

The total energy of the solutions of the simple wave equation is also conserved in time:

E(t) = %/ [IVu(x, )% + |ue(x, t)|2] dx
Q

The energy space is: H = H}(Q) x L2(Q).

For any (u°, ut) € H}(Q) x L%(R), there exists an unique solution (u, u) € C([0, c0); H) of (27),
ie.

u € C ([0,00); H3(Q)) N C* ([0, c0); L2(R2))

whose energy E(t) is conserved in time.

The regularity of u in Theorem 4 and the fact that the Laplace operator with homogeneous
Dirichlet boundary conditions is an isomorphism between HZ(2) and H=1() allows to conclude
that u € C2 ([0, 00); H~1()). In this way, equation (27) makes sense in H=1(Q) for any t > 0.
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Extensions and limitations of the Fourier method

The Fourier method can be apply to other situations:
@ Neumann or mixed boundary conditions
@ more general wave equations involving variable coefficients:
p(x)ute — div(a(x)Vu) + q(x)u =0,

where p, a and g are measurable and bounded functions and p and a are uniformly positive,
i.e. there exist pg, ap > 0 such that

p(x) > po, a(x) > ag, a.e. x € Q.

Limitations of the Fourier method:
@ nonlinear equations

@ equations with coefficients depending on both x and t.

EEGE ) @ (i RS Apil 22,2020 3553



Fourier series as numerical method

The solution of the wave equation (27) can be expressed as

u(x, t) = g {ak cos <\/7t> sm (ft)] wk(x), (18)

where {¢},~q and {Ac},5, are the eigenvalues and eigenfunctions of the Laplacian.
The energy below is conserved along the trajectories:

E(t) = 1/ [IVulx, P + Jue(x, )] o,

2
Q
so that the energy of the initial data is

1 oo
E0) =5 > Dudlawl® + [bel] - (19)
k:l

The hypothesis that the initial data (ug, u1) € H}(Q) x L2(Q) is of finite energy is equivalent to
the fact that the sequences {ak\/)\k} and {bx} belong to 2.

It seems natural to construct a numerical approximation of the solution of the wave equation in
the form

N
un(xt) =3 [ak cos(/Aut) + = sin(/t)| ().

k=1
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Fourier series as numerical method

To prove that uy is an approximation of the solution u of (27), we consider the difference

wimu=—un= 3 |awcos(y/At) + i siny/Aut)| oule).

k>N+1

Due to the orthogonality of the eigenvectors,

[|[Ven( l')||l_2(Q Z Ak[akcos ft)—i— S|n(\/>t] < Z [Ak|3k|2+|bk‘2}‘

k>N+1 k>N+1
Due to the boundedness of the series representing E(0) in (19), we conclude
un(t) = u(t) in C ([0, 00); H&(Q)) as N — oo. (20)
By the same arguments,
un,e = ue(t) in C ([0, 00); LZ(Q)) as N — oo. (21)
From (20)-(21) = convergence in the energy space H := H}(Q) x L?(£2) uniformly in t > 0.
CONVERGENCE RATES?!?
@ The previous argument does not provide any information in this sense, since the convergence

of the series E(0) in (19) does not allow to determine the order of convergence of the
truncations.

o Take more regular initial data in (27), (v, u?) € [H2 n H(}(Q)] x H}(Q).
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ourier series as numerical method

When (42, ul) € [H2 n Hé(Q)] X HY(Q), we have
0o 1 2 2 2
@ ) gt et = D [Melakl® + Albel?] < oo
X XY
On the other hand, we know the norm equivalence:
2 1
1Aell29) = o]l for any o € H2 0 HY(@),

which holds due to classical elliptic regularity results in the Dirichlet problem for the Laplace operator: if the domain 2 is of class
C? and f € L(Q), then the solution u the following problem belongs to H? N Hé(Q):
—Au=Ff, x€Q, u=0, x € 9N
On the other hand,
/AWA%- dx = A6 ks
Q

so that 02 ) )
Hau] 0 = = A lal?.
k>1

The additional regularity of the initial data (u°, u') € H> N H&(Q) X H&(Q) and the increasing character of { A, } imply:
1
2 2 2 2 2 2 2
IVen(lifz, 1een(®lifz <2 3= [Melanl® +10P] <2 3 = [Xklawl® + Ml
k>N+1 k=N+1 "k
2

