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An Asymmetric Multiple Traveling Salesman
Problem with Backhauls to solve a Dial-a-Ride

Problem
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Abstract—Nowadays, public transportation has become an
essential area for the actual society, which directly affects the
quality of life. There are different sort of public transportation
systems. One type that receives much attention these days because
of its great social interest is the transportation on-demand. Some
of the most well-known on-demand transports systems are the
Demand Responsive Transit, and the Dial-a-Ride. In this paper,
a real-world Dial-a-Ride problem is presented and modeled as a
Multi-Attribute Traveling Salesman Problem. In addition, in this
work a benchmark of this problem is presented, and the first
resolution of this benchmark is offered. For the resolution of the
problem an Adaptive Multi-Crossover Population Algorithm has
been implemented.

Keywords—On demand transportation, Traveling Salesman
Problem, Combinatorial optimization, Genetic Algorithm, Meta-
heuristic.

I. INTRODUCTION

Nowadays, transportation is a crucial sector for the society.
Public transportation, for example, is a resource used by almost
the whole population, and it directly affects the quality of life.
There are different kinds of public transportation systems, each
one with its own features. Nevertheless, they all share some
disadvantages, as for example, the capacity of the vehicles, the
frequency and schedules of the services, and the geographical
area of coverage. These drawbacks lead to a difficulty to satisfy
all user demands.

As a result of these inconvenients the concept of
Transportation-On-Demand (TOD) arises [1]. TOD is
concerned with the transportation of passengers or goods
between specific origins and destinations at the request of
users. Most TOD problems are characterized by the presence
of three often conflicting objectives: maximizing the number
of requests served, minimizing operating costs and minimizing
user inconvenience.

There are different types of problems within the trans-
portation on demand, as the Demand Responsive Transport,
or Demand Responsive Transit (DRT) [2]. It is characterized
by flexible routing and scheduling of small/medium vehicles
operating in shared-ride mode between pick-up and drop-
off locations according to passengers needs. In addition, the
routes planed in a DRT may vary in real time. One possible
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application of a DRT system could be the transport service in
rural areas or areas of low passenger demand, where a regular
bus service may not be economically viable.

Another sort of on-demand transportation is the Dial-a-Ride
Problem (DRP) [3]. The DRP is applicable in contexts where
passengers are transported, either in groups or individually,
between specified origins and destinations. The most common
DRP application arises in door-to-door transportation services
for elderly or handicapped people. In this context, users often
formulate two requests per day: an outbound request from
home to a destination, and an inbound request for the return
trip. The social interest of this type of transport is undoubted
because, above all, it helps to ensure welfare of people with
special needs.

The DRP is the focus of many studies these days [4, 5],
and it is currently in operation in several important cities of
the world, as London1, or Riverside (California)2.

The aim of this paper is to address one DRP problem. For
this purpose, the DRP problem has been modelized as a Multi-
Attribute Traveling Salesman Problem (MATSP). Today, as can
be read in [6], MATSPs, as well as the Multi-Attribute Vehicle
Routing Problems (MAVRPs), are a hot topic in the scientific
community. These kinds of problems are special cases of
conventional routing problems, with the distinction of having
multiple constraints and complex formulations. For this reason,
this sort of problems has a great scientific interest. On the
one hand, being NP-Hard, their resolution presents a scientific
challenge. On the other hand, their applicability to real-world
situation is greater than the conventional, or academic, versions
of routing problems.

In this paper a MATSP is proposed, concretely, an Asym-
metric Multiple Traveling Salesman Problem with Backhauls
(AMTSPB), which is applicable to real-world on-demand
transportation systems. In addition, in this work a benchmark
of this problem is presented, and the first resolution of this
benchmark is offered. For the resolution of the problem An
Adaptive Multi-Crossover Population Algorithm (AMCPA) [7]
has been implemented.

The rest of the paper is organized as follows. In Section II
the AMTSPB is described and formulated. In Section III the
proposed benchmark is described. The implemented AMCPA
for its resolution is also depicted in this section. In Section
IV the experimentation is shown. This paper finishes with the
conclusions of the study and further work in Section V.

