
AMCPA: A Population Metaheuristic With Adaptive
Crossover Probability and Multi-Crossover Mechanism for

Solving Combinatorial Optimization Problems

Eneko Osaba1, Fernando Diaz2, Enrique Onieva1, Roberto Carballedo1, and Asier Perallos1

1Deusto Institute of Technology (DeustoTech), University of Deusto
Av. Universidades 24, Bilbao 48007, Spain

{e.osaba, enrique.onieva, roberto.carballedo, perallos}@deusto.es

2Telecommunications Department, University of Deusto
Av. Universidades 24, Bilbao 48007, Spain

fernando.diaz@deusto.es

ABSTRACT

Combinatorial optimization is a field that receives much attention in artificial intelligence.
Many problems of this type can be found in the literature, and a large number of techniques
have been developed to be applied to them. Nowadays, population algorithms have
become one of the most successful metaheuristics for solving this kind of problems. Among
population techniques, Genetic Algorithms (GA) have received most attention due to its
robustness and easy applicability. In this paper, an Adaptive Multi-Crossover Population
Algorithm (AMCPA) is proposed, which is a variant of the classic GA. The presented
AMCPA changes the philosophy of the basic GAs, giving priority to the mutation phase and
providing dynamism to the crossover probability. To prevent the premature convergence, in
the proposed AMCPA, the crossover probability begins with a low value, which is adapted
every generation. Apart from this, as another mechanism to avoid premature convergence,
different crossover functions are used alternatively. In order to prove the quality of the
proposed technique, it is applied to six different combinatorial optimization problems, and its
results are compared with the ones obtained by a classic GA. Additionally, the convergence
behaviour of both techniques are also compared. Furthermore, with the objective of
performing a rigorous comparison, a statistical study is conducted to compare these
outcomes. The problems used during the test are: Symmetric and Asymmetric Traveling
Salesman Problem, Capacitated Vehicle Routing Problem, Vehicle Routing Problem with
Backhauls, N-Queens, and the one-dimensional Bin Packing Problem.

Keywords: Adaptive Evolutionary Algorithm, Metaheuristic, Multi-crossover, Genetic
Algorithm, Combinatorial Optimization.

2010 Mathematics Subject Classification: 90C27, 90C59, 68T20.
1998 Computing Classification System: I.2.8., G.1.6.

1 Introduction

Nowadays, combinatorial optimization is one of the most studied fields in artificial intelligence.
Problems arising in this area are the focus of many research studies every year (Blum,
Puchinger, Raidl and Roli, 2011). Some examples of this kind of problems are the Job-shop
Scheduling Problem (Coffman and Bruno, 1976), and the Traveling Salesman Problem (TSP)
(Lawler, Lenstra, Kan and Shmoys, 1985). The main interest of these problems lies on their
applicability to real life and their complexity. Being NP-Hard (Lenstra and Kan, 1981), a large
number of techniques have been developed throughout the history with the aim of being applied
in this field. Some of the most commonly used techniques are the tabu search (Glover, 1989),
and the simulated annealing (Kirkpatrick, Gellat and Vecchi, 1983).
Additionally, population based algorithms have become one of the most successful approaches
for solving combinatorial optimization problems. As is well known, these type of techniques
work with one (or more than one) population of solutions, which evolves along the algorithm
execution. Thanks to their robustness and their adaptability to a wide variety of problems,
many population based metaheuristics have been introduced along the history, as the genetic
algorithm (GA) (Holland, 1975), distributed population algorithm (Cantú-Paz, 1998; Knysh and
Kureichik, 2010), particle swarm optimization (Kennedy and Eberhart, 1995; Eberhart and
Shi, 2001; Yazdani, Nasiri, Azizi, Sepas-Moghaddam and Meybodi, 2013), cultural algorithm
(Reynolds, 1994; Ali, Alkhatib and Tashtoush, 2013), and the ant colony system (Dorigo
and Gambardella, 1997; Joelianto and Wiranto, 2011). Furthermore, in recent years some
sophisticated population techniques have been proposed, such as the imperialist competitive
algorithm (Atashpaz-Gargari and Lucas, 2007; Xing and Gao, 2014), artificial bee colony
(Karaboga, Gorkemli, Ozturk and Karaboga, 2012; Zhang and Yuen, 2013), firefly algorithm
(Yang, 2010; Nasiri and Meybodi, 2012), gravitationl search algorithm (Rashedi, Nezamabadi-
Pour and Saryazdi, 2009; Precup, David, Petriu, Preitl and Paul, 2011; Purcaru, Precup,
Iercan, Fedorovici, David and Dragan, 2013), or golden ball metaheuristic (Osaba, Diaz and
Onieva, 2013; Osaba, Diaz and Onieva, 2014). Anyway, among all the population techniques,
the GA is the one which has received most attention.
GAs was proposed in the ’70s, in an attempt to imitate the genetic process of living organisms
and the law of the evolution of species. The basic principles of the GA were proposed
by Holland in 1975 (Holland, 1975), even though its practical use for solving complex
problems was demonstrated later by De Jong (De Jong, 1975) and Goldberg (Goldberg, 1989).
Thereafter, GAs has been the focus of a large number of research studies (Srinivas and
Patnaik, 1994b), and they have been applied in a wide range of fields, as industry (Gao, Gen,
Sun and Zhao, 2007) or transport (Moon, Lee and Seong, 2012; Vidal, Crainic, Gendreau,
Lahrichi and Rei, 2012).
The parameter adjustment is one of the most controversial questions in the field of GAs.
Related studies have been done since the 80’s (Grefenstette, 1986), until today (Fernandez-
Prieto, Gadeo-Martos and Velasco, 2011). Concretely, the idea of adapting crossover and
mutation probabilities (pc and pm) in order to improve the GAs performance has been studied
since long time ago (Schaffer and Morishima, 1987; Davis, 1989). Anyway, it is still subject
of many studies nowadays. The whole literature for this field is very large. Several examples

