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Abstract. Throughout the history, Genetic Algorithms (GA) have been
widely applied to a broad range of combinatorial optimization problems.
Its easy applicability to areas such as transport or industry has been
one of the reasons for its great success. In this paper, we propose a
new Adaptive Multi-Crossover Population Algorithm (AMCPA). This
new technique changes the philosophy of the basic genetic algorithms,
giving priority to the mutation phase and providing dynamism to the
crossover probability. To prevent the premature convergence, in the
proposed AMCPA, the crossover probability begins with a low value, and
varies depending on two factors: the algorithm performance on recent
generations and the current generation number. Apart from this, as
another mechanism to avoid premature convergence, our AMCPA has
different crossover functions, which are used alternatively. We test the
quality of our new technique applying it to three routing problems: the
Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing
Problem (CVRP) and the Vehicle Routing Problem with Backhauls
(VRPB). We compare the results with the ones obtained by a basic
GA to conclude that our new proposal outperforms it.

Keywords: Adaptive Population Algorithm, Genetic Algorithm, Rout-
ing Problems, Combinatorial Optimization, Intelligent Transport Sys-
tems

1 Introduction

Since its proposal in the ’70s, genetic algorithm (GA) has become one of the
most successful meta-heuristic techniques for solving combinatorial optimization
problems. GAs are based on the genetic process of living organisms and in the
law of the species evolution, proposed by Darwin. The basic principles of this
technique were proposed by Holland [1], trying to imitate the natural selection
process and the strongest specimens survival. Even though, its practical use for
solving complex problems was shown later by De Jong [2] and Goldberg [3].
From that moment, GAs has been the focus of a large number of papers and



books [4, 5], and they have been applied in a wide range of fields, like transport
[6], software engineering [7] or industry [8].

In this paper, we present an Adaptive Multi-Crossover Population Algorithm
(AMCPA) for solving routing problems. This new meta-heuristic is a variant of
the basic GA. It prioritizes the local optimization (mutation), applying crossover
operators only when they would be beneficial to the search process. In our
AMCPA the crossover probability varies, depending on the search performance
on recent generations and the current generation number. This dynamism helps
our technique to prevent premature convergence. Apart from this, the proposed
AMCPA has multiple crossover functions, which are applied alternatively.

Adjusting the control parameters of the GAs has always been one of the most
controversial questions in the field of genetic algorithms. Related works have been
done since the 80’s [9] until today [10]. Concretely, the idea of adapting crossover
and mutation probabilities (pc and pm) to improve the performance of GAs has
been studied since long time ago, for example in [11] and [12], but it is also
subject of many studies nowadays. Below were mentioned several examples of
works on this topic, being the whole literature for this field much larger. In [13],
for example, a genetic algorithm that adapts its pc and pm in function of the
population fitness difference and the maximum fitness value is presented. In [14]
and [15], a GA that uses fuzzy logic to adaptively tune pc and pm is introduced. In
these proposals, a clustering technique is used to split the population in clusters.
Then, a fuzzy system determines the pc and pm depending on the best and worst
chromosome of each cluster. In [16] is proposed a GA that, besides adapting
the pm, determines the types of replacing genes in the mutation procedure.
In [17] some improvements on adaptive GAs for reliability-related applications
are introduced. In that work, the authors present a simple parameter-adjusting
method, using the fitness average and variance of the population. In [18] an
adaptive algorithm for optimizing the design of high pressure hydrogen storage
vessel is presented. That algorithm adapts pc and pm depending on the fitness
value of each individual. Finally, another example of adapting pc and pm is the
one presented in [19]. In that work an improved adaptive genetic algorithm based
on hormone modulation mechanism to solve the job-shop scheduling problem is
proposed.

Regarding the multi-crossover, this mechanism has been used less than the
previously explained one. Anyway, it has also been studied before, long time
ago and nowadays. In [20], for example, an adapting crossover technique for an
population algorithm is presented, which varies the crossover operator and its
utilization frequency. The algorithm proposed in that work uses two crossovers
functions depending on the population situation in the solution space. Another
example is [21]. In this work a strategy adaptive genetic algorithm is proposed for
solving the well-known Traveling Salesman Problem (TSP) [22]. This algorithm
works with three different crossover functions. The choice of the function is
decided partly by the quality of each of them and partly at random.

