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Abstract—This paper aims to be an extension of the previously
published work Analisys of the suitability of using blind
crossover operators in genetic algorithms for solving routing
problems”. In that paper is shown that the crossover operator
offers no advantage in the optimization process of the genetic
algorithms when they are applied to routing problem. In this next
step of the research we reinforce that hypothesis. For this purpose,
we have conducted a new analysis of the results, and we make a
new experimentation with two different vehicle routing problems,
the Capacitated Vehicle Routing Problem and the Vehicle Routing
Problem with Backhauls.

Keywords—Genetic Algorithm, Crossover Operator, Combinato-
rial Optimization, Routing Problems.

I. INTRODUCTION

ENETIC algorithms (GA) are one of the most successful

meta-heuristics for solving combinatorial optimization
problems. GAs were proposed in an attempt to imitate the
genetic process of living organisms and the law of the evolution
of species. The basic principles of GAs were proposed by
Holland [1], even though its practical use for solving complex
problems was shown by De Jong [2] and Goldberg [3]. Every
year, GAs are the focus of a large number of books and papers
[4, 5], and they have been applied in a wide range of fields,
as industry [6], transport [7], and software engineering [8].

Although the conventional structure of a basic genetic
algorithm is well defined, there are some works in the literature
which have analyzed the suitability of the different parts of the
GAs. The paper presented by Osaba et al. [9] is one example
of this kind of works. In that contribution, authors demonstrate
the inefficiency of one of the central steps of a GA, when it is
applied to routing problems. This step is the crossover (CX).
To prove their hypothesis, authors perform an experiment in
which they compare the results and times obtained by using
the same GA, but with different CX, with the results obtained
by an evolutionary algorithm which performs no CX phase.
The problem used in this work is the well-known Traveling
Salesman Problem (TSP) [10].

This present paper is a continuation of that work, and our
objective is to reinforce the hypothesis proposed by Osaba et
al. in [9]. To achieve this objective, we conduct a new analysis
of the results presented in [9], performing a statistical analysis
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of them. Furthermore, we present a new experimention with
two additional routing problems, in order to demonstrate that
the hypothesis is also satisfied for them. These problems are
the Capatitated Routing Problem (CVRP) [11] and the Vehicle
Routing Problem with Backhauls (VRPB) [12].

The rest of the paper is structured as follows. In Section 2
we perform a new statistical analysis of the results presented in
[9]. In Section 3 we show the new experimentation conducted.
Finally, we finish this work with the conclusions of the study.

II. STATISTICAL ANALYSIS OF THE EXISTING RESULTS

First of all, the hypothesis proposed by Osaba et al., which
we try to reinforce, is the following:

”Crossover phase of the genetic algorithms is not efficient
for the search process and the capacity of optimization of the
technique when it is applied to routing problems using path
encoding”.

In [9], authors verify this hypothesis, conducting an exper-
imentation with the TSP and different implementations of the
classical GA. In that experimentation, six different versions
of the GA are used, using different CX functions such as the
Order Crossover (OX) [13], Modified Order Crossover (MOX)
[14], Half Crossover (HX) [9] and Order Based Crossover
(OBX) [15], and different survivors selection functions, such
as the 100% elitist or the 50% elitist - 50% random. The results
obtained by these six GAs are compared with an Evolutionary
Algorithm (EA) which focuses its execution only in the process
of mutation and survivors selection. The characteristics of the
algorithms used are as follows, listed by their CX function,
crossover and mutation probability (p. and m,,), and survivor
selection function:

e (GAy,: OX function, p.= 100%, p,,= 100%, 100%

elitist.

e GAys: MOX function, p.= 100%, p.,,= 100%, 100%
elitist.

e (GAys: OBX function, p.= 100%, p,,= 100%, 100%
elitist.

e GAy4: HX function, p.= 100%, p,,= 100%, 100%
elitist.

e (GAys: OX function, p.= 90%, p,,= 5%, 100% elitist.

e (GAyg: OX function, p.= 90%, p,,= 5%, 50% elitist -

50% random.
e FEA: No Cx function, p.= 0%, p,,= 100%, 100% elitist.



The mutation function for every approach is the well-known
2-opt [16], which has been very used since its formulation [17-
19].