are mentioned in this paper. In (Srinivas and Patnaik, 1994a), a GA that adapts its pc and pm
in function of the population fitness difference and the maximum fitness value is proposed. In
(Zhang, Chung and Zhong, 2005; Zhang, Chung and Lo, 2007), a GA that uses fuzzy logic to
adaptively tune pc and pm is introduced. In these papers, a clustering technique is used to split
the population in clusters. Then, a fuzzy system determines the pc and pm depending on the
best and worst chromosome of each cluster. In (Vafaee and Nelson, 2009) a GA is proposed
which adapts the pm, and determines the types of replacing genes in the mutation procedure.
In (Ye, Li and Xie, 2010) some improvements on adaptive GAs for reliability-related applications
are introduced. In that study, a simple parameter-adjusting method is presented, which uses
the fitness average and variance of the population. In (Xu, Zheng, Chen and Liu, 2010)
an adaptive algorithm for optimizing the design of high pressure hydrogen storage vessel is
presented. That technique adjusts pm and pc depending on the fitness value of each individual.
Another example of adapting pc and pm is the one presented in (Wang and Tang, 2011). In
that work an improved adaptive genetic algorithm based on hormone modulation mechanism
to solve the job-shop scheduling problem is proposed.
In the following lines, some recent studies published last year (2013) in this field are introduced.
The existence of these works demonstrates that the parameters adjustment in GAs is a topic of
interest in the scientific community nowadays. In (De Giovanni, Massi and Pezzella, 2013) an
adaptive GA for large-size open stack problems is presented. This genetic approach combines
a classical GA with and adaptive search strategy. That strategy uses a composite and dynamic
fitness function which modifies the search landscape. In (Yang, Zheng, Yang, Zhou and
Liu, 2013) an adaptive GA for daily optimal operation of cascade reservoirs is proposed.
That adaptive GA adjusts the pc and the pm in order to improve the convergence speed of
the GA. In (Cho, Lee, Lee and Gen, 2013) an adaptive GA for the time dependent inventory
routing problems is introduced. That GA modifies the settings of the genetic parameter values
according to the performance of the genetic operators. In that approach the fitness values of
parents and offsprings are compared every generation. If the GA generates better offsprings
during the genetic search process, pc and pm are increased, and vice versa. Finally, in (Zhang,
Zhang, Wang, Jiang and Wang, 2013; Ponz-Tienda, Yepes, Pellicer and Moreno-Flores, 2013)
can be seen some other recent examples of adaptive GAs.
In regard to the multi-crossover mechanism, it has also been studied in previous studies.
However, it has been used less than parameter adjustment methods. In (Spears, 1995), for
example, an adapting crossover mechanism for a population algorithm is presented, which
changes the crossover operator and the pc. The algorithm proposed in that work uses two
crossovers functions, which alternate depending on the situation of the population in the
solution space. Another example can be found in (Mukherjee, Ganguly and Das, 2012). In
that paper an adaptive GA is proposed for solving the well-known TSP. That GA works with
three different crossover functions. The choice of the operatod is decided partly by the quality
of each of them and partly at random. In the literature can be found an alternative approach for
the multi-crossover. In this case, the multi-crossover mechanism is implemented by developing
crossover functions which use more than two chromosomes (Chang, 2007). Although this
approach is worth mentioning, it clearly falls outside the scope of the present work.