1https://www.tfl.gov.uk/modes/dial-a-ride/
2http://www.riversidetransit.com/home/index.php/dial-a-ride
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II. DESCRIPTION OF THE AMTSPB

As explained in the introduction, in this paper a MATSP is
proposed. The main characteristics of this kind of problems are
their complex formulation with multiple constraints, and their
applicability to real-world situations. This objective indirectly
leads to an increased complexity of resolution, which entails,
as the same time, to a major scientific challenge. The problem
presented in this paper is an AMTSPB, which has three main
characteristics.

1) Asymmetry: Unlike most routing problems treated in the
literature, the costs in the AMTSPB are asymmetric,
which means that the cost of traveling from one point
i to another point j is different from the cost of the
reverse trip. This feature adds complexity and realism
to the problem, and it has been applied previously in
the literature [8].

2) Backhauling: This feature is an adaption of the well-
known backhauling system applied to some routing
problems [9]. In this case, two sorts of nodes are
available. The first types of nodes are the pickup
nodes. In these points is where the people who have
requested the transportation access to the vehicle. On
the other hand, the delivery nodes is where people
leave the vehicle. For this problem, all the pickup nodes
have to be visited before visiting the delivery nodes.
Furthermore, it is noteworthy that in one concrete node
more than one person can take or leave the vehicle,
which means that one route can visit more pickup nodes
than delivery nodes, and vice versa.

3) Multiple Vehicles: This is a typical characteristic of the
well-known Multiple Traveling Salesman Problem [10].
For this problem, there is a fleet K composed by a
finite and fixed number of vehicles (k), which have to
be used to meet the customers demands. Besides, there
is a central depot in which all the vehicles must begin
and end their route. This feature requires the problem
to plan exactly k paths, one for each vehicle available.
Furthermore, each route cannot visit more than a fixed
q number of nodes.

With all this, the AMTSPB is a routing problem in which
the costs of traveling between nodes are asymmetric, and the
objective is to find exactly k number of routes of a maximum
length of q nodes each, minimizing the total cost of the
solution, and taking into account that all the pickup nodes have
to be visited before the delivery nodes.

In this way, this problem can be defined on a complete
graph G = (V,A) where V = {v0, v1, v2, . . . , vn, } is the
set of vertexes which represents the nodes of the system, and
A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs which
represents the interconnection between nodes. Each arc has an
associated distance cost cij , taking into account that cij 6= cji.
The vertex v0 represents the depot, and the rest are the visiting
points. Besides, in order to facilitate the formulation, the set
of customer V can be separated into two subsets, the first one
for the pickup nodes P = {p1, p2, . . . , pp}, and the second one
for the delivery nodes D = {dp+1, dp+2, . . . , dp+m}.

Furthermore, the presented AMTSPB be the mathematical
formulated as follows:

Minimize:
p+m∑
i=0

p+m∑
j=0

k∑
r=1

cijx
r
ij (1)

Where:

xr
ij ∈ {0, 1}, i, j = 0, . . . , p+m, i 6= j; r = 1 . . . k (2)

Subject to constraints:
p+m∑
i=0

k∑
r=1

xr
ij = 1, i = 0, . . . , p+m; i 6= j (3)

p+m∑
j=0

k∑
r=1

xr
ij = 1, j = 0, . . . , p+m; j 6= i (4)

p+m∑
j=0

k∑
r=1

xr
0j = k (5)
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i=0

k∑
r=1

xr
i0 = k (6)
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i=0

p+m∑
j=0

xr
ij ≤ q, r = 1 . . . k (7)

p+m∑
i=0

xr
ij −

p+m∑
l=0

xr
jl, j = 0, . . . , p+m; r = 1 . . . k (8)

p+m∑
j=0

xr
ij −

p+m∑
l=0

xr
li, i = 0, . . . , p+m; r = 1 . . . k (9)

p+m∑
i=p+1

p∑
j=1

k∑
r=1

xr
ij = 0 (10)

The first formula is the objective function, which should
be minimized, and it is the sum of the costs of all routes of
the solution. The clause 2 expresses the nature of the binary
variable xk

ij , which is 1 if the vehicle k uses the arc (i, j),
and 0 otherwise. Constraints 3 and 4 ensure that all nodes are
visited exactly once. Functions 5 and 6 assure that the total
number of vehicles leaving the depot is the same as the number
of vehicles that return to it. That number is equivalent to k,
i.e., the total amount of available vehicles. Sentence 7 indicates
that there is no route which length exceeds the q maximum
length. The flow of the route, i.e., all vehicles that arrive at a
customer leave it with the aim of going to another customer,
is ensured by the formulas 8 and 9. Finally, the restriction 10
ensures that all the pickup points are visited before delivery
ones.