In [9], the results between different approached are com-
pared by their average and the deviation between these aver-
ages. In this work, we compare these same results statistically,
performing the Student’s ¢-test. This way, we could determine
if the results shown are significantly different.

In the Table I, we show the results obtained by Osaba et al.
in [9]. We display the total average and the standard deviation
for each instance. All the tests were performed on an Intel
Core i5 2410 laptop, with 2.30 GHz and a RAM of 4 GB.
The number of executions for each instance is 20. Instances
were obtained from the TSP Benchmark TSPLIB. The name
of each instance has a number that displays the number of
nodes it has.

On the other hand, in Table II, we show a direct comparison
between EA and each of the other GA versions, using the
Student’s t-test. This comparison is made for each of the
instances used in Table I. The ¢ statistic has the following
form:

: X1 —Xo
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where:

Xi: Average of EA

SD;y: Standard deviation of EA,

Xo: Average of the other technique,

S Dy: Standard deviation of the other technique,
n1. EA size,

ng: Size of the other technique,

The t value can be positive, neutral, or negative. The positive
value of ¢ indicates that the EA is signiffcantly better than
the technique with which it is facing. In the opposite case,
EA obtains signiffcant worse solutions. If ¢ is neutral, the
difference between the two algorithms is not signiffcant. We
stated confidence interval at the 95% confidence level (tg.05 =
2.021).

A. Analisys of the results

Viewing the results presented in Table I and Table II, the
conclusions that can be drawn contribute to those obtained
in [9]. In the first four columns of the Table I the results
obtained by the different GA versions with the different
functions of CX are shown, being all results very similar
to each other. This way, we cannot be able to conclude
roundly which one gets better results and which is the better.
The next two columns show the result obtained by those
version of GA with more conventional mutation and crossover
probabilities, and in which different functions are used for the
survivors selection. The results of these new experiments lead
to the same conclusions as the above, there is no perceptible
improvement in the results of the different GAs.

In the last column, the results of the EA are shown. If
we look at the percentages of the deviations of the means,

the vast majority are less than 2%, and rarely exceeds the
2.5%, so that the differences between them are minimal. In
this article, we have performed a deeper analysis of these
results, applying the Student’s ¢-test between the EA and the
GAs. Although the differences between the means are not
very wide, Table II shows that in the 61°53% of cases, these
differences are significant in favor the EA. On the other hand,
in the 17°95% of cases, the results obtained by the EA are
significantly worse than one of the exposed GAs. Finally, in
20°52% these differences are not appreciable. The conclusions
that can be drawn having made this new analysis reinforce the
hypothesis we want to validate. In addition, this new analysis
adds credibility to the conclusions mentioned by Osaba et al.
in [9], which the most important are the following:

e Conclusion 1: The use of CX functions do not give any
improvement to the process of optimizing of a GA, being
the other functions (mutation and selection of survivors)
which provide the ability of optimization to the GA.

e Conclusion 2: The crossover phase increases the com-
plexity of the GA algorithm without providing any
visible improvement.

III. NEW EXPERIMENTATION

In this section the new experimentation performed is shown.
With it, we will try to validate the hypothesis displayed in
Section II, demonstrating that not only holds for the TSP. The
new tests are conducted with two different vehicles routing
problems, which are the CVRP and the VRPB. Both problems
are well-known in combinatorial optimization and they are
used in many studies annually [20-23].

For each problem, the performance of an EA is compared
with that of 4 different versions of the classic GA. For all
algorithms, the population is composed by 48 individuals,
which are created randomly. The parents and survival selection
criterias are 100% elitist for all experiments, with the exception
of both GAy4, which uses a 50% elitist-random criterion for
the survival selection. About the ending criteria, the execution
of all the algorithms finishes when there are a generation
number proportional to the size of the neighborhood (obtained
by the mutation operator) without improvements in the best
solution found.

The crossover functions used are the Half Route Crossover
(HRX) and Half Random route Crossover (HRRX) [19]. With
HRX, first, the 50% of the best routes in one randomly chosen
parent are selected and inserted in the child. Then, the nodes
already inserted are removed from the other parent. Finally,
the remaining nodes are inserted in the same order in the
final solution, creating new routes. The HRRX working way
is similar to HRX. In this case, in the first step, the routes
selected from one of the parents are chosen randomly, instead
of selecting the best ones.