In this paper a new Adaptive Multi-Crossover Population Algorithm (AMCPA) for solving
combinatorial optimization problems is presented. This new technique is a variant of the classic
GA. In contrast to the classical philosophy of the GA, the introduced metaheuristic prioritizes
the local improvement of the individuals (mutation), applying crossover operators only when
they could be beneficial to the search process. In this way, in the presented AMCPA the
crossover probability is adapted depending on the search performance on recent generations,
and the current generation number. This dynamism helps the technique to prevent premature
convergence. Besides this, the presented AMCPA uses multiple crossover functions, which
are applied alternatively.
In order to prove the quality of the proposed technique, it has been applied to six different
combinatorial optimization problems. The results obtained by our AMCPA in these six problems
are compared with the ones obtained by a classic GA. Additionally, the convergence behaviour
of both techniques are also analyzed and compared. Furthermore, with the objective of
performing a rigorous comparison, a statistical study is conducted to compare these outcomes,
performing the well-known normal distribution z-test. The main innovative aspects of the
proposed AMCPA are the following:

1. The proposed AMCPA reverses the philosophy of conventional GAs. It starts with a very
low or null value for pc, a high values of pm.

2. The introduced approach combines the multi-crossover mechanism and the pc adjust-
ment.

3. The presented technique adapts its pc depending on the search performance in recent
iterations, and current generation number. In contrast, most of the previous studies rely
the pc adaptation in the population fitness.

The rest of the paper is structured as follows. In Section 2 the proposed technique is
introduced. In Section 3 the problems used in the experimentation are described. Then, in
Section 4 the experimentation conducted is shown. In the same section the results obtained
by the presented AMCPA are compared with the ones obtained by a basic GA. This work
finishes with the conclusions and future work (Section 5).

2 The proposed Adaptive Multi-Crossover Population Algorithm

As mentioned in the previous section, the proposed AMCPA is a variant of a classical GA.
The presented technique reverses the philosophy of conventional GAs, giving higher priority
to the individual improvement, provided by the mutation phase. On the other hand, the
metaheuristic gives less importance to the crossovers phase and the cooperative improvement.
These fundamentals are based on the recently published work (Osaba, Carballedo, Diaz and
Perallos, 2013), in which the suitability of some blind crossover operators in GAs for solving
path-encoded routing problems is analyzed. In that research study, a theory which stands that
the crossover phase is not efficient for the optimization capacity of a GA when it is applied
to path-encoded routing problems is checked. For this reason, the proposed metaheuristic

provides greater importance to the mutation phase. Despite this, as can be read in (Osaba,
Carballedo, Diaz and Perallos, 2013), the crossovers between different individuals can be
beneficial to maintain the diversity of the population. Accordingly, in the proposed AMCPA
a low pc is used, which is adapted every generation depending on the search needs. This
adaptive mechanism is described in Section 2.1.
Besides that, as an additional tool to avoid the premature convergence, a multi-crossover
mechanism has been developed, which changes the crossover operator for all the population.
These changes are made based on various concepts which are explained in Section 2.2.
The flowchart of the proposed AMCPA can be seen in Figure 1. In this figure, green
blocks represent the basic steps of the classic GA, also applicable in the presented AMCPA.
Furthermore, the blue blocks depict the steps of the adaptive mechanism (Section 2.1).
Finally, the purple blocks represent the steps of the multi-crossover mechanism (Section 2.2).
Additionally, the pseudocode of the metaheuristic is depicted in Algorithm 1.

Figure 1: Flowchart of the algorithm

2.1 Adaptive Mechanism

In the proposed AMCPA every individual in the population goes through the mutation process
at each generation. This fact would be equivalent to have a pm equals to 100%. In addition,
this mutation probability is a fixed value, and it does not vary along the execution. On the
other hand, regarding the pc, it starts with a null (0%) value. That parameter is modified as
the algorithmic procedure progresses, increasing or restarting its value. This modification is
performed based on the improvement in the best solution found in the last generation. The

Algorithm 1: Pseudocode of the proposed AMCPA

Initialization of the population;
pc = 0.0;
pm = 1.0;
repeat

Mutation phase;
Parents selection process;
Crossover phase;
Survivor selection process;
if best solution has been improved then

pc is restarted;
else

if Maxpc has been reached then
Change the crossover function;
pc is restarted;

else
pc is increased;

end

end

until termination criterion reached ;
Return the best individual found;

criteria to modify the pc are as follows:

• The best solution found by the technique has been improved in the last generation: in
this case, it could be assumed that it is not necessary to diversify the population. In this
case, pc is restarted to its initial value.

• The best solution found by the technique has not been improved in the last generation:
in this instance, it may be considered that the search process could be trapped in a
local optimum, or that the population could be concentrated in the same region of the
solution space. At this time, pc is increased, with the intention of increasing the population
diversification using crossover operators.

Whenever the best solution found has not been improved over the previous generation, pc
increases based on the following function:

pc = pc +
2 ·Gwi +G

N3
I

(2.1)

where:

Gwi: number of generations executed without improvements,
G: total number of generations executed,

NI : number of individuals in the population,

As seen in Eq. (1), pc increases proportionally to the number of generations without any
improvement in the best solution (Gwi) and the total number of generations (G). In Section 4.1
two examples of its calculation are shown.