After a brief analysis of the state of the art, we detail the most innovative
aspects of the new technique we propose:



– Our AMCPA reverses the philosophy of conventional GAs. It starts with a
high values of pm and a very low or null value for pc. This fact is based on
our previous work [23].

– Our proposal adapts its pc depending on the current generation number
and the search performance in recent iterations, instead of relying on the
population fitness, as most previous studies.

– The proposed algorithm combines the pc adaptation and the multi-crossover
mechanism, something that has not been done frequently before.

– The introduced AMCPA is tested with routing problems. Traditionally,
adaptive algorithm has not been applied to this type of problem.

This paper is structured as follows. In the following section we introduce our
proposed technique. Then, we will show the results of our AMCPA applied to
three different well known routing problems: TSP, Capacitated Vehicle Routing
Problem (CVRP) [24] and Vehicle Routing Problem with Backhauls (VRPB)
[25]. In the same section we compare the results obtained by our algorithm with
the results of a basic GA. We finish this work with the conclusions and future
work.

2 Our Adaptive Multi-Crossover Population Algorithm

Fig. 1. Flowchart of the algorithm

As already mentioned, our AMCPA is a variant of a conventional GA. Its
flowchart can be seen in figure 1. The proposed technique reverses the philosophy



of conventional GAs, giving higher priority to the individual optimization,
provided by the mutation phase, and giving less importance to the crossovers
phase. These fundamentals are based on our recently published study [23], in
which we analyze the blind crossover suitability in GAs solving routing problems.
In that work we check our theory, which stands that the crossover phase is not
efficient for the optimization capacity of the technique when it is applied to
routing problems using path encoding. For this reason, the proposed AMCPA
offers a greater role to the mutation phase. Despite this, we consider that
the crossovers between different individuals can be beneficial to maintain the
population diversity. Therefore, in the proposed AMCPA we try to fit the pc to
the search process needs. Apart from that, as an additional tool to avoid the
premature convergence, our AMCPA has a multi-crossover mechanism, which
changes the crossover operator of the technique for all the population. These
changes are made based on various concepts which will be explained later. Below,
we will describe these mechanisms.

2.1 Adaptive Mechanism

Regarding the pm, in our AMCPA, all individuals in the population go through
the mutation process every generation. This would be equivalent to having a
pm equals to 1.0. On the other hand, in the proposed method the pc starts
with a very low value, close to 0.0. The latter parameter is modified as search
progresses, increasing or restarting its value to 0. The modification is performed
based on the improvement in the best solution found in the last generation. This
modification is based on the following criteria:

– The best solution found by the technique has been improved in the last
generation: This means that the search process evolves correctly and that it
is not necessary to diversify the population. In this case, the value of pc is
restarted.

– The best solution found by the technique has not been improved in the last
generation: In this case, it could be considered that the search is in a bump.
This means that the search process could be trapped in a local optimum, or
that the population could be concentrated in the same region of the solution
space. At this time, increasing the population diversification using crossover
operators would be beneficial. With this intention pc is increased.

Whenever the best solution found has not been improved over the previous
generation, pc increases based on the following function, where N represents the
number of generations executed without improvements, NG the total number
of generations executed and NMF represents the size of the mutation operator
neighborhood:

pc = pc +
N2

NMF 2
+

NG

NMF 2

As seen in the formula above, pc increases proportionally to the total number
of generations (NG) and the number of generations without any improvement
in the best solution (N).



2.2 Multi-Crossover mechanism

In relation to the multi-crossover feature, as we have already said, our AMCPA
has more than one crossover operator which are alternated during the execution.
At the beginning, one operator is assigned at random. Along the execution, this
function will be randomly replaced by another available, allowing repetitions.
For this purpose, a maximum pc value is defined. If over the generations the pc
value exceeds that maximum, the crossover function will be replaced at random
by another one, and pc will be restarted with the initial value.