Finally, permutation representation is used in the
proposed AMTSPB for the solution encoding [11]. In
this way, each individual X is encoded by a permutation
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Fig. 1. A 12-noded and k=3 possible instance of the AMTSPB, and a possible solution

of numbers, which represents the path. In addition, to
distinguish the different routes in a solution, they are
separated by zeros. As an example, suppose a set of
five pickup nodes P = {P1, P2, P3, P4, P5}, and six
delivery nodes D = {D6, D7, D8, D9, D10, D11, D12}.
One possible solution with m=3 would be X =
(P5, P3, D6, D7, 0, P4, P1, D9, D12, 0, P2, D10, D8, D11).

In Figure 1(a) an example of a AMTSP instance with 12
nodes, and k=3 is depicted. Furthermore, in Figure 1(b) a
possible solution for this instance is shown.

III. PROPOSED BENCHMARK AND USED TECHNIQUE

This section is divided in two different parts. First, in Section
III-A, the benchmark developed in this study for the proposed
AMTSPB is described. On the other hand, in Section III-B the
technique used to address the presented AMTSPB is detailed.

A. The AMTSPB Benchmark
As can be read in the good practices presented by the authors

of this study in [12], the existence of a benchmark to solve an
optimization problem is crucial. The benchmark presented in
this work for the proposed AMTSPB is a modification of the
ATSP Benchmark that can be found in the TSPLib Benchmark
[13]. These ATSP instances are all the available ones in the
well-known TSPLib webpage3.

In total, 19 different instances have been designed for the
AMTSPB, which have from 17 to 443 nodes. The first node
of each instance is considered as the depot. Furthermore, an
extra parameter typei has been added to the rest of the nodes,
which indicates whether the node i is a pickup node or a
delivery node. This parameter has been set using the following
procedure:

typei = pickup node, ∀i ∈ {1, 3, 5, . . . , n}
3https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

typei = delivery node, ∀i ∈ {2, 4, 6, . . . , n}

In addition, the number of vehicles available for each instance
has been established set in k=4. On the other hand, the
maximum length of each path has been set in q = n/3, where
n is the total number of nodes of the instance. Finally, the
geographical location and costs have remained the same as in
the original instances.

With the aim of allowing the replication of this experimen-
tation, the benchmark developed is available under request to
the corresponding author of this paper.

B. The proposed AMCPA
Since the problem presented in this work is applicable to

real-life situations, it has been opted for an algorithm which is
simple to implement and quick to execute. Thus, the technique
can offer results in a short time, something appreciated in real
environment applications. As has been said in Section I, the
selected meta-heuristic has been an AMCPA. The AMCPA is
an adaptive variant of the classic Genetic Algorithm (GA),
which main characteristics are the following:
• AMCPA reverses the philosophy of conventional GAs.

Unlike GAs, it starts with high value for the mutation
probability pm, and a very low (or null) value for the
crossover probability pc.

• The proposed algorithm combines the pc adaptation and
the multi-crossover mechanism.

• The presented technique adapts its pc depending on
the search performance in recent iterations, and current
generation number. In contrast, most of the previous
studies rely the pc adaptation in the population fitness
[14, 15].

Regarding the adaptive mechanism, pc of the algorithm is
modified every generation depending on the results get in the
previous iteration. This way, if the best solution found by
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Algorithm 1: Pseudocode of the proposed AMCPA
P ← Initialize the population;
Selection of the first Crossover Function ;
pc = 0.0;
pm = 1.0;
repeat

Pm ← Mutation phase;
Parents selection process (P );
Pc ← Crossover phase;
P ← Survivor selection process (P ∪ Pm ∪ Pc) ;
if best solution has been improved then

pc is restarted;
else

if Maxpc has been reached then
Change the crossover function;
pc is restarted;

else
pc is increased;

end
end

until termination criterion reached;
Return the best individual found;

the algorithm has been improved in the last generation, pc
is restarted. In other case, the value of pc is increased based
on the following formula:

pc = pc +
2 ·Gwi +G

N3
I

where:

NI : number of individuals in the population,
G: total number of generations executed,
Gwi: number of generations executed without improve-

ments,

As can be seen, pc increases proportionally to the number
of generations without any improvement in the best solution
(Gwi) and the total number of generations (G).