C
2 2 2 0 12
< S [PRlal? + M) < —— 1@, 6yt -

AN+ (SN AN+1 o < Ho
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Fourier series as numerical method

Conclusion:

C
[|u— uNl|Loo(O,Oo;Hé(Q))nwl,oo(O,OO;L2(Q)) < ﬁ||(u0, ul)HHZOHé(Q)XH&(Q)~

Weyl Theorem on the asymptotic distribution of the eigenvalues of the Laplace operator:

v ~ c(Q)N?" as N — oo.

For any (u®, u') € H? N H} x H}(Q) initial data in (27), uy converges to u in the energy space
H := H} x L2(Q) uniformly in t > 0 at order O (N=/7).

The regularity hypothesis (10, u') € H?> N Hé X Hé(Q) is not the only possible one!

The Fourier approximation method is useful in the following cases:
@ 1 — d, when one compute explicitly the spectrum of the Laplacian.
@ to compute the Fourier coefficients of the initial data, one can apply quadrature formulas.
@ several space dimensions when Q is the square or the circle.

The Fourier approximation method is difficult to be applied in the following cases:
@ several space dimensions on complex domains Q (union of square+circle=-domain

decomposition methods)
@ nonlinear equations or variable coefficients depending on both (x, t)

Other approximation methods which have not these limitations:
o finite differences, finite elements, finite volumes.
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Damped wave equation

Initial boundary value problem for the damped wave equation in the bounded domain Q C R”,
with a > 0:

usy — Au+ aur =0 in  Qx(0,00)
u=20 in 09 x (0,00) (22)
u(x,0) = u0(x), ur(x,0) = vl(x) in Q.

Writing this equation like uyy — Au = —auy, we see that —au; is a force acting on the whole Q at

any time t > 0.
To determine the solution of (22) using the Fourier method, we firstly develop the initial data in
Fourier series:

Px) = 3 anpi(x) and 1 () = 3 biegi(x).
k=1 k=1

We look for a solution u of (22) as follows:

(oo}

u(x,t) = > u()px(x), (23)

k=1
where uy(t) is solution for the damped harmonic oscillator:
ul () + Agup(t) + aup(t) =0, t >0,  uk(0) = ax, uy(0) = by. (24)

The characteristic polynomial associated to (24) is u? + A\x + ap = 0 and its roots are

L+ —at/a? -4\
="

M
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The solution of (24) is given by
up(t) = g exp(uf t) + a— exp(u t).
The constants a4 are so that
ay + a— = a, and ,u;(*'our — py a— = by.
When a? = 4\, the solution of (24) is
uk(t) = aexp(—at/2) + Btexp(—at/2),

with 2
a = ax and — Ea-l—,B:bk.

The energy of the solution of (22),

E(0) =5 [ [ITute O +ue(x 0] o,
Q

is decreasing in time. By multiplying by u: in (22), we obtain the dissipation law of the energy:

E
%(r) _ —a/\ut(x, £)2 dx.
Q
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Decay rate of the energy by the Fourier method

From the orthogonality properties of the eigenvectors ¢y, we obtain the following Fourier
representation of the energy:

oo

E(t) = ex(t), with e (t) =

k=1

5 [l OF + Mdu()P].

