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Wave equation and its versions

Wave equation and its versions

The wave equation:
utt −∆u = 0,

where ut is the time derivative and ∆ is the Laplace operator.

It describes small vibrations of strings (n = 1), membranes (n = 2) and the potential of an
acoustic field (n = 3). Constant coefficients, i.e. homogeneous medium.

Helmholtz equation:
−∆u = λu.

Linear transport equation:
ut + b · ∇u = 0.

The wave equation can be written as a system of first-order equations:

ut = vx , vt = ux .

Liouville equation:
ut − div (bu) = 0.

Schrödinger equation of Quantum Mechanics whose solution u is a complex valued function:

iut + ∆u = 0.

The beam equation:
utt + ∆2u = 0.
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Wave equation and its versions

Wave equation and its versions

Other versions of the wave equations:

the telegraph equation
utt − uxx + d ut = 0

the Airy equation
ut + uxxx = 0

the Klein-Gordon equation
utt −∆u + u = 0.

The Lamé system modeling the vibrations of a 3− d elastic body is a coupled system of wave
equations in the unknown u = (u1, u2, u3):

utt − λ∆u − (λ+ µ)∇divu = 0

The Maxwell system describing the propagation of the electromagnetic field:

Et = rotB, Bt = −rotE , divB = divE = 0.

The Eikonal equation appears in the computations of the solutions of the wave equation in
Geometric Optics:

|∇u| = 1.

(FAU - AvH) Background on Fourier Analysis April 22, 2020 3 / 53



Wave equation and its versions

The Hamilton-Jacobi equation:
ut + H(∇u, u, ·) = 0.

The Korteweg-de Vries (KdV) equation is a non-linear version of Airy equation allowing the
analysis of the wave propagation in channels and produces solutions like the solitons:

ut + uux + uxxx = 0.

The Navier-Stokes equations for a homogeneous incompressible viscous flow appears in Fluid
Mechanics

ut −∆u + u · ∇u = ∇p, divu = 0

The Euler equations for perfect fluids, in which u is the velocity field and p is the pressure.

ut + u · ∇u = ∇p, divu = 0.

The viscous and inviscid Burgers equation:

ut + uux − uxx = 0, ut + uux = 0.

In the last one, the solutions could develop shock waves in finite time.
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Harmonic oscillator

Simple harmonic oscillator

Simple harmonic oscillator equation:

mx ′′ = −kx or mx ′′ + kx = 0. (1)

x = x(t) is the distance of the mass to the fixed point

m is the mass of the particle

k is the rigidity constant of the spring

x ′, x ′′ are the velocity/acceleration of the particle.

Set ω :=
√

k/m. Then (1) can be written as

x ′′(t) + ω2x(t) = 0, x(0) = x0, x ′(0) = x1. (2)

SOLUTION: x(t) =
1

2

(
x0 +

x1

iω

)
exp(iωt) +

1

2

(
x0 −

x1

iω

)
exp(−iωt) = x0cos(ωt) +

x1

ω
sin(ωt).

GENERAL SOLUTION: x(t) = cos(ωt + φ)

A is the amplitude of the oscillation

ω is the angular frequency; ν := ω/2π is the frequency

φ is the initial phase.

(2) is a second-order equation in time ⇒ two variables in the system:

the position of the mass, x = x(t)

the velocity v(t) := x ′(t) = −ωA sin(ωt + φ).
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Harmonic oscillator

The total energy e(t) := kinetic + potential = 1
2
|x ′(t)|2 + ω2

2
|x(t)|2 is conserved in time

Proof.

Multiply by x ′ in equation (2) ⇒ 0 =
(
x ′′ + ω2x

)
x ′ = d

dt

[
1
2
|x ′|2 + ω2

2
|x |2
]

= de
dt

(t).

The trajectory t → (x , x ′) describes the ellipse ω2x2 + y2 = r2 in the phase plane, where
y = x ′(t) and r2 = |x1|2 + ω2|x0|2.

Simple pendulum equation: x ′′(t) + ω2 sin(x(t)) = 0, where x(t) is the displacement angle from
the equilibrium, ω2 := g/l and l is the length of the pendulum arm.

Small oscillation assumption: If the oscillations about equilibrium are small, we expand sin(x(t))
in power series and keep only the first one, x(t). ⇒ simple harmonic oscillator.
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Harmonic oscillator

Harmonic oscillators in two dimensions

x′′(t) + ω
2
xx(t) = 0, y ′′(t) + ω

2
y y(t) = 0, x(0) = x0

, x′(0) = x1
, y(0) = y0

, y ′(0) = y1
.

ωx = ωy = ω ⇒ GENERAL SOLUTION: x(t) = A cos(ωt − α) and y(t) = B cos(ωt − β).

Set δ := α− β. Then B2x2 − 2AB cos(δ)xy + A2y2 = A2B2 sin2(δ) .

δ = ±π/2 ⇒ the trajectory (x, y) is the ellipse x2

A2 + y2

B2 = 1.

δ = 0 ⇒ the trajectory is the straight line Bx − Ay = 0.

δ = ±π ⇒ the trajectory is the straight line Bx + Ay = 0.

ωx 6= ωy ⇒ (x, y) is a Lissajous curve. It is closed iff ωx/ωy ∈ Q, otherwise is open and (x, y)(R+) is dense in
the rectangle.
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Harmonic oscillator

Let us consider two solutions x1(t) and x2(t) of the harmonic oscillator:

x1(t) := A1 exp(i(ω1t + φ1)) and x2(t) := A2 exp(i(ω2t + φ2)).

When ω1/ω2 ∈ Q ⇒ the superposition is a periodic movement of frequency ω = (ω1, ω2).

When ω1/ω2 ∈ R \ Q ⇒ the superposition of x1 and x2 has no temporal periodicity.

If the two frequency are close, i.e. ω2 = ω1 + ∆ω, then

x(t) := x1(t) + x2(t) = [A1 exp(iφ1) + A2 exp(i(φ2 + ∆ωt))] exp(iω1t) = A(t) exp(i(ω1t +φ(t))),

A(t) :=
√

A2
1 + A2

2 + 2A1A2 cos(φ1 − φ2 −∆ωt), tan(φ(t)) :=
A1 sinφ1 + A2 sin(φ2 + ∆ωt)

A1 cosφ1 + A2 cos(φ2 + ∆ωt)
.
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Harmonic oscillator

Damped harmonic oscillator

The damped harmonic oscillator equation

mx ′′ + Rx ′ + kx = 0, x(0) = x0, x ′(0) = x1. (3)

R > 0 is the mechanical resistence constant.

The general solution of (3) is a superposition of fundamental solutions obtained by solving the
characteristic equation

mλ2 + Rλ+ k = 0. (4)

Two roots

λ± =
−R ±

√
R2 − 4mk

2m
(5)

The solution

x(t) = α+ exp(tλ+) + α− exp(tλ−), α+ =
x1 − λ−x0

λ+ − λ−
, α− =

λ+x0 − x1

λ+ − λ−
.
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Harmonic oscillator

UNDERDAMPING. When 0 < R < 2
√
mk, λ± ∈ C of real part −R/2m. The solutions of

(3) are harmonic oscillations exponentially damped at rate R/2m:

x(t) = exp(−Rt/2m)
[
α+ exp(it

√
4mk − R2/2m) + α− exp(−it

√
4mk − R2/2m)

]
.