Related to the multi-crossover feature, the proposed tech-
nique has more than one crossover operator which are al-
ternated during the execution of the algorithm. At the ini-
tialization phase of the technique, one operator is assigned
randomly. Then, when necessary, this function is replaced
at random by another available, allowing repetition. For this
purpose, a maximum value Maxpc for pc is defined. If over
the generations the pc value exceeds Maxpc, the crossover
function is randomly replaced by another one, and pc is
restarted to its initial value.

It is noteworthy that Maxpc is an adjustable parameter,
which has to be high enough to prevent a premature function
change. Additionally, its value cannot be too high, in order to
avoid an excessive runtime waste. A pseudocode of the meta-
heuristic is depicted in Algorithm 1.

IV. EXPERIMENTATION

In this section the performed experimentation is described.
First, in Section IV-A the parameterization of the developed
AMCPA is detailed. Thereafter, in Section IV-B the results
obtained are shown.

A. Parameters of the AMCPA
An initial population composed by 50 randomly generated

individuals has been used for all the instances of the problem.
In addition, as can be seen in Algorithm 1 the pc starts at
0.0, and the pm has been set in 1.0. When the best solution
found has not been been improved, the pc increases following
the formula seen in Section III-B, otherwise, it returns to 0.0.
Moreover, Maxpc has been stablished in 0.4.

In relation to the parents selection criteria, the well-known
binary tournament has been used. On the other hand, regarding
the survivor function, a 50% elitist - 50% random function
has been used (which means that the half of the population is
composed by the best individuals, and the remaining ones are
selected randomly). About the ending criteria, the execution
of the AMCPA finishes when the population converges. This
same criteria has been used many time in the literature [16].
In the present study, the convergence is assumed when there
are n+

∑n
g=1 g generations without improvements in the best

solution, where n is the size of the problem.
Furthermore, three crossover functions has been used for

the proposed AMCPA. These functions are the Short Route
Crossover (SRX), the Random Route Crossover (RRX), and
the Large Routes Crossover (LRX). These operators are a
particular case of the traditional crossover, in which the cut
point is made always in the middle of the chromosome. The
working way of the first of them is the following: first of all,
half of the routes (the shortest ones) of one of the parents are
inserted in the child. After that, the nodes already selected are
removed from the other parent, and the remaining nodes are
inserted in the child in the same order (taking into account the
vehicle capacity). Assuming a 16-node instance (including the
depot), an example could be the following:

P1 = (1, 2, 3, 4, 0, 9, 10, 11, 12, 0, 13, 14, 15, 0, 5, 6, 7, 8)

P2 = (1, 12, 6, 3, 0, 2, 4, 7, 11, 0, 5, 14, 9, 0, 8, 13, 10, 15)

The resulting offprings could be as follows:

O1 = (1, 2, 3, 4, 0, 9, 10, 11, 12, 0, 6, 7, 5, 14, 0, 8, 13, 15)

O2 = (1, 12, 6, 3, 0, 2, 4, 7, 11, 0, 9, 10, 13, 14, 0, 15, 5, 8)

RRX works similar to the SRX. In this case, the routes
selected in the first step of the process are selected randomly,
instead of choosing the best ones. Finally, in the case of LRX,
the selected routes are the longest ones. Regarding the mutation
function, the Vertex Insertion Function has been used. This
function selects one random node from one randomly chosen
route of the solution. This node is extracted, and inserted in
another randomly selected route, respecting the route length
constraint.
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TABLE I. RESULTS OBTAINED BY THE AMCPA FOR THE PROPOSED
AMTSPB BENCHMARK. FOR EACH INSTANCE RESULTS AVERAGE,