Regarding the mutation function, For both techniques the
called Vertex Insertion Routes is used. This function selects
and extracts one random node from a random route. Then, the
node is re-inserted in a random position in another randomly
selected route. New routes creation is possible with this
function.



TABLE 1. EXPERIMENTATION WITH THE TSP
Instance GAyq GAys GAys GAvyy GAvys GAvyg EA
Name Avg. St dev. Avg. St dev. Avg. St dev. Avg. St dev. Avg. St dev. Avg. St dev. Avg. St dev.
Oliver30 4253 9.86 4235 5.97 426.1 8.57 427.2 8.99 428.4 8.03 427.0 12.94 423.1 2.81
Eilon50 4429 7.43 4459 7.94 4454 5.87 4513 7.42 456.2 8.89 457.0 11.58 448.0 8.00
Eil51 4483 8.69 450.3 6.62 448.7 7.12 451.1 8.57 459.6 19.25 451.7 14.79 449.1 7.49
Berlin52 7945.2 262.71 8062.4 168.4 8027.6 267.1 7988.4 251.72 7912.8 227.81 7843.6 229.64 8023.5 357.31
St70 709.4 13.53 721.4 17.73 718.5 23.98 714.2 12.03 738.2 22.00 720.6 17.00 712.6 13.98
Eilon75 578.2 5.37 582.0 5.85 579.6 16.74 5759 7.62 590.4 12.83 586.6 15.88 583.4 13.49
Eil76 581.5 12.39 585.5 14.98 577.5 8.73 584.6 14.59 606.1 18.77 588.2 11.14 5774 8.73
KroA100 22265.7 581.74 224453 687.87 22690.0 5717.76 22195.8 381.69 44366.1 512.87 22316.7  614.86 21856.9 309.93
KroB100 23602.9 413.89 23599.5 878.01 23548.0 577.06 23366.6 533.15 23252.5 487.89 23026.5  500.14 23194.6 304.66
KroC100 21850.1 465.54 221456.4 241.32 22710.0 875.78 21995.8 593.22 22077.9 851.97 215912 724.96 21680.2 447.95
Eill101 693.7 10.45 692.9 11.18 683.0 9.68 696.0 12.35 726.9 26.27 708.4 12.19 689.8 14.83
Pr107 46676.5 1406.5 46076.5 1043.54 46682.2  1105.01 46866.9 964.11 472204  1225.64 46481.0 13324 45584.0 802.83
Pr124 60852.6  1288.63 61399.0 1263.75 61282.6  1832.66 610022  1361.51 59414.4 6941.5 60428.3  911.87 61040.8  1389.97
TABLE II. STUDENT’S ¢-TEST FOR THE TSP PROBLEM
Instance FEAvs. GAyq FEAvs. GAyo EA vs. GAys FEAvs. GAyy EAvs. GAys FEAvs. GAyg
Oliver30 + * + + + +
Eilon50 - - - + + +
Eil51 * * * + + +
Berlin52 - * * * - -
St70 - + + * + +
Eilon75 - * - - + *
Eil76 + + * + + +
KroA100 + + + + +
KroB100 + + + * -
KroC100 + + + + + g
Eil101 + + - + + +
Pr107 + + + + + +
Pr124 * + * * - -

Thus, the characteristics of the algorithms are as follows,
listed by their CX function, p. and m,,, and survivor selection
function:

e (GAy;: HRX function, p.= 100%, p,,= 100%, 100%
elitist.

e (GAys: HRRX function, p.= 100%, p,,= 100%, 100%
elitist.
GAy3: HRX function, p.= 90%, p,,= 5%, 100% elitist.
GAy4: HRX function, p.= 90%, p,,= 5%, 50% elitist
- 50% random.

e FA: No Cx function, p.= 0%, p,,= 100%, 100% elitist.

The tests have been made in the same computer mentioned
in Section II. Results are shown in Table III for the CVRP and
in Table V for the VRPB. For each instance we display the
total average, the standard deviation and the average runtime.
The objetive function used in both problems is the total
traveled distance. In order to determine if the outcomes are is
significantly different, we perform Students ¢-test in the same
way as in Section II. In Table IV and Table VI results of these
statistical tests are shown.