OVERDAMPING. When R > 2
√
mk, λ± ∈ R and the solution does not oscillate. The decay

rate of the solution of (3) is λ+:

x(t) = exp(−Rt/2m)
[
α+ exp(t

√
R2 − 4mk/2m) + α− exp(−t

√
R2 − 4mk/2m)

]
.

CRITICAL DAMPING. When R = 2
√
mk, λ+ = λ− and the fundamental solutions are

exp(−Rt/2m) and t exp(−Rt/2m):

x(t) = (α+ + α−t) exp(−Rt/2m) =
(
x0 + (x1 + Rx0/2m)t

)
exp(−Rt/2m).

The decay rate γ(R) is as follows:

γ(R) =


R

2m
, when 0 < R < 2

√
mk

R
2m
−
√

R2−4mk
2m

, when R > 2
√
mk.

Properties of the decay rate:

It is increasing when 0 < R < 2
√
mk and decreasing when R > 2

√
mk

Its maximum value is when R = 2
√
mk, for which γ =

√
k
m

. However, the maximal rate is

not attained since the solution involves a factor t.
When R →∞, the decay rate tends to zero. This phenomenon that, when R is larger than
the critical value 2

√
mk, the decay rate is decreasing is called overdamping.
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Harmonic oscillator

1 The three types of damped motion 2 Underdamping X (t) = A exp(−βt) cos(ωt)
24 1 : Second-order differential equations in the phase plane

Figure 1.17 (a) Typical time solution for weak damping. (b) Phase diagram for a stable spiral showing just one phase
path.

where Ā is the complex conjugate of A. Then (1.40) reduces to

x(t) = Ce−
1
2 kt cos {12

√
(−
)t + α};

C and α are real and arbitrary, and C > 0.
A typical solution is shown in Fig. 1.17(a); it represents an oscillation of frequency

(−
)
1
2 /(4π) and exponentially decreasing amplitude Ce− 1

2 kt . Its image on the phase plane
is shown in Fig. 1.17(b). The whole phase diagram would consist of a family of such spirals
corresponding to different time solutions.
The equilibrium point at the origin is called a stable spiral or a stable focus.

Critical damping (
 = 0)

In this case p1 = p2 = −1
2k, and the solutions are given by (1.41). The solutions resemble those

for strong damping, and the phase diagram shows a stable node.
We may also consider cases where the signs of k and c are negative:

Negative damping (k < 0, c > 0)

Instead of energy being lost to the system due to friction or resistance, energy is generated within
the system. The node or spiral is then unstable, the directions being outward (see Fig. 1.18).
A slight disturbance from equilibrium leads to the system being carried far from the equilibrium
state (see Fig. 1.18).

Spring with negative stiffness (c < 0, k takes any value)

The phase diagram shows a saddle point, since p1, p2 are real but of opposite signs.

Exercise 1.4
For the linear system ẍ − 2ẋ + 2x = 0, classify its equilibrium point and sketch the phase
diagram.

3 Phase portrait damped oscillator 4 (a) underdamping; (b) overdamping; (c) critical damping
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Harmonic oscillator

Oscillators with sinusoidal driven forces

x ′′(t) + 2βx ′(t) + ω2x(t) = A cos(ω̃t), x(0) = x0, x ′(0) = x1.

SOLUTION x(t) = general+particular := xg (t) + xp(t),

where xg (t) = exp(−βt)[C+ exp(t
√
β2 − ω2) + C− exp(−t

√
β2 − ω2)]

and xp(t) = C cos(ω̃t − δ).

xp(t) is a solution iff, for all t > 0,[
A− C

(
(ω2 − ω̃2) cos(δ) + 2ω̃β sin(δ)

)]
cos(ω̃t) = C

(
(ω2 − ω̃2) sin(δ)− 2ω̃β cos(δ)

)
sin(ω̃t).

Thus, tan(δ) =
2ω̃β

ω2 − ω̃2
, sin(δ) =

2ω̃β√
(ω2 − ω̃2)2 + 4ω̃2β2

, cos(δ) =
ω2 − ω̃2√

(ω2 − ω̃2)2 + 4ω̃2β2

and C =
A√

(ω2 − ω̃2)2 + 4ω̃2β2
.

C± are determined from the initial data, solving the system

C+ + C− = x0 − C cos(δ) and C+(−β +
√
β2 − ω2) + C−(−β −

√
β2 − ω2) = x1 − C ω̃ sin(δ),

so that C± =
1

2

(
x0 − C cos(δ)±

1√
β2 − ω2

(
x1 − C ω̃ sin(δ) + β(x0 − C cos(δ))

))
.
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Harmonic oscillator

Resonance phenomenon

For a fixed ω, as ω̃ increases from 0 to ∞, δ increases from 0 (for ω̃ = 0), to δ = π/2 (for ω̃ = ω) and
to δ = π (for ω̃ =∞).

xg (t) are transient effects that die out for t >> 1/β due to the effect of the damping factor exp(−βt).

xp(t) represents the steady state effects containing all the information maintained for large t.

ωd =
√
ω2 − β2 is the damping frequency.

For ω̃ < ωd , the transient response xg (t) greatly distorts the sinusoidal shape of the forcing function.

For ω̃ > ωd ⇒ little distortion of xp(t).

The amplitude C = C(ω̃) of xp(t) is maximized when ω̃ = ω̃r :=
√
ω2 − 2β2=resonant frequency.

ω > ωd > ω̃r , for all ω ∈ R and β > 0.

C(ω̃r ) =
A

2β
√
ω2 − β2

.

For ω2 ≥ 2β2, when the damping factor β → 0 ⇒ C(ω̃r )→∞ ⇒ x(t) blows-up.
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Harmonic oscillator

If neglected, resonances could produce real disasters...

Examples:

A crystal glass can be shattered by the right note.

Tacoma Narrows Bridge (Washington) (July-November 1940). It received the name
Galloping Gertie because of the vertical movement observed by construction workers during
windy conditions and collapsed in November 1940 under high wind.

Making a child swing to swing higher by pushing it at each swing.

Collapse of Broughton Suspension Bridge (1826-1831), due to soldiers walking in step.

Collapse of Königs Wusterhausen Central Tower (Germany) during the storm Quimburga in
November 1972.

Millenium Bridge, London.

Resonant rings.

Earthquakes. During the Mexico City earthquake in 1985, the majority of the many buildings
which collapsed during were around 20 stories tall. These 20 story buildings were in
resonance with the frequency of the earthquake. Other buildings, of different heights and
with different vibration characteristics, were often found undamaged, even though they were
located right next to the damaged 20 story buildings.
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Harmonic oscillator

Coupled oscillators

First example. Two mass points fixed to two walls by springs with stiffness constant k and coupled by a third
spring of stiffness kc . Problem. Find the general solution for the motion of the two masses whose positions are
x1(t) and x2(t).

We apply Newton’s second law to obtain two coupled second-order differential equations:

mx′′1 (t) + kx1(t)− kc (x2(t)− x1(t)) = 0, mx′′2 (t) + kx2(t)− kc (x1(t)− x2(t)) = 0,

with initial conditions x1(0) = x0
1 , x′1(0) = x1

1 , x2(0) = x0
2 and x′2(0) = x1

2 . We rewrite these equations as

x′′1 (t) +
k + kc

m
x1(t)−

kc

m
x2(t) = 0, x′′2 (t) +

k + kc

m
x2(t)−

kc

m
x1(t) = 0. (6)

To solve this system, we change the unknowns x1 and x2 by the normal coordinates q1 = x1 + x2 and
q2 = x1 − x2 solving the decoupled system

q′′1 (t) + ω
2
1q1(t) = 0, q′′2 (t) + ω

2
2q2(t) = 0, with ω1 =

√
k

m
and ω2 =

√
k + 2kc

m
,

so that q1(t) = C 1
1 cos(ω1t) + C 2

1 sin(ω1t) and q2(t) = C 1
2 cos(ω2t) + C 2

2 sin(ω2t),

with C 1
1 = x0

1 + x0
2 , C 2

1 =
x1

1 + x1
2

ω1
, C 1

2 = x0
1 − x0

2 , C 2
2 =

x1
1 − x1

2

ω2
.
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Harmonic oscillator

Fourier modes

System (6) can be written as X ′′ + AX = 0, where X = (x1, x2) and A =

( k+kc
m − kc

m

− kc
m

k+kc
m

)
.