STANDARD DEVIATION, MEDIAN, INTERQUARTILE RANGE AND TIME
AVERAGE ARE SHOWN

Instance Avg. S. dev. Median I. R. Time

AMTSPB br17 69.2 2.8 68.5 3.7 0.78
AMTSPB ftv33 2106.8 70.7 2113.5 95.5 1.05
AMTSPB ftv35 2243.4 72.07 2222.5 122.7 1.01
AMTSPB ftv38 2464.4 69.6 2471.0 108.2 1.09
AMTSPB p43 5943.3 27.3 5943 48.2 1.10
AMTSPB ftv44 2583.5 100.0 2552.0 147.2 1.35
AMTSPB ftv47 2892.4 101.1 2887.5 120.2 1.21
AMTSPB ry48p 21138.4 1017.7 20686.5 1328.0 1.32
AMTSPB ft53 11332.2 502.4 11297.5 668.7 1.52
AMTSPB ftv55 2904.3 193.6 2892.0 185.7 1.74
AMTSPB ftv64 3147.0 189.2 3164.0 195.5 2.00
AMTSPB ftv70 3528.0 152.8 3546.0 226.5 2.19
AMTSPB ft70 47614.7 480.2 47637.5 652.7 3.01
AMTSPB kro124p 56630.2 2438.7 57075.0 3356.7 6.02
AMTSPB ftv170 6586.5 343.4 6523.5 443.2 18.66
AMTSPB rbg323 2013.3 51.5 2006.0 46.7 54.22
AMTSPB rbg358 2031.5 82.8 2022.5 86.2 69.07
AMTSPB rbg403 3003.1 29.5 2998.0 45.5 79.76
AMTSPB rbg443 3472.7 38.0 3467.5 48.7 92.73

B. Results
All the tests have been performed on an Intel Core i7 3930

computer, with 3.20 GHz and a RAM of 16 GB. Java has been
used as programming language. All the 19 instances proposed
for the AMTSPB have been used in the experimentation. The
name of each AMTSPB instance has a number that displays the
number of nodes it has. For each instance 30 runs have been
executed, and the average fitness value (Avg.) and standard
deviation (S. dev.) are shown. As said in Section II, the fitness
value is the sum of the costs of all routes of the solution.
Additionally, average runtime is also displayed (in seconds) as
well as the median and the interquartile range (I.R.). These
results can be seen in Table I.

Furthermore, in Table II the fitnees of the best solution found
for each instance is depicted. In addition, the generations that
have been needed to reach this solution, and the runtime of this
execution are also depicted. Since this is the first appearance of
the AMTSPB in the literature, these solutions are considered
the best solutions found until the publication of this paper.

V. CONCLUSIONS AND FURTHER WORK

In this paper a new MATSP has been presented. This
problem has been proposed with the aim of addressing
different kind of DRP problems. Specifically, the developed
problem is an AMTSPB, which objective is to find an exactly
number number of routes which visit all the nodes once,
minimizing the total cost of performing them. In addition, it
has to be taken into account that the costs of traveling between
nodes are asymmetric, and that two sort of nodes coexist:
pickup nodes and delivery nodes. All the delivery nodes have
to be visited after pickup nodes.

Furthermore, a benchmark composed by 19 instances has
been proposed for the AMTSPB. These benchmark is an

TABLE II. BEST SOLUTIONS FOUND BY THE AMTSPB FOR EACH
INSTANCE OF THE PROPOSED BENCHMARK

Instance Fitness Generation Time

AMTSPB br17 65 71 0.78
AMTSPB ftv33 1988 1249 1.73
AMTSPB ftv35 2130 836 1.04
AMTSPB ftv38 2357 2906 1.70
AMTSPB p43 5901 859 1.07
AMTSPB ftv44 2429 2806 2.76
AMTSPB ftv47 2671 3296 2.21
AMTSPB ry48p 19954 5303 3.71
AMTSPB ft53 10442 2340 1.68
AMTSPB ftv55 2662 4380 2.47
AMTSPB ftv64 2646 5114 4.08
AMTSPB ftv70 3229 6608 4.09
AMTSPB ft70 46746 9572 6.76
AMTSPB kro124p 51995 11366 7.00
AMTSPB ftv170 5673 28811 24.05
AMTSPB rbg323 1942 69185 71.40
AMTSPB rbg358 1942 71422 89.99
AMTSPB rbg403 2967 47421 75.28
AMTSPB rbg443 3426 60395 129.16

adaption of the well-known ATSP benchmark that can be found
in the TSPLib. Finally, a first resolution for this benchmark has
been presented. These solutions are considered the best ones,
since it is the first time that the AMTSPB has been addressed.

As future work, the resolution of the benchmark by some
different techniques has been planned, in order to try to
find better solutions for the developed instances. Additionally,
the authors of this study intend to find some other real-
world problems, with a great social interest, with the aim of
modelizing them as MAVRP, and solving them.
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