Each ey satisfies the decay property:
ex(t) < Cex(0)e™ K,

where C > 0 does not depend on k and on the data (19, u!) and wy is the exponential decay rate
of the k-th Fourier component:

—/a2—4x
337,(, a% > 4\

Wi = 2

g, a2 < 4>\k~
When a2 = 4\, the decay law of the Fourier component is

ex(t) < Cer(0)texp(—wit),

with wy = a/2.
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The exponential decay of the energy

In conclusion,
E(t) < CE(0) exp(—wt),
with

% a2 < 4,

—+/a%2—4X
VIS 25 g,

w=uw(a) =

When a2 = 4\, the decay result of the energy is slightly different:
a
< — =t].
E(t) < CE(O)texp( 2t>

The function w(a) has the following monotonicity properties:
o linearly increasing for a € [0,2v/A1].
o decreasing for a > 2v/)1.
@ w(a) - 0 as a — oo.
o The maximal decay rate is attained when a = 2\/\; = overdamping

When the initial data (19, u') involves only high frequency Fourier components for which
4)\) > a?, then the exponential decay rate is simply a/2.
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Dissipative wave equation

Remedies for the overdamping

For the heat equation with potential
—Au+au=0 Qx(0,00),
u=20 00 x (0, 00) (25)
u(x,0) = up(x) Q,
the decay of the energy is exponential for any a > 0
(M +2)
llu(®)l |2y < exp (= =522t 1]z
For the heat equation there is no overdamping since it is a first-order equation in time, while the
wave equation is second-order in time, having two unknowns, u and u;:
ur=v, vi=Au-—av.
The fact that there is only one dissipative potential in the second equation produces overdamping.
Remedy: Use two potentials a > 0 and b > 0 affecting both u; and u:
ue — Au+aus +bu=0 Q x(0,00)
u=20 00 x (0, 00) (26)
u(0) = u°, u(0) = ut Q.

The energy is given by

Ep(t) = %/ [|Ut(X, t)|2 + |Vu(x, t)‘2 + buz(x7 t)] dx
Q

and satisfies the decay property db(t —af u?(x, t) dx.
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Dissipative wave equation

The Fourier coefficients uk(t) in (23) satisfy the damped harmonic oscillator:
ul () + (Ak + b)uk(t) + auj(t) = 0.
In this case, the roots of the characteristic polynomial are of the form:

—a+ /a2 —4(\c + b)
5 .

ik =
For any a > 0, we can choose b > 0 sufficiently large so that
a? < 4(\ + b).

In that case, each Fourier component decay exponentially at rate —a/2. Then

a

Eb(t) < CEb(0) exp ( - §t>.
Similar analysis when passing to the limit as € — 0 from the dissipative wave equation
eusr —Au+ur =0

to the heat equation
ur — Au=0.
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Semigroup theory for the wave equation

The initial boundary value problem for the wave equation in the open bounded domain Q C R”

ur — Au =20 Q x (0, 00)
u=20 9 x (0, c0)
u(x,0) = 10, wue(x,0) = ul(x) Q

To apply the semigroup theory, it is convenient to write (27) as a first-order system:
uy = v
Ve = Au.

The unknown contains two components, position and velocity: U = (u, v) = (u, ut).
With this notation, U verifies the system

U = AU, U(0) = U° = (u°, ub),

A::<g (’))

The natural space to solve the wave equation (28) is the energy space H := H&(S’Z) x L2(9) since:

where A is the linear operator

@ it is the space where the energy below is conserved in time
1

E() = 5 / [IVulx, )17 + u(x, £)|%] o
Q

@ the boundary condition u = 0 in 9Q requires u € H'(Q) vanishing on 8%, i.e. u € H&(Q).
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The domain of the operator A

The norm in H is 12
(£, &)1k = [anzé(m + gl Baey) .
where "
Pl = [ [ 1972 ] " andt lgllizey = [ [ lel® o]

The domain D(A) C H of the operator A is defined as D(A) := {V € H s.t. AV € H}.
Ais a linear unbounded operator A : D(A) — H. More precisely,

D(A) = {(u,v) € H}(Q) x L2(Q) s.t. v € H}(Q) and Au € L3(Q)}
or D(A) := {(u,v) € H}(Q) x H}(Q) s.t. Au e L2(Q)}.
When Q is of class C2 or a convex domain, the classical result of elliptic regularity guarantees
that D(A) = [H?(Q) n H&(Q)] x HH(Q).
The operator A is anti-adjoint, i.e. A* = —A.