Each experiment is repeated 20 times. For the CVRP, the
instances were picked from the CVRP set of Christofides and
Eilon (http://neo.lcc.uma.es/vrp ). The name of each CVRP
instance has a number that displays the number of nodes
it has. For the VRPB we have used 10 instances. The first
6 were obtained from the VRPTW Benchmark of Solomon
(http://neo.lcc.uma.es/vrp). In this case, the time constraints
have been removed, but vehicle capacities and the amount
of customer demands are retained. Apart from this, we also
have been modified the demands nature with the aim of
creating pickup and deliveries. The remaining 4 instances were
obtained from the CVRP set of Christofides and Eilon. In these
instances, the vehicle capacities and the number of nodes have
been maintained, but the demand types have been also changed
to have pickups and deliveries.

A. Analisys of the results

The first conclusion that we can extract seeing the results
of the Table III and Table V is the following: There is no GA
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TABLE III. EXPERIMENTATION WITH THE CVRP
Instance GAvy1q GAyo GAvys GAvyy EA
Name Avg. St dev. Time Avg. St dev. Time Avg. St dev. Time Avg. St dev. Time Avg. St dev. Time
En22k4 400.5 11.68 2.76 410.1 20.81 3.10 413.9 14.23 291 403.9 24.69 3.81 413.7 14.78 1.05
En23k3 647.0 45.21 2.17 650.9 29.23 2.83 665.3 18.54 2.66 645.9 37.98 3.39 645.5 28.13 1.27
En30k3 598.6 2643 3.58 590.4 25.06 3.81 597.1 15.52 5.34 579.6 29.32 6.82 588.9 36.32 1.48
En33k4 922.1 24.03 5.88 944.2 47.42 5.71 942.5 29.57 11.72 916.8 35.45 8.48 921.0 25.29 2.85
En51k5 661.6 35.85 10.44 675.4 68.13 10.77 679.2 31.23 24.76 681.0 39.15 20.94 652.8 42.64 3.09
En76k7 843.0 65.47 24.85 867.5 63.25 30.95 880.1 26.17 67.01 897.0 33.70 54.25 834.4 22.41 6.51
En76k8 882.8 39.52 29.52 926.6 56.12 30.95 9717.3 28.24 55.20 968.1 61.11 51.36 898.5 40.49 9.06
En76k10 1014.7 42.48 28.57 1026.4 4421 3045 1031.2 27.88 55.20 1032.6 26.56 54.52 999.8 46.42 6.14
En76k14 1176.3 38.99 26.63 1185.6 39.05 31.25 1206.1 11.15 46.44 1212.4 29.14 42.52 1191.5 40.43 7.31
Enl101k8 1057.3 71.89 67.54 1021.6 44.84 65.24 1131.4 37.65 134.21 1104.6 83.84 130.25 985.7 57.02 13.57
Enl01k14 1261.9 27.45 78.54 1274.0 36.41 81.25 13222 62.35 134.41 1277.8 84.23 132.54 1276.9 5247 15.32
TABLE IV. STUDENT’S ¢t-TEST FOR THE CVRP PROBLEM
Instance EAvs. GAy1 EA vs. GAy2 EAvs. GAys EAvs. GAya
En22k4 - - * -
En23k3 * * + *
En30k3 + * + -
En33k4 * + + *
En51k5 + + + +
En76k7 * + + +
En76k8 - + + +
En76k10 + + + +
En76k14 - * + +
Enl01k8 + + + +
Enl01k14 - * + *

version that provides a visible advantage over EA results. In
addition, if we look at Tables IV and VI we can conclude that
no technique gives significantly better results than the EA. For
the CVRP, in the 59°1% of cases, the differences are significant
in favor the EA. On the other hand, in the 15°9% of cases, the
results obtained by the EA are significantly worse than one of
the GAs. Finally, in 25% these differences are not appreciable.
For the VRPB, these percentages are, respectively, 62’5%, 5%,
and 32°5%.

In addition, regarding the run times, these are much lower
for the EA than for the other techniques. This difference is
not very noticeable in problems with few nodes, But when the
nodes increases, the differences become larger. This happens
because routing problems are classified as NP-Hard problems
[24].

These results support the Conclusions 1 and 2 presented in
Section II-A. Furthermore, we can add one more important
finding:

e Conclusion 3: Using CX functions increases consider-
ably the execution time. Furthermore, as the number
of nodes grows, the time rises exponentially. This is
especially important for real-time applications, where the
execution time becomes decisive.