2.2 Multi-Crossover mechanism

Regarding the multi-crossover feature, as mentioned in Section 1, the proposed technique has
more than one crossover operator which are alternated during the execution of the algorithm.
At the initialization phase, one operator is assigned at random. Then, when necessary, this
function is replaced at random by another available, allowing repetition. For this purpose, a
maximum value for pc is defined, Maxpc. If over the generations the pc value exceeds Maxpc,
the crossover function is randomly replaced by another one, and pc is restarted to its initial
value.
It is noteworthy that Maxpc is an adjustable parameter, which has to be high enough to prevent
a premature function change. Additionally, its value cannot be too high, in order to avoid an
excessive runtime waste.
It is expected that the multi-crossover mechanism facilitates the population diversification in an
efficient way. In this way, it can prevent the search from being trapped in a local optimum. This
feature will be tested in Section 4.

3 Descripion of the problems

As has been said in Section 1, the proposed AMCPA has been applied to six different
combinatorial optimization problems. In this section these problems are briefly described. The
problems used are the following: Symmetric and Asymmetric Traveling Salesman Problem
(TSP and ATSP) (Section 3.1), Capacitated Vehicle Routing Problem (CVRP) (Section 3.2),
Vehicle Routing Problem with Backhauls (VRPB) (Section 3.3), N-Queens (NQP) (Section 3.4),
and the one-dimensional Bin Packing Problem (BPP) (Section 3.5).

3.1 Symmetric and Asymmetric Traveling Salesman Problem

The TSP is one of the most famous and widely studied problems throughout history in
operations research and computer science. It has a great scientific interest, and it is used
in a large number of research studies annually (Rego, Gamboa, Glover and Osterman, 2011).
This problem can be defined as a complete graph G = (V,A), where V = {v1, v2, . . . , vn} is the
set of vertexes which represents the nodes of the system, and A = {(vi, vj) : vi, vj ∈ V, i 6= j}
is the set of arcs which represents the interconnection between nodes. Additionally, each arc
has an associated distance cost dij . In the symmetric version of the TSP the distance between
two nodes is the same in both directions, i.e., dij = dji. On the other hand, for the ATSP,
although there may be pairs of nodes where dij = dji, in most cases dij 6= dji.

The objective of the TSP and ATSP is to find a route that, starting and finishing at the same
node, visits every customer once, and that minimizes the total distance traveled. In this way,
the objective function for these problems is the total distance traveled in the route.
In this paper, the solutions for the TSP and ATSP are encoded using the well-known path
representation (Larranaga, Kuijpers, Murga, Inza and Dizdarevic, 1999). Thereby, each
individual is encoded by a permutation of numbers, which represents the order in which the
nodes are visited. For example, for a possible 8-node instance of the TSP, or ATSP, one
possible solution would be encoded as X = (1, 3, 5, 7, 8, 4, 2, 6), and its fitness would be f(X)

= d13+d35+d57+d78+d84+d42+d26+d61.

3.2 Capacitated Vehicle Routing Problem

The CVRP is also one of the most studied problems in operational research and computers
science. Due to its applicability to real life, and its complexity, the CVRP is used in many studies
every year (Golden, Raghavan and Wasil, 2008). The CVRP can be defined as a complete
graph G = (V,A), where V = {v0, v1, . . . , vn} is the set of vertexes and A = {(vi, vj) : vi, vj ∈
V, i 6= j} is the set of arcs. The vertex v0 represents the depot, and the rest are the customers,
each of them with a fixed demand qi. A fleet of vehicles K is available with a limited capacity
Q for each of them. The objective of the CVRP is to find a number of routes with a minimum
cost such that 1) each route starts and ends at the depot, 2) each client is visited exactly by
one route and 3) the total demand of the customers visited by one route does not exceed the
total capacity of the vehicle that performs it (Cordeau and Maischberger, 2012).
In this case, the path representation is also used for the individuals encoding (Toth and
Vigo, 2002a). In this way, the routes are also represented as a permutation of nodes. In
addition, to distinguish the different routes in a solution, they are separated by zeros. For
example, in a 8-noded instance, one possible solution of three routes would be encoded
as X = (2, 5, 4,0, 6, 1,0, 8, 3, 4), and its fitness would be f(X) = d02+d25+d54+d40+ d06+d61+
d10+d08+d83+d34+d40.