To prove this, we use the fact that the Laplace operator A : H?(Q) N H} () — L%(R) is
anti-adjoint. Indeed, for any U, U € D(A),

(AU, U)H = (v, U) o (Au, V) @
/Q [Vv -Vu+ AUV] dx = —/Q [vAﬁ+ Vu- VV] dx
= —(u,A0)
H
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Hille-Yosida Theorem

Types of solutions for the abstract equation (29)

e strong solutions, i.e. U € C([0,00); D(A)) N C1([0,00); H). For the wave equation, this
means u € C([0,00); H2 N H}(Q2)) N C1([0, 0o); HA(2)) N C2([0, c0); L2(R))

o weak solutions which are less regular, in the sense of distributions, i.e. U € C([0, c0); H) or,
for the wave equation u € C([0, 00); H3(R2)) N C([0, 00); L2(R)). Since u is solution of the
wave equation, it has the additional regularity u € C?([0,0); H1(Q)).

@ ultra-weak solutions are much less regular. For the wave equation, they belong to the class
u € C([0,00); L2(2)) N C*([0, 00); H1(2)) N C2([0, o0); [H2 N HY(Q)]').

Definition
A linear and unbounded operator A : D(A) C H — H is called
o dissipative if (AU, U)y < 0 for all U € D(A).

o maximal dissipative if, moreover, it satisfies
R(I —A)=H < VF e H, 3U € D(A)s.t. U—- AU =F.

1
| \

Theorem (Hille-Yosida Theorem)

Let A be a maximal dissipative operator in a Hilbert space H. Then, for any U° € D(A), there
exists an unique solution of (29), U € C([0,c0); D(A)) N C*([0, c0); H). Moreover, for any t > 0,

U@l < 10011k and || 20|, = 1AU@ I < 1AL 1.

v
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Strong and weak solutions for the wave equation

Strong solutions: H := H} x L?(Q), D(A) := [H? N H}] x H}(R)

o A is dissipative. Since A is anti-adjoint, (AU, U)y = —(AU, U)y and then (AU, U)y = 0 for
any U € D(A). In fact, when (AU, U)y = 0, the energy ||U(t)||3,/2 of the solution of (29) is
conserved in time.

o Ais maximal. For any F = (f,g) € Hi.e. f € H}(Q) and g € L2(Q), there exists at least a
solution U = (u,v) € D(A) = (H? N H}) x H3(Q) of (I — A)U = F. More precisely, (u, v)
satisfy u — v =f and v — Au = g. Since v = u — f, then

u—Au=g+f, x€Q, uvu=0, xecoN. (30)

Since f + g € L?(Q), classical results of existence, uniqueness and regularity results for the
Dirichlet problem (30) guarantee that (30) has an unique solution u € H? N H}(). Since
f € HY(Q) and u € H?2 N H}(Q), then v = u — f € H}(Q).

If Q is a bounded domain of class C2, for any data (u°, ul) € [H? N H}(Q)] x H}(Q), (27) has an
unique solution u € C([0, c0); H2 N H}(2)) N CL([0, oo) H (Q)) N C2([0 o0); LZ(Q))

Weak solutions: H := L% x H=}(Q), D(A) := H} x [2(Q)

If Q is a bounded domain of class C?, for any data (u°, u') € H}(Q) x L?(), the wave equation
(27) has an unique solution u € C([0, 00); H3(22) N Cl([O 00); L2(R2)) N C?([0, 00); H=H(RQ)).
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Obtain weak solution from strong solutions

t
Suppose U(t) is the solution of (29) with data U° € H. Then U(t) = U° + A [ U(s) ds.
0

t
Set V(t) = VO + [U(s)ds.
0
Then Vi = AV + U° — AV® V(0) = VO.