Eigensolutions (λ, ϕ) of A:

λ = ω2
1 , ϕ = (1, 1)

λ = ω2
2 , ϕ = (1,−1).

Fourier modes:

Symmetric mode. If x1(0) = x2(0) = A and x′1(0) = x′2(0) = 0, then x1(t) = x2(t) = A cos(ω1t).

Anti-symmetric mode. If x1(0) = −x2(0) = A and x′1(0) = x′2(0) = 0, then x1(t) = −x2(t) = A cos(ω2t)

Second example. Two equal masses m, one coupled to a wall and another one coupled to the first one by
springs of rigidity k:

mx′′1 (t) + kx1(t)− k(x2(t)− x1(t)) = 0, mx′′2 (t) + k(x2(t)− x1(t)) = 0.

This system can be solved in terms of the Fourier modes:

λ = ω2
1 =

(√
5+1
2

√
k
m

)2
, ϕ = (1,−(

√
5− 1)/2).

λ = ω2
2 =

(√
5−1
2

√
k
m

)2
, ϕ = (1, (

√
5 + 1)/2).
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Harmonic oscillator

Wilberforce pendulum

Third example. The Wilberforce pendulum (spring) is a spectacular example of a system coupling
translational and rotational harmonic motion.

z measures the displacement from equilibrium in the vertical direction and θ is the rotation:

mz̈(t) + kz(t) +
1

2
εθ(t) = 0, I θ̈(t) + δθ(t) +

1

2
εz(t) = 0.

Set ω2
z := k/m and ω2

θ := δ/I

The two Fourier modes are:

Translational mode. λ = ω2
1 = 1

2

(
ω2
z + ω2

θ +
√

(ω2
z − ω2

θ)2 + ε2

mI

)
, ϕ = (1,

√
m/I )

Rotational mode. λ = ω2
2 = 1

2

(
ω2
z + ω2

θ −
√

(ω2
z − ω2

θ)2 + ε2

mI

)
ϕ = (1,−

√
m/I )
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The d’Alembert formula

The Cauchy problem for the 1 − d wave equation

The Cauchy problem associated to the 1− d wave equation:

utt − uxx = 0, x ∈ R, t > 0. (7)

D’Alembert observed that the solutions of (7) can be written as a superposition of solutions of
two transport equations, showing that the velocity of propagation is one:

u(x , t) = f (x + t) + g(x − t), (8)

To show that any solution of (7) is of the form (8) is sufficient to observe that the d’Alembert
operator ∂2

t − ∂2
x can be decomposed

∂2
t − ∂2

x := (∂t − ∂x ) (∂t + ∂x ) .

Introducing the auxiliary variable
v = (∂t + ∂x ) u, (9)

the wave equation can be written as

(∂t − ∂x ) v = vt − vx = 0,

whose solution is
v(x , t) = h(x + t).
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The d’Alembert formula

Equation (9) reduces to
ut + ux = h(x + t).

Observe that w(t) := u(t + x0, t) verifies the equation

w ′(t) = h(2t + x0),

whose solutions is (H being a primitive of h.)

w(t) =
H(2t + x0)

2
+ w(0) =

H(2t + x0)

2
+ u(x0, 0).

Since u(x , t) = w(t), with x0 = x − t we obtain an equivalent representation to (8):

u(x , t) =
H(x + t)

2
+ u(x − t, 0).

This formula allows to compute the unique solution of the Cauchy problem{
utt − uxx = 0, x ∈ R, t > 0
u(x , 0) = ϕ(x), ut(x , 0) = ψ(x), x ∈ R. (10)

using the d’Alembert formula

u(x , t) =
ϕ(x + t) + ϕ(x − t)

2
+

1

2

x+t∫
x−t

ψ(y) dy . (11)
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The Fourier transform

The Fourier transform

The Fourier transform in L1(Rn)

If f ∈ L1(Rn), its Fourier transform is defined as f̂ (ξ) := 1
(2π)n/2

∫
Rn

f (x) exp(−ix · ξ) dx

The inverse Fourier transform is defined as f̌ (x) := 1
(2π)n/2

∫
Rn

f (ξ) exp(iξ · x) dξ.

Plancherel-Parseval identities: For all f , g ∈ L1 ∩ L2(Rn),

(f̂ , ĝ)L2 = (f̌ , ǧ)L2 = (2π)n(f , g)L2 and ||f̂ ||L2 = ||f̌ ||L2 = (2π)d/2||f ||L2 .

The Fourier transform in L2(Rn)

For any f ∈ L2, there exists fk ∈ L2 ∩ L1(Rn) s.t. fk → f in L2(Rn). From the Parseval identity,

||f̂k − f̂l ||L2(Rn) = (2π)n/2||fk − fl ||L2(Rn), i.e. (f̂k )k is a Cauchy sequence in L2(Rn).

Thus f̂k → f̂ in L2(Rn) and f̂ is called the Fourier transform of f in L2(Rn).

Properties of the Fourier transform in L2(Rd ):

for all f , g ∈ L2(Rn), (f , ĝ)L2 = (f̂ , g)L2 .

D̂αf (ξ) = (iξ)α f̂ (ξ), for any index α s.t. Dαf ∈ L2(Rn).

f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ).̂̌f = f .
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The Fourier transform

Applications of the Fourier transform

Linear Schrödinger equation: iut + ∆u = 0, x ∈ Rn, t > 0, u(x, 0) = ϕ(x)

Set û(ξ, t)=the Fourier transform of u(x, t). It verifies

i ût − |ξ|2û = 0, ξ ∈ Rn
, t > 0, û(ξ, 0) = ϕ̂(ξ).

û(ξ, t) has the explicit expression û(ξ, t) = ϕ̂(ξ) exp(−i|ξ|2t). Then

u(x, t) =
1

(2π)n/2

∫
Rn

ϕ̂(ξ) exp(−i|ξ|2t) exp(iξ · x) dξ =
1

(4πit)n/2

∫
Rn

ϕ(y)exp(i|x − y |2/4t) dy .

Wave equation: utt −∆u = 0, x ∈ Rn, t > 0, u(x, 0) = u0(x), ut(x, 0) = u1(x)

û(ξ, t) verifies the equation ûtt + |ξ|2û = 0, ξ ∈ Rn, t > 0, û(ξ, 0) = û0(ξ) ût(ξ, 0) = û1(ξ) and has the
explicit expression (similar to d’Alembert formula)

û(ξ, t) =
1

2

(
û0(ξ) +

û1(ξ)

i|ξ|

)
exp(+it|ξ|) +

1

2

(
û0(ξ)−

û1(ξ)

i|ξ|

)
exp(−it|ξ|).