The maximum pc value is an adjustable parameter, which has to be high
enough to prevent a premature function change. Furthermore, to avoid an
excessive runtime waste, the value cannot be too high.

This mechanism allows a diversification of the population much more efficient
than other similar techniques. That is, prevent the algorithm from being trapped
in a local optimum.

3 Experimentation

In this section we show in detail the results of applying our AMCPA three
well-known combinatorial optimization problems. As we have mentioned, the
technique proposed in this paper is a basic GA variation. For that reason, we
compare the results obtained by a traditional GA, and our new AMCPA. For
both algorithms we have used similar functions and parameters, so that the
only difference between them is their working way. This method of comparing
meta-heuristics is the most reliable way to determine which technique gets better
results. The tests were performed with the three different problems that have
been mentioned in the introduction: TSP, CVRP and VRPB. All these problems
are well-known in combinatorial optimization and they are used in many studies
annually [26–33]

3.1 Parameters of the algorithms

For both algorithms, the population is composed by 50 individuals, which are
created randomly. The aim of this study is to make a comparison between our
AMCPA and a GA, for that reason the population size is not very important,
as long as the two meta-heuristics have the same. Regarding the selection and
survivor phases, same function is used for both in all instances, which is the 0.5
elitist - 0.5 random. About the ending criteria, the execution of both algorithms
finishes when there are a generation number proportional to the size of the
neighborhood (obtained by the mutation operator) without improvements in
the best solution found. The individuals encoding mode is the Path Encoding.

For the GA, the pm is 0.05 while the pc is 0.95. In the case of the proposed
AMCPA, the pc starts at 0.0. When the best solution found is not improved, the
pc increases following the formula shown in 2.1, otherwise, it returns to 0.0.

For the TSP, the crossover functions used for our AMCPA are Order
Crossover (OX) [34], Modified Order Crossover (MOX) [35] and Order Based



Crossover (OBX) [36]. These functions have been widely used since their creation
[37–41]. On the other hand, OX is used as crossover function for the GA. The
mutation function for both techniques is the 2-opt [42], which has been very used
since its formulation [43, 44].

For the CVRP and VRPB, the crossover functions used for the proposed
AMCPA are the Half Crossover (HX) and Half Random Crossover (HRX).
These functions are a particular case of the traditional crossover, in which the
cut point is made always in the middle of the path. With HX, first, the 50%
of the best routes in one randomly chosen parent are selected and inserted in
the child. Then, the nodes already inserted are removed from the other parent.
Finally, the remaining nodes are inserted in the same order in the final solution,
creating new routes. The HRX working way is similar to HX. In this case, in
the first step, the routes selected from one of the parents are chosen randomly,
instead of selecting the best ones. For the GA the crossover function used is the
HX.

Continuing with the CVRP and VRPB, regarding the mutation function, we
have used for both techniques the called Vertex Insertion Routes. This function
selects and extracts one random node from a random route. Then, the node is
re-inserted in a random position in another randomly selected route. New routes
creation is possible with this function.

3.2 Results

All the tests were performed on an Intel Core i5 2410 laptop, with 2.30 GHz
and a 4 GB of RAM. For each run we display the total average, the best result
obtained and the standard deviation. The objetive function used in the three
problems is the total traveled distance. We also show the average runtime, in
seconds. In order to determine if GB average is significantly different than the
averages obtained by GA, we perform Students t-test. The t statistic has the
following form [45]:

t =
X1 −X2√

(n1−1)SD2
1+(n2−1)SD2

2

n1n2−2
n1+n2

n1n2

where:

X1: Average of our AMCPA,
SD1: Standar deviation of our AMCPA,
X2: Average of GA,
SD2: Standar deviation of GA,
n1: Our AMCPA size,
n2: GA size,

The t values shown can be positive, neutral, or negative. The positive value
of t indicates that our proposal is significantly better than GA. In the opposite



case, GA obtains better solutions. If t is neutral, the difference between the two
algorithms is not significant. We stated confidence interval at the 95% confidence
level (t0.05 = 2.021).