If AV® = U° would have an unique solution V0 € D(A), then V(t) would be the solution of (29)
with data V0 € D(A).

According to Hille-Yosida Theorem, (29) with initial data V° € D(A) has an unique solution
V € C([0,00); D(A)) N C1([0,00); H) and then U = V; € C([0, c0); H).

Given U° € H, does there exist an unique solution V0 € D(A) of AV? = U%? Maximality does
not guarantee this, since only | — A is a full rank operator.
Set W(t) = exp(At)U(t), which solves the equation
W = AW + AW, t >0, W(0)= U° (31)
U is a weak (strong) solution of (29) iff W is a weak (strong) solution of (31).
- — t
Set A= —1and V(t) = VO + [ W(s)ds.
0
Then Ve = AV 4 U0 — (AVO — VO) V(0) = VO.

If (A— 1)V = U° would have an unique solution V? € D(A), then V(t) would be the solution of
(29) with data V0 € D(A). But now A — [ is a full rank operator, so that for any U° € H, the
equation (A — /)V° = U0 has an unique solution.
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Generator of a semigroup

Connection between the semigroups and Fourier theories

e Strong solutions: D(A) = [H? N H&] x HY = {(ak, b )k s.t. > [)\i\akP + Albe?] < oo}
k=1
o Weak solutions: D(A) = H} x L2 = {(ak, b )k st S Dlakl? + |bk?] < oo}
k=1
= 1
o Ultra-weak solutions: D(A) = L% x H™! = {(ak,bk)k sit. Y [lak)? + AL |bi|?] < oo}

k=1

When A is a maximal-dissipative operator, it is the generator of a semigroup S(t): H - H
associating to any U° € H, the solution U(t) = S(t)U° = exp(At)U° of (29) at time t > 0.

The semigroup {S5(t)}¢>0 = {exp(At)}¢>0 is an one-parameter family of linear bounded
operators.
The semigroup S(t) generated by a maximal-dissipative operator A is a contraction, for any t > 0.

Moreover, any semigroup S(t) verifies the following properties:
e 5(0)=1,
o t — S(t)U% is continuous from [0,00) in H for any U° € H
o S(t)o S(s)=S(t+s).
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Semigroup theory applied to variable coefficients, nonlinear equations

Consider the non-homogeneous wave equation

ug — Au=f (x,t) € 2 x (0,00)
{ u=0 (x,t) € 92 x (0, c0) (32)
u(0) = w(0)=u! xeQ.

Examples:
o f = f(x,t) an external force;
o f = p(x,t)u(x,t) = wave equation with potential;
o f = f(u) = semilinear wave equation; e.g. f(u) = |u/P~tu.
Problem (32) can be written as us = v, v¢ = Au+ f or, in a more abstract form (F = (0, f))

U =AU+ F, t >0, U(0)= " (33)
(33) can be solved by the variation of constant formula:
t
U(t) = S(t)U° +/ S(t — s)F(s)ds. (34)
0

e F € L?(0,T;D(A)) = S(t —s)F(s) € L}(0,t; D(A)). Indeed, Hille-Yosida Theorem implies
[1S(t = s)F(s)|ln < |IF(s)lln and AS(t — s)F(s)||n < [|AF(s)||H- Thus

/0 S(t —s)F(s)ds € C([0, T]; D(A)).
@ (33) has a strong solution U € C([0, 00); D(A)) N C([0, 00); H) if F € C([0, T]; H) implying
/OtS(t — 5)F(s)ds € CL([0, T]; H).
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Some related bibliography

[@ L. Evans, PDEs

B A. Gagen, S. Larson, Coupled oscillators

B W. Greiner, Classical mechanics systems of particles and Hamiltonian dynamics

B R. Haberman, Elementary applied PDEs with Fourier series and boundary value problems
3 F. John, PDEs

ﬁ M. Partnof, S. Richards, Basic coupled oscillator theory applied to the Wilberforce pendulum

B E. Zuazua Métodos numéricos de resolucién de ecuaciones en derivadas parciales
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