Telegraph equation: utt − uxx + 2dut = 0, x ∈ R, t > 0, u(x, 0) = u0(x), ut(x, 0) = u1(x)

û(ξ, t) verifies the equation ûtt + |ξ|2û + 2dût = 0, ξ ∈ R, t > 0, û(ξ, 0) = û0(ξ) ût(ξ, 0) = û1(ξ) and has
the explicit expression

û(ξ, t) =
∑
±

1

2

(
û0(ξ)±

dû0(ξ) + û1(ξ)√
d2 − |ξ|2

)
exp
(
t
(
− d ±

√
d2 − |ξ|2

))
.
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The Fourier transform

Wave equation in three dimensions

utt −∆u = 0, x ∈ R3
, u(x, 0) = u0(x), ut(x, 0) = u1(x).

Spherical means. U(x, t; r) :=
∮

∂B(x,r)

u(y , t) dσ(y), U(x, 0; r) := U0(x ; r), Ut(x, 0; r) := U1(x ; r).

∀x ∈ R3, U(x, t; r) verifies the Euler-Poisson-Darboux equation: Utt − Urr − 2
r Ur = 0, r , t ∈ R+.

Set Ũ = rU, which verifies the wave equation on the semiline: Ũtt − Ũrr = 0, r > 0, Ũ(x, t; 0) = 0.

Then Ũ(x, t; r) =
r

2
(U0(x ; r + t) + U0(x ; r − t)) +

1

2

r+t∫
r−t

r̃U1(x ; r̃) dr̃ .

and u(x, t) = lim
r→0

U(x, t; r) = lim
r→0

Ũ(x, t; r)

r
.

Kirchoff’s formula: u(x, t) =

∮
∂B(x,t)

(
tu1(y) + u0(y) +∇u0(y) · (y − x)

)
dσ(y).

Domain of dependence of u: the surface ∂B(x, t).
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The Fourier transform

Wave equation in two dimensions

utt −∆u = 0, x ∈ R2, u(x , 0) = u0(x), ut(x , 0) = u1(x).

Hadamard’s method of descent. ũ(x , x ′) = u(x), x ′ ∈ R, solves the 3− d wave equation
ũtt −∆ũ = 0, ũ(x , x ′, 0) = u(x , 0) = u0(x), ũt(x , x ′, 0) = ut(x , 0) = u1(x), which can be solved
by the previous spherical means method.

Poisson’s formula:

u(x , t) =
1

2

∮
B(x,t)

t2u1(y) + tu0(y) + t∇u0(y) · (y − x)

(t2 − |y − x |2)1/2
dy .
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The Fourier transform

Fourier series

Given a function f on x ∈ [−L, L], its Fourier series is

f (x) :=
∑
n≥0

an cos(nπx/L) +
∑
n≥1

bn sin(nπx/L),

where a0 =
1

2L

L∫
−L

f (y) dy , an =
1

L

L∫
−L

f (y) cos(nπy/L) dy and bn =
1

L

L∫
−L

f (y) sin(nπy/L) dy .

PROBLEMS:
Does the series on the RHS converge?
To f ?
At least

∫ L
−L f (y) dy should exist, so that one cannot compute Fourier series for f (x) = 1/x2.

Although f might not be periodic, its Fourier series is periodic of period 2L.

Definition

f is piecewise smooth if f and f ′ are piecewise continuous, i.e. f has a finite number of
discontinuities on (−L, L).

Theorem

For any piecewise smooth function f on x ∈ (−L, L), its Fourier series converges:

to the periodic extension of f , f̃ , when f̃ is continuous;

to the average (f (x+) + f (x−))/2 when f̃ has a jump discontinuity at x .
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The Fourier transform

Example 1. When f is the characteristic function of (L/2, L), a0 = 1/4, an = − sin(nπ/2)/(nπ) and
bn = (cos(nπ/2)− cos(nπ))/(nπ).

When f is an odd function on (−L, L), an = 0 for all n ≥ 0 ⇒ sine Fourier series.

Example 2. f (x) = 100 on x ∈ (0, L) and f (x) = −100 on x ∈ (−L, 0) ⇒ bn = 0 for even n and
bn = 400/(nπ) for odd n.

Gibbs phenomenon appears at the discontinuity points when the Fourier series approximates a discontinuous f .

Example 3. f (x) = x on x ∈ (−L, L) ⇒ bn = 2L(−1)n+1/(nπ).

Example 4. f (x) = cos(πx/L), x ∈ (0, L), and f (x) = − cos(πx/L), x ∈ (−L, 0) ⇒ bn = 0 for odd n and

bn = 4n/(π(n2 − 1)) for even n.

When f is an even function on (−L, L), bn = 0 for all n ≥ 1 ⇒ cosine Fourier series.

Example 5. f (x) = |x| on (−L, L) ⇒ a0 = L/2 and an = 2L((−1)n − 1)/(nπ)2.

The Fourier series of f is continuous on [−L, L] iff f is continuous and f (L) = f (−L).
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Wave equation on bounded domains

The 1 − d wave equation on an interval: Fourier method

Consider the 1− d wave equation describing the vibrations of a string of length π whose
endpoints are fixed: utt − uxx = 0, 0 < x < π, t > 0

u(0, t) = u(π, t) = 0, t > 0
u(x , 0) = u0(x), ut(x , 0) = u1(x), 0 < x < π.

(12)

To find the solutions of (12), we firstly write the Fourier series of the initial data:

u0(x) =
∞∑
k=1

ak sin(kx), u1(x) =
∞∑
k=1

bk sin(kx),

where the Fourier coefficients are as follows:

ak =
2

π

π∫
0

u0(x) sin(kx) dx and bk =
2

π

π∫
0

u1(x) sin(kx) dx .

The solution of (12) is defined as:

u(x , t) =
∞∑
k=1

uk (t) sin(kx). (13)

The Fourier coefficients of the solution at time t are given by

uk (t) = ak cos(kt) +
bk

k
sin(kt).
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Wave equation on bounded domains

The Fourier coefficients uk (t) obey the simple harmonic oscillator equation:

u′′k + k2uk = 0.

The energy of each of these Fourier coefficients is conserved in time:

ek (t) =
1

2

[
|u′k (t)|2 + k2|uk (t)|2

]
.

The conservation law E(t) = E(0) holds for the total energy of the solution u of (12):

E(t) =
1

2

π∫
0

[
|ux (x , t)|2 + |ut(x , t)|2

]
dx .

This total energy has two parts: potential and kinetic energies.
This conservation law can be proved by

Fourier series, by using the orthogonality of the trigonometric functions:

π∫
0

sin(kx) sin(jx)dx =
π

2
δjk ,

π∫
0

cos(kx) cos(jx) =
π

2
δjk ,

where δjk is the Kronecker delta, and the conservation of the energies ek for each k ≥ 1.

the energy method, by multiplying (12) by ut and integrating in x ∈ (0, π).
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Wave equation on bounded domains

The energy space is H := H1
0 (0, π)× L2(0, π) of norm

|(f , g)|H =
[
||f ||2

H1
0 (0,π)

+ ||g ||2
L2(0,π)

]1/2
:=

 π∫
0

(
f 2
x + g2

)
dx

1/2

.

Theorem

For any initial data (u0, u1) ∈ H there exists an unique solution (u, ut) ∈ C([0,∞);H) of (12).
This solution belongs to the class

u ∈ C
(
[0,∞); H1

0 (0, π)
)
∩ C1

(
[0,∞); L2(0, π)

)
and the corresponding energy E(t) is conserved in time.