3.3 Vehicle Routing Problem with Backhauls

The Vehicle Routing Problem with Backhauls or VRPB is a variant of the basic VRP where
customers can demand either a delivery or a pickup of certain goods (Golden, Baker, Alfaro
and Schaffer, 1985). In the VRPB, deliveries are done first, and then the pick-up. This is so
because, otherwise, it could be a movement of material within the mobile unit that could be
counterproductive. For example, putting materials on the front of the trunk when at the bottom
are still some goods that they have not been delivered yet. Thanks to its fidelity to the real
world, the VRPB is used in many studies annually (Salhi, Wassan and Hajarat, 2013).
This problem can be defined as the CVRP, with the difference that the set of customer V can be
separated into two subsets (Toth and Vigo, 2002b). The first one, L, called linehaul customers,
contains those who demand the delivery of goods. On the other hand, the second subset, B,
called backhaul customers, demand the pickup of a certain amount of material. To express
customer demand, a simple way is to use positive values for linehaul customers, and negative

values for backhaul ones.
Finally, the path representation is also used for this problem, and the routes are also
encoded as nodes permutation. As an example, suppose a set of six linehaul customers
L = {L1, L2, L3, L4, L5, L6}, and six backhaul customers B = {B1, B2, B3, B4, B5, B6}. One
possible solution with three vehicles would be X=(L2, L5, B1, B6, 0, L1, L6, L4, B3, 0, L3,
B2, B5, B4), and it fitness would be f(X) = d0L2+dL2L5+dL5B1+dB1B6+dB60 + d0L1+dL1L6+
dL6L4+dL4B3+dB30 + d0L3+dL3B2+dB2B5+dB5B4+dB40.

3.4 N-Queens Problem

The NQP is a generalization of the problem of putting eight non attacking queens on
a chessboard (Bell and Stevens, 2009), which was introduced by M. Bezzel in 1848
(Bezzel, 1848). This problem consists of placing N queens on a NxN chess board, in
order that they cannot attack each other. This problem can be formulated as a combinatorial
optimization problem (Hu, Eberhart and Shi, 2003), despite being a classical combinatorial
design problem (constraint satisfaction problem). In the present paper, NQP is formulated as
a combinatorial optimization problem, where a solution X is coded as a N -tuple (q1, q2, ..., qn),
which is a permutation of the N -tuple (1, 2, ..., N). Each qi represents the row occupied by
the queen positioned in the ith column. Vertical and horizontal collisions are avoided using
this representation. Therefore, the objective function of the NQP is defined as the number of
diagonal collisions along the board. Notice that ith and jth queens collide diagonally if:

|i− qi| = |j − qj | ∀i, j : {1, 2, ..., N}; i 6= j (3.1)

Hence, the objective of this problem is to minimize the number of conflicts, being zero the ideal
fitness. This same formulation is frequently used in the literature (Masehian, Akbaripour and
Mohabbati-Kalejahi, 2013; Martinjak and Golub, 2007).

3.5 One-dimensional Bin Packing Problem

In distribution and production the fact of packing of items into boxes or bins is a daily task.
Depending on the shape and size of the items, as well as the form and capacity of bins, a wide
amount of different packing problems can be formulated. The BPP is the simplest problem
in this field (Karmarkar and Karp, 1982; Martello and Toth, 1990), and it is frequently used
in the literature as benchmarking problem (Fleszar and Charalambous, 2011; Sim, Hart and
Paechter, 2012; Sim and Hart, 2013). The BPP consists in a set of items I = {i1, i2, . . . , in},
each with an associated size si, and an infinite number of bins B of an equal capacity q. The
objective of the BPP is to pack all the items into a minimum number of bins. Therefore, the
objective function is the number of bins, which has to be minimized.
The solutions of this problem are encoded as a permutation of items. To count the number of
bins needed for one solution, the size of the items is accumulated in a variable, accumSize.
When accumSize exceeds q, the number of bins is increased in 1, and accumSize is restarted.
For example, in a simple instance of 10 items, each one with a size of 30, and q=90. One
possible solution could be X = {i9, i6, i1, i2, i4, i10, i8, i3, i7, i5}, and its fitness would be 4.

4 Experimentation

In this section the experimentation performed in this study is detailed. As has been mentioned
in Section 1, the technique proposed in this paper is a variant of the classical GA. For that
reason, the results obtained by the presented AMCPA are compared with the ones obtained
by a traditional GA. Additionally, in the experimentation performed in this study, not only the
qualities of the results are compared, but also the convergence behaviour of both techniques.
Furthermore, a statictical study is conducted with these results, using the well-known normal
distribution z-test. For both algorithms similar functions and parameters have been used,
so that the only difference between them is their working way. This method of comparing
metaheuristics is the most reliable way to determine which technique gets better results. In
Section 4.1 the parameters used for each metaheuristic are described. Then, in Section 4.2
the basic aspects of the experimentation are introduced. After that, the results are shown in
Section 4.3, and they are analyzed in Section 4.4.