Conclusions 2 and 3 can be obtained easily, since the more

steps a meta-heuristic has, more time needs for execution and

more complex is to design and develop. On the other hand,
Conclusion 1, shown in Section II-A, can be based on several
arguments. The main purpose of the CX functions is to obtain
new individuals making combinations of the characteristics of
the individuals of the population. Thus, it is logical to think
that it is very improbable that the resulting offspring from
neutral crosses improve their parents. It is for this reason that
the main utility of CX might be to increase the capability of
the search process of the algorithm. The use of this kind of
functions or mechanisms can be very beneficial for a meta-
heuristic, as can be seen in other techniques such as simulated
annealing [25], which uses a cooling process to allow this type
of jumps inside the space of solutions, or the tabu search [26],
with the mechanisms of memory at medium and long term.
Despite this, the use of this type of functions must not be
excessive, since the jumps in the solution space are beneficial
only in determined times, for example, to avoid local optima.
In GA, mutations can handle this type of jumps in the
solution space. In addition the mutation can also make small
jumps on the solution space, which are very positive for the
optimization process. This fact can free the GA of using CX
functions, and it can reduce its running time, achieving similar
results, as we can see in the experimentation conducted.
With all this, we can say that the hypothesis has been
verified for two additional problems, the CVRP and the VRPB.



TABLE V. EXPERIMENTATION WITH THE VRPB
Instance GAv, GAvyo GAvys GAvg EA
Name Avg. St dev. Time Avg. St dev. Time Avg. St dev. Time Avg. St dev. Time Avg. St dev.  Time
Cl101 775.8 47.21 15.75 769.7 46.88 20.18 813.0 58.17 30.38 8134 53.46 28.22 776.4 51.53 5.21
C201 903.9 125.77 4.60 934.7 66.37 3.77 924.7 117.12 7.54 942.3 136.62 4.60 902.1 101.21 0.91
R101 984.2 25.24 18.51 979.2 52.36 24.58 1085.3 56.76 39.37 1060.8 66.32 33.92 987.5 53.65 6.24
R201 1170.6 61.95 37.95 1231.2 63.11 42.15 1358.0 123.31 42.53 1386.4 54.06 52.50 1168.4 41.13 6.24
RC101 668.0 82.34 3.49 669.4 54.63 4.05 712.3 84.76 6.54 691.8 33.09 6.87 631.5 46.31 1.10
RC201 1304.9 90.09 33.28 1364.6 104.22 44.62 1516.4 90.91 40.25 1485.2 113.79 44.51 1310.4 52.29 5.08
En30k4 606.0 44.75 1.69 620.9 82.29 1.74 627.7 48.69 2.98 594.7 99.26 3.16 626.9 58.79 0.62
En33k4 844.4 28.46 2.50 855.3 28.31 242 860.5 37.16 4.53 847.6 30.62 5.76 841.7 42.96 0.87
En51k5 696.4 46.82 5.27 713.3 49.37 3.83 754.0 56.75 13.36 725.6 38.13 13.14 701.7 34.41 2.12
En76k8 915.8 38.43 17.56 987.7 81.80 15.64 1027.4 66.55 25.53 1009.0 46.59 27.33 917.7 62.35 3.27
TABLE VL STUDENT’S t-TEST FOR THE VRPB PROBLEM
Instance EAvs. GAy1 EAvs. GAya EAvs. GAys EAvs. GAyy
C101 * * + +
C201 * + + +
R101 * * + +
R201 * + + +
RC101 + + + +
RC201 * + + +
En30k4 - * * -
En33k4 * + + *
En51k5 * +
En76k8 * + + +
Finally, as a last conclusion we could enter the next reasoning REFERENCES

which is supported by the results shown in the experiments.

e Conclusion 4: The most efficient way to implement
an evolutionary algorithm to solve routing problems is
basing it only on the functions of mutation and selection
of survivors.

B. Conclusions

The aim of this paper is to extend the study made by Osaba
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operators in genetic algorithms for solving routing problems.
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Problem with Backhauls, both widely used in the literature.
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and it can be ensured that not only holds for the TSP, but
also for the CVRP and VRPB. This hypothesis says that the
crossover phase of the genetic algorithms is not efficient for
the search process and the capacity of optimization it is applied
to routing problems.
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