The fact that the initial data belong to H1
0 (0, π)× L2(0, π) means

∞∑
k=1

[k2|ak |2 + |bk |2] <∞.

In fact

E(0) =
1

2

∫ π

0
[|u0

x (x)|2 + |u1(x)|2] dx =
π

4

∞∑
k=1

[k2|ak |2 + |bk |2] <∞.

The existence and uniqueness result Theorem 3 can be proved at least by three methods:
the method of Fourier series (the one we used)
semigroups theory
Galerkin methods.
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Wave equation on bounded domains

Fourier method for the wave equation in several space dimensions

The multi-dimensional wave equation on a bounded domain Ω utt −∆u = 0, x ∈ Ω, t > 0
u = 0, x ∈ ∂Ω, t > 0
u(x , 0) = u0(x), ut(x , 0) = u1(x), x ∈ Ω.

(14)

The corresponding spectral problem:{
−∆ϕ = λϕ en Ω
ϕ = 0 en ∂Ω.

(15)

The eigenvalues {λj}j≥1 in (15) constitute an increasing sequence of positive numbers

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ · · · → ∞.

The first eigenvalue is simple and the following one are repeated according to their multiplicity.
The sequence of eigenvectors {ϕj}j≥1 form and orthonormal basis in L2(Ω), i.e.∫

Ω

ϕjϕk dx = δjk . (16)

From (16) by multiplying the equation (15) corresponding to λk by ϕj and integrating in Ω, by
the Green formula we obtain the orthogonality of the eigenfunctions in H1

0 (Ω)∫
Ω

∇ϕj · ∇ϕkdx = λj

∫
Ω

ϕjϕkdx = λjδjk = λkδjk .
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Wave equation on bounded domains

We develop the initial data (u0, u1) in (27) as follows:

u0(x) =
∞∑
k=1

akϕk (x) and u1(x) =
∞∑
k=1

bkϕk (x). (17)

and look for the solution u of (27) in the form

u(x , t) =
∞∑
k=1

uk (t)ϕk (x).

Remark that the coefficients {uk} solve the harmonic oscillator equation:

u′′k (t) + λkuk (t) = 0, t > 0, uk (0) = ak , u′k (0) = bk ,

and then

uk (t) = ak cos
(√

λk t
)

+
bk√
λk

sin
(√

λk t
)
.

The solution u of (27) admits the Fourier representation

u(x , t) =
∞∑
k=1

(
ak cos

(√
λk t
)

+
bk√
λk

sin
(√

λk t
))

ϕk (x).

In the 1− d case, the eigenvalues and eigenvectors of the Laplacian on Ω = (0, π) are

λk = k2, k ≥ 1; ϕk (x) =

√
2

π
sin(kx), k ≥ 1.

(FAU - AvH) Background on Fourier Analysis April 22, 2020 30 / 53



Wave equation on bounded domains

Rectangular and circular membranes

When Ω is the rectangle Ω := [0, L]× [0,H], λm,n := (mπ/L)2 + (nπ/H)2 and
ϕm,n(x, y) := 2 sin(mπx/L) sin(nπy/H).

When Ω is the disc of radius a, λ and ϕ(x, y) = ϕ(r , θ) = f (r)g(θ) are related to the Bessel functions.

g satisfies the problem

g ′′(θ) + µg(θ) = 0 and periodic boundary conditions g(π) = g(−π), g ′(π) = g ′(−π),

so that µ = m2, m ∈ N, g(θ) = sin(mθ) or g(θ) = cos(mθ).

f satisfies the problem

r2f ′′(r) + rf ′(r) + (λr2 − m2)f (r) = 0, f (a) = 0, |f (0)| <∞.

f (r) = f̃ (z), with z =
√
λr ⇒ z2 f̃ ′′(z) + zf̃ ′(z) + (z2 −m2)f̃ (z) = 0. Then f̃ (z) = c1Jm(z) + c2Ym(z),

where Jm and Ym are Bessel functions of first/second kind of order m:

Jm(z) =
∞∑
α=0

(−1)α

α!Γ(α + m + 1)
(z/2)2α+m =

1

π

π∫
0

cos(my − z sin(y)) dy

and Ym(z) =
1

π

π∫
0

sin(z sin(y)− my) dy .

The eigenvalue λ is a solution of Jm(
√
λa) = 0. zmn:=the n-th zero of Jm ⇒ λmn = (zmn/a)2.

More complex domains ⇒ domain decomposition methods.
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Wave equation on bounded domains
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Wave equation on bounded domains

Tools to highlight the vibrational modes

Cymatics (from Greek word for wave) is the study of visible sound and vibration, a subset of modal
phenomena. Typically the surface of a plate, diaphragm or membrane is vibrated and regions of maximum
and minimum displacement are made visible in a thin coating of particles, paste, or liquid. Different
patterns emerge in the medium depending on the geometry of the plate and the driving frequency.

Chladni patterns. One of Chladni’s (1756-1827) best-known achievements was to invent a technique to
show the various modes of vibration of a rigid surface. A plate or membrane vibrating at resonance is
divided into regions vibrating in opposite directions, bounded by lines of zero vibration called nodal lines.

Rubens tube. Invented by Heinrich Rubens (1865-1922). A pipe is perforated periodically and sealed at
both ends. One seal is attached to a frequency generator, the other to a supply of a flammable gas. The
pipe is filled with the gas, and the gas leaking from the perforations is lit. The flame height is proportional
to the gas flow. Based on Bernoulli’s principle, the gas flow is proportional to the square root of the
pressure difference between the inside and outside of the tube. Where there is oscillating pressure due to
the sound waves, less gas will escape from the perforations in the tube, and the flames will be lower at
those points. At the pressure nodes, the flames are higher.

Wave pendulum.

Interferometry.
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Wave equation on bounded domains

The total energy of the solutions of the simple wave equation is also conserved in time:

E(t) =
1

2

∫
Ω

[
|∇u(x , t)|2 + |ut(x , t)|2

]
dx

The energy space is: H = H1
0 (Ω)× L2(Ω).

Theorem

For any (u0, u1) ∈ H1
0 (Ω)× L2(Ω), there exists an unique solution (u, ut) ∈ C([0,∞);H) of (27),

i.e.
u ∈ C

(
[0,∞);H1

0 (Ω)
)
∩ C1

(
[0,∞); L2(Ω)

)
whose energy E(t) is conserved in time.

The regularity of u in Theorem 4 and the fact that the Laplace operator with homogeneous
Dirichlet boundary conditions is an isomorphism between H1

0 (Ω) and H−1(Ω) allows to conclude
that u ∈ C2

(
[0,∞);H−1(Ω)

)
. In this way, equation (27) makes sense in H−1(Ω) for any t > 0.
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Wave equation on bounded domains

Extensions and limitations of the Fourier method

The Fourier method can be apply to other situations:

Neumann or mixed boundary conditions

more general wave equations involving variable coefficients:

ρ(x)utt − div(a(x)∇u) + q(x)u = 0,

where ρ, a and q are measurable and bounded functions and ρ and a are uniformly positive,
i.e. there exist ρ0, a0 > 0 such that

ρ(x) ≥ ρ0, a(x) ≥ a0, a.e. x ∈ Ω.