Each experiment is repeated 20 times. Instances for the TSP were obtained
from the TSPLIB Benchmark [46]. For the CVRP, the instances were picked
from the CVRP set of Christofides and Eilon (http://neo.lcc.uma.es/vrp 1). The
name of each TSP and CVRP instances has a number that displays the number
of nodes it has. Tables 1 and 2 show the results for these problems.

Instance Proposed AMCPA Genetic Algorithm t test

Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t

Oliver30 420 427.5 4.4 420 0.08 435.3 (+1.82) 15.3 420 0.19 +
Eilon50 425 440.5 6.6 430 0.42 469.9 17.5 435 1.59 +
Eil51 426 445.0 5.9 441 0.36 465.7 10.5 441 1.33 +
Berlin52 7542 7805.2 284.7 7542 0.29 8040.1 188.4 7745 1.36 +
St70 675 706.5 16.1 692 0.81 750.2 30.1 707 4.18 +
Eilon75 535 575.0 9.5 547 1.27 615.4 14.7 585 6.22 +
Eil76 538 578.1 12.2 566 1.28 610.6 12.2 558 6.96 +
KroA100 21282 22125.3 460.3 21608 2.25 22270.4 711.0 21566 14.84 +
KroB100 22140 23043.7 355.6 22536 2.28 23565.4 489.3 23253 13.54 +
KroC100 20749 21550.8 355.6 20785 2.40 22572.2 713.6 22271 16.52 +
KroD100 21294 22125.5 457.0 21725 2.25 23246.8 424.7 22162 12.92 +
KroE100 22068 23196.7 484.9 22611 2.54 23329.6 712.4 22412 12.72 +
Eil101 629 678.1 13.6 657 4.11 725.8 22.2 696 18.38 +
Pr107 44303 45361.2 953.1 44438 4.50 46742.2 1404.7 45833 18.21 +
Pr124 59030 60578.6 752.4 59030 6.86 62203.0 1223.3 60127 22.34 +
Pr136 96772 101712.4 1548.1 98125 7.42 104308.7 2425.1 99835 46.79 +
Pr144 58537 60259.8 1128.6 59061 9.57 62892.2 2552.9 60275 50.12 +
Pr152 73682 76225.4 1138.0 74518 10.32 77925.1 2862.3 74250 57.25 +

Table 1. Results of our AMCPA and GA for the TSP

For the VRPB we have used 10 instances. The first 6 were obtained from the
VRPTW Benchmark of Solomon (http://neo.lcc.uma.es/vrp). In this case, the
time constraints have been removed, but vehicle capacities and the amount of
customer demands are retained. Apart from this, we also have been modified the
demands nature with the aim of creating pickup and deliveries. The remaining 4
instances were obtained from the CVRP set of Christofides and Eilon. In these
instances, the vehicle capacities and the number of nodes have been maintained,
but the demand types have been also changed to have pickups and deliveries.
For these cases the optimums are not shown, since they are not typical VRPB
instances, therefore, these values are unknown. The last table (table 3) shows
the results for this problem.

1 Last update: January 2013



Instance Proposed AMCPA Genetic Algorithm t test

Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t

En22k4 375 395.6 7.1 375 2.08 388.4 15.1 375 3.78 -
En23k3 569 611.8 43.3 569 2.24 646.5 38.6 592 3.78 +
En30k3 534 560.7 25.8 534 3.02 570.8 25.1 535 6.74 +
En33k4 835 903.5 20.2 869 3.15 921.1 27.2 882 7.40 +
En51k5 521 617.6 27.2 587 4.56 680.8 47.1 604 18.17 +
En76k7 682 813.0 62.8 762 10.17 878.9 44.8 793 57.17 +
En76k8 735 876.5 32.1 819 10.67 953.4 46.5 920 53.86 +
En76k10 830 965.8 17.6 921 11.04 1029.6 34.4 956 55.27 +
En76k14 1021 1170.7 46.3 1135 7.39 1191.6 35.0 1125 80.54 +
En101k8 815 1012.0 59.6 916 17.95 1081.0 43.3 1011 100.25 +
En101k14 1071 1272.6 47.1 1201 18.60 1369.7 49.8 1308 120.84 +