4.1 Parameters of the algorithms

For all the experiments and problems, an initial population composed by 50 randomly
generated individuals is used by both techniques. The parametrization of the GA has
been performed based on the concepts outlined in many previously published works (Cantú-
Paz, 1998; Tomassini, 1995; Fogel, 1994). In accordance with these studies, the crossover is
considered the main operator of GAs, while the mutation is a secondary phase. In line with
these concepts, for the GA the pc has been set in 95%, and the pm in 5%. In the case of the
proposed AMCPA, the pc starts at 0%. When the best solution found is not improved, the pc

increases following the Equation 1, otherwise, it returns to 0%. Moreover, Maxpc has been
stablished in 40%.
In relation to the parents selection criteria, first, each individual of the population is selected
as parent with a probability equal to pc. If one individual is selected for the crossover, the
other participant is selected randomly. Regarding the survivor function, a 50% elitist - 50%
random function has been used (which means that the half of the population is composed by
the best individuals, and the remaining ones are selected randomly). About the ending criteria,
the execution of each algorithm finishes when the population converges. This same criteria
has been used many time in the literature (Moraglio and Poli, 2011). In the present study, the
convergence is assumed when there are n+

∑n
k=1 k generations without improvements in the

best solution, where n is the size of the problem.
Same crossover and mutation functions have been used for the TSP, ATSP, NQP, and
BPP. Regarding the crossover functions, for the presented AMCPA Order Crossover (OX)
(Davis, 1985), Modified Order Crossover (MOX) (Ray, Bandyopadhyay and Pal, 2004), Half
Crossover (HX) (Osaba, Carballedo, Diaz and Perallos, 2013), and Order Based Crossover
(OBX) (Syswerda, 1991) have been used. These functions have been often used in the
literature (Sharma and Gupta, 2011; Prins, 2004; Albayrak and Allahverdi, 2011; Rocha,
Sousa, Cortez and Rio, 2011; Wang, Zhang, Yang, Hu and Liu, 2005; Osaba, Diaz and
Onieva, 2014). On the other hand, OX is used as crossover function for the GA. The mutation

function for both techniques is the well-known 2-opt (Lin, 1965), which has been widely used
since its formulation (Tarantilis and Kiranoudis, 2007; Bianchessi and Righini, 2007).
Furthermore, the crossover functions used for the proposed AMCPA for the CVRP and VRPB
are the Half Route Crossover (HRX) and the Half Random Route Crossover (HRRX) (Osaba,
Diaz and Onieva, 2014; Osaba, Onieva, Carballedo, Diaz and Perallos, 2014). These functions
are a particular case of the traditional crossover, in which the cut point is made always in the
middle of the path. With HRX, first, the 50% of the best routes in one randomly chosen parent
are selected and inserted in the child. Then, the nodes already inserted are removed from the
other parent. Finally, the remaining nodes are inserted in the same order in the final solution,
creating new routes. The HRRX working way is similar to HRX. In this case, in the first step,
the routes selected from one of the parents are chosen randomly, instead of selecting the best
ones. For the GA the crossover function used is the HRX.
Regarding the mutation function used for the CVRP and VRPB, the called Vertex Insertion
Routes (Osaba, Diaz and Onieva, 2014) has been used for both metaheuristics. This function
selects and extracts one random node from a random route. After that, this node is re-inserted
in a random position in another randomly selected route. The creation of new routes is possible
with this function.

4.2 Description of the experimentation

In this section the basic aspects of the experimentation are introduced. All the tests have been
performed on an Intel Core i7 3930 computer, with 3.20 GHz and a RAM of 16 GB. Java has
been used as programming language. For the TSP, 22 instances have been used, and they
have been obtained from the TSPLIB Benchmark (Reinelt, 1991). In addition, for the ATSP 19
instances have been chosen, obtained from the same benchmark. For the CVRP 15 instances
have been utilized. They have been picked from the VRPWeb (http://neo.lcc.uma.es/vrp). The
first 11 belong to the Christofides/Eilon benchmark (Christofides and Eilon, 1969), and the
remaining 4 to the Golden et al. large-scale benchmark (Golden, Wasil, Kelly and Chao, 1998).
For the VRPB 13 instances have been utilized. The first 6 were obtained from the VRPTW
Benchmark of Solomon (http://w.cba.neu.edu/msolomon/problems.htm). In this case, the time
constraints have been removed, but vehicle capacities and the amount of customer demands
are retained. Apart from this, the demands nature has been also modified with the aim of
creating pickup and deliveries. The remaining 4 instances have been obtained from the CVRP
set of Christofides and Eilon. In these instances, the vehicle capacities and the number of
nodes have been maintained, but the demand types have been also changed to have pickups
and deliveries. For these cases the optimums are not shown, since they are not typical VRPB
instances, therefore, these values are unknown.
Regarding the NQP, 15 different instances have been used. The name of each instance
describes the number of queens and the size of the chessboard. In this case, the optimum
of each instance is not shown, since it is known that it is 0 for all of them. Finally, in
relation to the BPP, another 15 instances have been chosen, which have been picked from the
Scholl/Klein benchmark (http://www.wiwi.uni-jena.de/entscheidung/binpp/index.htm.). These
cases are named NxCyWz a, where x is 1 (50 items), 2 (100 items), 3 (200 items) or 4 (500