Limitations of the Fourier method:

nonlinear equations

equations with coefficients depending on both x and t.
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Fourier series as numerical method

Fourier series as numerical method

The solution of the wave equation (27) can be expressed as

u(x , t) =
∞∑
k=1

[
ak cos

(√
λk t
)

+
bk√
λk

sin
(√

λk t
)]
ϕk (x), (18)

where {ϕk}k>1 and {λk}k>1 are the eigenvalues and eigenfunctions of the Laplacian.
The energy below is conserved along the trajectories:

E(t) =
1

2

∫
Ω

[
|∇u(x , t)|2 + |ut(x , t)|2

]
dx ,

so that the energy of the initial data is

E(0) =
1

2

∞∑
k=1

[
λk |ak |2 + |bk |2

]
. (19)

The hypothesis that the initial data (u0, u1) ∈ H1
0 (Ω)× L2(Ω) is of finite energy is equivalent to

the fact that the sequences
{
ak
√
λk
}

and {bk} belong to `2.

It seems natural to construct a numerical approximation of the solution of the wave equation in
the form

uN(x , t) =
N∑

k=1

[
ak cos(

√
λk t) +

bk√
λk

sin(
√
λk t)

]
ϕk (x).
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Fourier series as numerical method

To prove that uN is an approximation of the solution u of (27), we consider the difference

εN := u − uN =
∑

k>N+1

[
ak cos(

√
λk t) +

bk√
λk

sin(
√
λk t)

]
ϕk (x).

Due to the orthogonality of the eigenvectors,

||∇εN(t)||2
L2(Ω)

=
∑

k>N+1

λk

[
ak cos(

√
λk t) +

bk√
λk

sin(
√
λk t)

]2
6

∑
k>N+1

[
λk |ak |2 + |bk |2

]
.

Due to the boundedness of the series representing E(0) in (19), we conclude

uN(t)→ u(t) in C
(
[0,∞);H1

0 (Ω)
)

as N →∞. (20)

By the same arguments,

uN,t → ut(t) in C
(
[0,∞); L2(Ω)

)
as N →∞. (21)

From (20)-(21) ⇒ convergence in the energy space H := H1
0 (Ω)× L2(Ω) uniformly in t > 0.

CONVERGENCE RATES?!?

The previous argument does not provide any information in this sense, since the convergence
of the series E(0) in (19) does not allow to determine the order of convergence of the
truncations.

Take more regular initial data in (27), (u0, u1) ∈
[
H2 ∩ H1

0 (Ω)
]
× H1

0 (Ω).
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Fourier series as numerical method

When (u0, u1) ∈
[
H2 ∩ H1

0 (Ω)
]
× H1

0 (Ω), we have

||(u0
, u1)||

H2∩H1
0
×H1

0
:=
∑
k>1

[
λ

2
k |ak |

2 + λk |bk |
2
]
<∞.

On the other hand, we know the norm equivalence:

||∆ϕ||
L2(Ω)

≈ ||ϕ||
H2(Ω)

, for any ϕ ∈ H2 ∩ H1
0 (Ω),

which holds due to classical elliptic regularity results in the Dirichlet problem for the Laplace operator: if the domain Ω is of class
C2 and f ∈ L2(Ω), then the solution u the following problem belongs to H2 ∩ H1

0 (Ω):

−∆u = f , x ∈ Ω, u = 0, x ∈ ∂Ω.

On the other hand, ∫
Ω

∆ϕk∆ϕj dx = λ
2
kδj,k ,

so that
||∆u0||2

L2(Ω)
=
∑
k>1

λ
2
k |ak |

2
.

The additional regularity of the initial data (u0, u1) ∈ H2 ∩ H1
0 (Ω)× H1

0 (Ω) and the increasing character of {λk} imply:

||∇εN (t)||2
L2 , ||∂tεN (t)||2

L2 6 2
∑

k>N+1

[
λk |ak |

2 + |bk |
2
]
6 2

∑
k>N+1

1

λk

[
λ

2
k |ak |

2 + λk |bk |
2
]

6
2

λN+1

∑
k>N+1

[
λ

2
k |ak |

2 + λk |bk |
2
]
6

C

λN+1

||(u0
, u1)||2

H2∩H1
0
×H1

0
.
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Fourier series as numerical method

Conclusion:

||u − uN ||L∞(0,∞;H1
0 (Ω))∩W 1,∞(0,∞;L2(Ω)) ≤

C√
λN+1

||(u0, u1)||H2∩H1
0 (Ω)×H1

0 (Ω).

Weyl Theorem on the asymptotic distribution of the eigenvalues of the Laplace operator:

λN ∼ c(Ω)N2/n as N →∞.

Theorem

For any (u0, u1) ∈ H2 ∩ H1
0 × H1

0 (Ω) initial data in (27), uN converges to u in the energy space

H := H1
0 × L2(Ω) uniformly in t ≥ 0 at order O

(
N−1/n

)
.

The regularity hypothesis (u0, u1) ∈ H2 ∩ H1
0 × H1

0 (Ω) is not the only possible one!

The Fourier approximation method is useful in the following cases:

1− d , when one compute explicitly the spectrum of the Laplacian.
to compute the Fourier coefficients of the initial data, one can apply quadrature formulas.
several space dimensions when Ω is the square or the circle.

The Fourier approximation method is difficult to be applied in the following cases:

several space dimensions on complex domains Ω (union of square+circle⇒domain
decomposition methods)
nonlinear equations or variable coefficients depending on both (x , t)

Other approximation methods which have not these limitations:

finite differences, finite elements, finite volumes.
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Dissipative wave equation

Damped wave equation

Initial boundary value problem for the damped wave equation in the bounded domain Ω ⊂ Rn,
with a > 0:  utt −∆u + aut = 0 in Ω× (0,∞)

u = 0 in ∂Ω× (0,∞)
u(x , 0) = u0(x), ut(x , 0) = u1(x) in Ω.

(22)

Writing this equation like utt −∆u = −aut , we see that −aut is a force acting on the whole Ω at
any time t > 0.
To determine the solution of (22) using the Fourier method, we firstly develop the initial data in
Fourier series:

u0(x) =
∞∑
k=1

akϕk (x) and u1(x) =
∞∑
k=1

bkϕk (x).

We look for a solution u of (22) as follows:

u(x , t) =
∞∑
k=1

uk (t)ϕk (x), (23)

where uk (t) is solution for the damped harmonic oscillator:

u′′k (t) + λkuk (t) + au′k (t) = 0, t > 0, uk (0) = ak , u′k (0) = bk . (24)

The characteristic polynomial associated to (24) is µ2 + λk + aµ = 0 and its roots are

µ±k =
−a±

√
a2 − 4λk

2
.
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Dissipative wave equation

The solution of (24) is given by

uk (t) = α+ exp(µ+
k t) + α− exp(µ−k t).

The constants α± are so that

α+ + α− = ak and µ+
k α+ − µ−k α− = bk .

When a2 = 4λk the solution of (24) is

uk (t) = α exp(−at/2) + βt exp(−at/2),

with
α = ak and −

a

2
α+ β = bk .

The energy of the solution of (22),

E(t) =
1

2

∫
Ω

[
|∇u(x , t)|2 + |ut(x , t)|2

]
dx ,

is decreasing in time. By multiplying by ut in (22), we obtain the dissipation law of the energy:

dE

dt
(t) = −a

∫
Ω

|ut(x , t)|2 dx .
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Dissipative wave equation

Decay rate of the energy by the Fourier method

From the orthogonality properties of the eigenvectors ϕk , we obtain the following Fourier
representation of the energy:

E(t) =
∞∑
k=1

ek (t), with ek (t) =
1

2

[
|u′k (t)|2 + λk |uk (t)|2

]
.