Table 2. Results of our AMCPA and GA for the CVRP

Instance Proposed AMCPA Genetic Algorithm t test

Name Avg. S. dev. Best Time Avg. S. dev. Best Time t

C101 724.4 41.9 627 8.25 723.0 71.9 624 34.93 ∗
C201 652.4 12.4 617 4.04 849.9 98.8 744 25.43 +
R101 962.2 38.7 875 5.86 1081.2 70.7 957 29.51 +
R201 1105.2 41.7 1021 12.54 1335.7 112.4 1224 56.94 +
RC101 595.2 47.1 529 2.13 659.4 64.2 563 5.45 +
RC201 1221.6 90.8 1167 18.35 1505.3 92.2 1367 57.59 +
En30k4 534.5 27.8 500 1.57 583.4 67.0 520 3.53 +
En33k4 812.9 45.8 787 1.85 848.9 44.4 751 4.64 +
En51k5 688.1 34.8 636 4.01 727.6 30.6 680 9.41 +
En76k8 912.8 43.5 798 7.55 1008.8 40.5 927 28.61 +

Table 3. Results of our AMCPA and GA for the VRPB

3.3 Analysis of results

Viewing the results obtained the conclusion that can be drawn is clear. The
proposed technique outperforms the GA in terms of solution quality and
runtimes. The reason why our algorithm needs lower runtime is logical. If
mutation and crossover functions are compared, the last ones needs more time to
execute, since they operate with two different solutions, and their working way
is more complex that the mutation. On the other hand, the mutation operates
with one solution and it is a simple modification in a chromosome which can be
made in a minimum time. Our AMCPA makes fewer crossovers than the GA.
This fact is perfectly reflected in the runtimes, giving a great advantage to our
technique.

The reason why the proposed AMCPA gets better results can also be
explained, and it is based on the conclusions obtained in our recent study [23].
Crossovers between different individuals are very useful resources if we want to
make jumps in the solution space. Using crossovers helps a broad exploration
of the solution space, but does not help to make an exhaustive search. To get



a deeper search, the existence of a function that takes care of optimizing the
solutions independently becomes necessary. The mutation function can handle
this goal easily.

With all this, our AMCPA is a technique that is able to perform a thorough
and intense search in promising regions of the solution space using the mutation
function. While it do this, it uses the crossover function in case the search is
in a bump, in order to avoid local optimums. Using the crossovers, the current
population is expanded through the entire solution space, and will be easier to
find regions that allow the search to reach better results. This diversification is
enhanced thanks to the multi-crossover, allowing a broader exploration.

By contrast, with the GA basic structure, the search performed by the
algorithm comprises a large percentage of the solution space, but has a smaller
capacity to deepen in those areas which are most promising. This means that,
finally, the GA obtains worse results than the DEA.

4 Conclusions and further work

In this paper we have presented an Adaptive Multi-Crossover Population
Algorithm for solving routing problems, which is a variation of the conventional
genetic algorithm. Our AMCPA reverses GAs conventional philosophy, giving
priority to the individual autonomous improvement, making crossovers only
when they are beneficial for the search process. The proposed technique has
two mechanisms to avoid the premature convergence, helping to the population
diversity. These mechanisms are the crossover probability adaption and the use
of multiple crossover operators.

Initially we have introduced our new meta-heuristic, explaining how it works.
Then, we have shown the results obtained by applying it to three different routing
problems. We have compared these outcomes with obtained by a basic GA, to
conclude that our method gets better results. Finally, we have reasoned why our
new technique is better than the GA.

As future work, we will compare the performance of our technique with other
approaches of similar philosophy that we can find in the literature. In addition,
we are planning to apply our new proposal to real life routing problems. At
this time, we are planning its application to a dynamic distribution system
of car windscreen repairs. In this case the problem is designed as a dynamic
CVRP, wherein the routes may be re-planned according to the needs of the
customers. Apart from this, we are planning to extend our technique, turning
it into an island-based meta-heuristic. This new technique will use different
crossover functions for the different populations evolving in each island, and
will make transfers of individuals between them.
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