items); y is 1 (capacity of 100), 2 (capacity of 120) and 3 (capacity of 150); z is 1 (items size
between 1 and 100) and 2 (items size between 20 and 100); and a is A or B as benchmark
indexing parameter.
For each instance 40 runs have been executed, and for each problem, the average fitness
value, average runtime, and convergence behaviour are shown. Additionally, the standard
deviations of the results and the convergence behaviour are also shown. Furthermore, with
the aim of performing a fair and rigorous comparison, the well-known normal distribution z-test
has been performed for all experiments. Thanks to this statistical test, it can be demonstrated
whether the differences in the results and convergence behaviour of both metaheuristics are
significant or not. The z statistic has the following form:

z =
XAMCPA −XGA√

σ2
AMCPA
nAMCPA

+
σ2
GA
nGA

Where Xi depicts the average fitness obtained by the technique i, σi is the standard deviation
of the technique i, and ni the sample size for technique i. In this way, the value of z can be
positive (+), negative (-), or neutral (*). A + indicates that the proposed AMCPA is significantly
better. In the opposite case, it obtains substantially worse solutions. If z is *, the difference is
not significant. The confidence interval has been stated at 95% (z0.05 = 1.96). It is noteworthy
that the z-test has been performed for the results quality and convergence.

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Optima Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.
Oliver30 420 425.3 7.6 6.6 1.54 0.16 431.4 13.5 6.6 3.21 0.25 + *
Eilon50 425 439.1 6.2 22.0 6.16 0.35 458.9 16.2 25.8 8.16 1.34 + +
Eil51 426 443.4 10.8 23.0 5.71 0.38 460.6 17.3 23.6 8.62 1.37 + *
Berlin52 7542 7835.5 249.5 10.8 3.74 0.32 8057.3 194.6 15.4 8.49 1.05 + +
St70 675 706.8 16.0 49.0 13.08 1.03 745.1 39.0 83.1 25.09 4.98 + +
Eilon75 535 571.4 10.9 59.0 23.47 1.41 614.3 42.7 84.7 27.39 6.42 + +
Eil76 538 571.0 8.7 50.7 12.27 1.34 607.3 21.5 50.7 14.73 6.82 + *
KroA100 21282 22120.1 520.2 67.1 15.77 2.61 22390.4 488.7 72.1 25.84 10.13 + *
KroB100 22140 23060.6 327.8 71.1 13.63 2.22 23437.0 598.8 82.1 25.77 10.98 + +
KroC100 20749 21670.8 424.6 75.7 16.30 2.35 22394.1 816.0 78.4 32.18 10.65 + *
KroD100 21294 22213.2 382.6 74.5 14.72 2.30 23204.8 666.8 77.9 23.78 10.54 + *
KroE100 22068 22992.5 347.0 83.6 22.13 2.75 23289.5 580.5 79.7 23.92 10.70 + *
Eil101 629 673.4 9.6 114.0 2.71 3.87 713.9 27.1 136.1 41.23 17.33 + +
Pr107 44303 45412.3 699.5 98.8 29.43 3.38 46593.9 1390.0 95.4 37.15 15.27 + *
Pr124 59030 60493.0 957.2 104.9 21.03 4.85 62046.3 1538.4 101.6 26.46 21.34 + *
Pr136 96772 101640.0 1359.3 108.6 23.27 5.63 103963.4 1108.9 115.4 28.93 25.15 + *
Pr144 58537 60302.5 1417.5 131.1 10.64 6.40 61884.3 1458.5 136.1 30.01 31.87 + *
Pr152 73682 76181.2 922.0 166.5 31.10 8.06 77546.6 1763.5 186.5 59.93 46.86 + *
Pr264 49135 53647.3 1957.5 173.0 27.13 20.54 58117.1 3707.6 152.8 31.61 86.05 + -
Pr299 48191 55032.7 4329.8 200.6 52.27 49.75 57331.0 5537.8 176.7 49.34 118.33 + -
Pr439 107217 117799.2 3043.6 736.4 410.04 97.11 128181.7 27291.3 944.0 507.70 315.05 + +
Pr1002 259047 286903.2 2494.6 6940.5 1950.06 315.11 300669.8 11240.1 7215.0 2197.44 821.53 + *

Table 1: Results of the proposed AMCPA and GA for the TSP

4.3 Results

In this section the results obtained in the experimentation are shown. As has been mentioned,
the tables present the averages and standard deviations of the convergence and results quality.
The convergence value depicts the generation in which the technique reaches the final result,
and it is displayed in hundreds. Additionally, the average runtimes (in seconds) are also
presented. Furthermore, for each instance the results of both z-tests are shown. In Table
1 the outcomes for the TSP are depicted. Meanwhile, in Table 2, the results obtained by both
metaheuristics for the CVRP are shown. On the other hand, Table 3 presents the outcomes
for the VRPB. Furthermore, results for the ATSP are placed in Table 4. Moreover, Table 5 and
Table 6 display the outcomes for the NQP and BPP, respectively.