Each ek satisfies the decay property:

ek (t) 6 Cek (0)e−ωk t ,

where C > 0 does not depend on k and on the data (u0, u1) and ωk is the exponential decay rate
of the k-th Fourier component:

ωk =


a−
√

a2−4λk
2

, a2 > 4λk

a
2
, a2 < 4λk .

When a2 = 4λk , the decay law of the Fourier component is

ek (t) 6 Cek (0)t exp(−ωk t),

with ωk = a/2.
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Dissipative wave equation

The exponential decay of the energy

In conclusion,
E(t) 6 CE(0) exp(−ωt),

with

ω = ω(a) :=


a
2

a2 < 4λ1,

a−
√

a2−4λ1
2

a2 > 4λ1,

When a2 = 4λ1, the decay result of the energy is slightly different:

E(t) 6 CE(0)t exp
(
−

a

2
t
)
.

The function ω(a) has the following monotonicity properties:

linearly increasing for a ∈ [0, 2
√
λ1].

decreasing for a > 2
√
λ1.

ω(a)→ 0 as a→∞.

The maximal decay rate is attained when a = 2
√
λ1 ⇒ overdamping

When the initial data (u0, u1) involves only high frequency Fourier components for which
4λk > a2, then the exponential decay rate is simply a/2.
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Dissipative wave equation

Remedies for the overdamping

For the heat equation with potential ut −∆u + au = 0 Ω× (0,∞),
u = 0 ∂Ω× (0,∞)
u(x , 0) = u0(x) Ω,

(25)

the decay of the energy is exponential for any a > 0

||u(t)||L2(Ω) 6 exp
(
−

(λ1 + a)

2
t
)
||u0||L2(Ω).

For the heat equation there is no overdamping since it is a first-order equation in time, while the
wave equation is second-order in time, having two unknowns, u and ut :

ut = v , vt = ∆u − av .

The fact that there is only one dissipative potential in the second equation produces overdamping.
Remedy: Use two potentials a > 0 and b > 0 affecting both ut and u: utt −∆u + aut + bu = 0 Ω× (0,∞)

u = 0 ∂Ω× (0,∞)
u(0) = u0, ut(0) = u1 Ω.

(26)

The energy is given by

Eb(t) =
1

2

∫
Ω

[
|ut(x , t)|2 + |∇u(x , t)|2 + bu2(x , t)

]
dx

and satisfies the decay property dEb
dt

(t) = −a
∫
Ω

u2
t (x , t) dx .
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Dissipative wave equation

The Fourier coefficients uk (t) in (23) satisfy the damped harmonic oscillator:

u′′k (t) + (λk + b)uk (t) + au′k (t) = 0.

In this case, the roots of the characteristic polynomial are of the form:

µk± =
−a±

√
a2 − 4(λk + b)

2
.

For any a > 0, we can choose b > 0 sufficiently large so that

a2 < 4(λ1 + b).

In that case, each Fourier component decay exponentially at rate −a/2. Then

Eb(t) 6 CEb(0) exp
(
−

a

2
t
)
.

Similar analysis when passing to the limit as ε→ 0 from the dissipative wave equation

εutt −∆u + ut = 0

to the heat equation
ut −∆u = 0.
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Semigroups theory for the wave equation

Semigroup theory for the wave equation

The initial boundary value problem for the wave equation in the open bounded domain Ω ⊂ Rn
utt − ∆u = 0 Ω× (0,∞)

u = 0 ∂Ω× (0,∞)

u(x, 0) = u0, ut (x, 0) = u1(x) Ω
(27)

To apply the semigroup theory, it is convenient to write (27) as a first-order system:{
ut = v
vt = ∆u.

(28)

The unknown contains two components, position and velocity: U = (u, v) = (u, ut ).
With this notation, U verifies the system

Ut = AU, U(0) = U0 := (u0
, u1), (29)

where A is the linear operator

A :=

(
0 I
∆ 0

)
.

The natural space to solve the wave equation (28) is the energy space H := H1
0 (Ω)× L2(Ω) since:

it is the space where the energy below is conserved in time

E(t) :=
1

2

∫
Ω

[
|∇u(x, t)|2 + |ut (x, t)|2

]
dx

the boundary condition u = 0 in ∂Ω requires u ∈ H1(Ω) vanishing on ∂Ω, i.e. u ∈ H1
0 (Ω).

(FAU - AvH) Background on Fourier Analysis April 22, 2020 46 / 53



Semigroups theory for the wave equation

The domain of the operator A

The norm in H is
||(f , g)||H :=

[
||f ||2

H1
0 (Ω)

+ ||g ||2
L2(Ω)

]1/2
,

where

||f ||H1
0 (Ω) =

[ ∫
Ω
|∇f |2 dx

]1/2
and ||g ||L2(Ω) =

[ ∫
Ω
|g |2 dx

]1/2
.

The domain D(A) ⊂ H of the operator A is defined as D(A) := {V ∈ H s.t. AV ∈ H}.
A is a linear unbounded operator A : D(A)→ H. More precisely,

D(A) := {(u, v) ∈ H1
0 (Ω)× L2(Ω) s.t. v ∈ H1

0 (Ω) and ∆u ∈ L2(Ω)}

or D(A) := {(u, v) ∈ H1
0 (Ω)× H1

0 (Ω) s.t. ∆u ∈ L2(Ω)}.
When Ω is of class C2 or a convex domain, the classical result of elliptic regularity guarantees

that D(A) =
[
H2(Ω) ∩ H1

0 (Ω)
]
× H1

0 (Ω).

The operator A is anti-adjoint, i.e. A∗ = −A.

To prove this, we use the fact that the Laplace operator ∆ : H2(Ω) ∩ H1
0 (Ω)→ L2(Ω) is

anti-adjoint. Indeed, for any U, Ũ ∈ D(A),(
AU, Ũ

)
H

=
(
v , ũ
)
H1

0 (Ω)
+
(

∆u, ṽ
)
L2(Ω)

=

∫
Ω

[
∇v · ∇ũ + ∆uṽ

]
dx = −

∫
Ω

[
v∆ũ +∇u · ∇ṽ

]
dx

= −
(
U,AŨ

)
H
.
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Semigroups theory for the wave equation

Hille-Yosida Theorem

Types of solutions for the abstract equation (29)

strong solutions, i.e. U ∈ C([0,∞);D(A)) ∩ C1([0,∞);H). For the wave equation, this
means u ∈ C([0,∞);H2 ∩ H1

0 (Ω)) ∩ C1([0,∞);H1
0 (Ω)) ∩ C2([0,∞); L2(Ω))

weak solutions which are less regular, in the sense of distributions, i.e. U ∈ C([0,∞);H) or,
for the wave equation u ∈ C([0,∞);H1

0 (Ω)) ∩ C1([0,∞); L2(Ω)). Since u is solution of the
wave equation, it has the additional regularity u ∈ C2([0,∞);H−1(Ω)).

ultra-weak solutions are much less regular. For the wave equation, they belong to the class
u ∈ C([0,∞); L2(Ω)) ∩ C1([0,∞);H−1(Ω)) ∩ C2([0,∞); [H2 ∩ H1

0 (Ω)]′).

Definition

A linear and unbounded operator A : D(A) ⊂ H → H is called

dissipative if (AU,U)H 6 0 for all U ∈ D(A).

maximal dissipative if, moreover, it satisfies
R(I − A) = H ⇔ ∀F ∈ H, ∃U ∈ D(A) s.t. U − AU = F .

Theorem (Hille-Yosida Theorem)

Let A be a maximal dissipative operator in a Hilbert space H. Then, for any U0 ∈ D(A), there
exists an unique solution of (29), U ∈ C([0,∞);D(A)) ∩ C1([0,∞);H). Moreover, for any t > 0,

||U(t)||H 6 ||U0||H and
∣∣∣∣∣∣dU

dt
(t)
∣∣∣∣∣∣
H

= ||AU(t)||H 6 ||AU0||H .
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Semigroups theory for the wave equation

Strong and weak solutions for the wave equation

Strong solutions: H := H1
0 × L2(Ω), D(A) := [H2 ∩ H1

0 ]× H1
0 (Ω)

A is dissipative. Since A is anti-adjoint, (AU,U)H = −(AU,U)H and then (AU,U)H = 0 for
any U ∈ D(A). In fact, when (AU,U)H = 0, the energy ||U(t)||2H/2 of the solution of (29) is
conserved in time.
A is maximal. For any F = (f , g) ∈ H i.e. f ∈ H1

0 (Ω) and g ∈ L2(Ω), there exists at least a
solution U = (u, v) ∈ D(A) = (H2 ∩ H1

0 )× H1
0 (Ω) of (I − A)U = F . More precisely, (u, v)

satisfy u − v = f and v −∆u = g . Since v = u − f , then

u −∆u = g + f , x ∈ Ω, u = 0, x ∈ ∂Ω. (30)

Since f + g ∈ L2(Ω), classical results of existence, uniqueness and regularity results for the
Dirichlet problem (30) guarantee that (30) has an unique solution u ∈ H2 ∩ H1

0 (Ω). Since
f ∈ H1

0 (Ω) and u ∈ H2 ∩ H1
0 (Ω), then v = u − f ∈ H1

0 (Ω).

Theorem

If Ω is a bounded domain of class C2, for any data (u0, u1) ∈ [H2 ∩H1
0 (Ω)]×H1

0 (Ω), (27) has an
unique solution u ∈ C([0,∞);H2 ∩ H1

0 (Ω)) ∩ C1([0,∞);H1
0 (Ω)) ∩ C2([0,∞); L2(Ω)).

Weak solutions: H := L2 × H−1(Ω), D(A) := H1
0 × L2(Ω)

Theorem

If Ω is a bounded domain of class C2, for any data (u0, u1) ∈ H1
0 (Ω)× L2(Ω), the wave equation

(27) has an unique solution u ∈ C([0,∞);H1
0 (Ω) ∩ C1([0,∞); L2(Ω)) ∩ C2([0,∞);H−1(Ω)).
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Semigroups theory for the wave equation

Obtain weak solution from strong solutions

Suppose U(t) is the solution of (29) with data U0 ∈ H. Then U(t) = U0 + A
t∫

0

U(s) ds.

Set V (t) = V 0 +
t∫

0

U(s) ds.

Then Vt = AV + U0 − AV 0, V (0) = V 0.

If AV 0 = U0 would have an unique solution V 0 ∈ D(A), then V (t) would be the solution of (29)
with data V 0 ∈ D(A).

According to Hille-Yosida Theorem, (29) with initial data V 0 ∈ D(A) has an unique solution
V ∈ C([0,∞);D(A)) ∩ C1([0,∞);H) and then U = Vt ∈ C([0,∞);H).

Given U0 ∈ H, does there exist an unique solution V 0 ∈ D(A) of AV 0 = U0? Maximality does
not guarantee this, since only I − A is a full rank operator.

Set W (t) = exp(λt)U(t), which solves the equation

Wt = AW + λW , t > 0, W (0) = U0. (31)

U is a weak (strong) solution of (29) iff W is a weak (strong) solution of (31).

Set λ = −1 and Ṽ (t) = Ṽ 0 +
t∫

0

W (s) ds.

Then Ṽt = AṼ + U0 − (AṼ 0 − Ṽ 0), Ṽ (0) = Ṽ 0.

If (A− I )Ṽ 0 = U0 would have an unique solution Ṽ 0 ∈ D(A), then Ṽ (t) would be the solution of

(29) with data Ṽ 0 ∈ D(A). But now A− I is a full rank operator, so that for any U0 ∈ H, the

equation (A− I )Ṽ 0 = U0 has an unique solution.
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Semigroups theory for the wave equation

Generator of a semigroup

Connection between the semigroups and Fourier theories

Strong solutions: D(A) = [H2 ∩ H1
0 ]× H1

0 =
{

(ak , bk )k s.t.
∞∑
k=1

[λ2
k |ak |

2 + λk |bk |2] <∞
}
.

Weak solutions: D(A) = H1
0 × L2 =

{
(ak , bk )k s.t.

∞∑
k=1

[λk |ak |2 + |bk |2] <∞
}

Ultra-weak solutions: D(A) = L2 × H−1 =
{

(ak , bk )k s.t.
∞∑
k=1

[|ak |2 + λ−1
k |bk |

2] <∞
}

.

When A is a maximal-dissipative operator, it is the generator of a semigroup S(t) : H → H
associating to any U0 ∈ H, the solution U(t) = S(t)U0 = exp(At)U0 of (29) at time t > 0.

The semigroup {S(t)}t>0 = {exp(At)}t>0 is an one-parameter family of linear bounded
operators.

The semigroup S(t) generated by a maximal-dissipative operator A is a contraction, for any t > 0.

Moreover, any semigroup S(t) verifies the following properties:

S(0) = I ,

t → S(t)U0 is continuous from [0,∞) in H for any U0 ∈ H

S(t) ◦ S(s) = S(t + s).
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Semigroups theory for the wave equation

Semigroup theory applied to variable coefficients, nonlinear equations

Consider the non-homogeneous wave equation utt −∆u = f (x , t) ∈ Ω× (0,∞)
u = 0 (x , t) ∈ ∂Ω× (0,∞)
u(0) = u0, ut(0) = u1 x ∈ Ω.

(32)

Examples:
f = f (x , t) an external force;
f = p(x , t)u(x , t) ⇒ wave equation with potential;
f = f (u) ⇒ semilinear wave equation; e.g. f (u) = |u|p−1u.

Problem (32) can be written as ut = v , vt = ∆u + f or, in a more abstract form (F = (0, f ))

Ut = AU + F , t > 0, U(0) = U0. (33)

(33) can be solved by the variation of constant formula:

U(t) = S(t)U0 +

∫ t

0
S(t − s)F (s)ds. (34)

F ∈ L2(0,T ;D(A)) ⇒ S(t − s)F (s) ∈ L1(0, t;D(A)). Indeed, Hille-Yosida Theorem implies
||S(t − s)F (s)||H 6 ||F (s)||H and AS(t − s)F (s)||H 6 ||AF (s)||H . Thus∫ t

0
S(t − s)F (s) ds ∈ C([0,T ];D(A)).

(33) has a strong solution U ∈ C([0,∞);D(A)) ∩ C1([0,∞);H) if F ∈ C([0,T ];H) implying∫ t

0
S(t − s)F (s) ds ∈ C1([0,T ];H).
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Semigroups theory for the wave equation

Some related bibliography

L. Evans, PDEs

A. Gagen, S. Larson, Coupled oscillators

W. Greiner, Classical mechanics systems of particles and Hamiltonian dynamics

R. Haberman, Elementary applied PDEs with Fourier series and boundary value problems

F. John, PDEs

M. Partnof, S. Richards, Basic coupled oscillator theory applied to the Wilberforce pendulum

E. Zuazua Métodos numéricos de resolución de ecuaciones en derivadas parciales
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