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Optima Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.
En22k4 375 395.8 4.6 20.3 16.41 0.76 392.6 15.3 37.3 36.08 1.22 * +
En23k3 569 604.9 30.0 55.0 41.20 0.88 642.5 37.6 94.2 74.57 1.48 + +
En30k3 503 541.1 40.4 87.7 55.88 1.31 578.8 31.2 84.7 55.18 2.10 + *
En33k4 835 902.6 27.7 53.1 22.97 1.24 917.9 34.0 124.6 66.02 3.68 + +
En51k5 521 616.2 38.1 136.6 65.40 3.43 657.0 30.7 174.7 76.29 8.05 + +
En76k7 682 812.7 45.2 267.2 125.51 6.42 890.8 40.5 365.6 121.64 27.70 + +
En76k8 735 865.7 34.7 299.2 130.03 6.93 951.1 43.8 323.5 158.64 26.19 + *
En76k10 830 959.3 27.0 338.1 180.06 7.98 1031.8 41.8 306.2 143.19 27.65 + *
En76k14 1021 1143.9 26.6 196.3 98.53 6.51 1205.1 54.6 212.1 74.68 21.50 + *
En101k8 815 1003.3 39.8 486.6 234.97 10.90 1159.7 41.1 295.0 98.78 39.49 + -
En101k14 1071 1260.4 58.6 324.2 86.43 11.90 1407.9 53.0 268.5 97.28 35.89 + -
Kelly9 587.09 844.4 48.5 656.5 191.27 26.74 1112.7 45.4 718.5 21.46 116.44 + +
Kelly10 746.56 1117.9 37.5 1119.0 320.36 49.85 1323.6 32.5 1252.9 322.75 176.31 + *
Kelly11 932.68 1426.6 67.2 1817.4 539.80 122.64 1716.1 60.7 1711.3 613.12 388.30 + *
Kelly12 1137.18 1798.2 98.3 1900.7 422.05 199.07 2108.9 101.4 1954.1 415.42 654.10 + *

Table 2: Results of the proposed AMCPA and GA for the CVRP

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.
C101 718.5 42.7 190.7 85.65 8.25 727.8 51.4 198.2 83.34 20.08 * *
C201 620.2 42.2 200.2 98.90 3.91 834.1 30.3 237.7 67.04 4.34 + +
R101 935.2 47.5 177.2 62.84 6.28 1033.4 86.3 289.7 155.55 20.50 + +
R201 1072.7 41.6 293.7 115.00 11.20 1307.2 95.0 245.1 95.11 29.98 + -
RC101 584.3 45.4 88.9 38.19 2.59 685.3 127.9 91.8 41.38 2.69 + *
RC201 1191.7 62.6 338.3 106.97 14.44 1438.5 87.4 362.5 100.66 26.98 + *
En22k4 386.5 16.1 26.1 22.59 0.98 403.0 18.4 34.7 21.21 0.96 + *
En23k3 712.6 20.7 22.1 16.47 0.90 731.5 37.2 27.9 23.43 0.85 + *
En30k4 542.0 37.0 58.1 37.67 1.09 594.0 63.6 60.8 34.52 1.21 + *
En33k4 818.4 32.2 57.4 37.31 1.59 846.0 35.9 83.3 42.10 2.05 + +
En51k5 669.2 36.4 90.6 47.12 2.72 737.1 47.3 99.1 53.22 4.14 + *
En76k8 906.2 47.4 147.2 69.56 5.99 996.6 92.9 184.3 72.73 18.52 + +
En101k14 1210.8 30.0 180.8 64.49 11.17 1247.2 68.2 469.2 317.37 60.68 + +

Table 3: Results of the proposed AMCPA and GA for the VRPB

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Optima Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.
br17 39 39.1 0.2 1.0 0.34 0.04 39.6 1.0 1.2 0.57 0.05 + *
ftv33 1286 1385.9 65.8 8.2 4.74 0.22 1386.2 45.8 6.4 2.60 0.25 * -
ftv35 1473 1569.1 47.7 9.1 6.73 0.28 1564.3 49.1 7.5 2.67 0.31 * *
ftv38 1530 1611.5 52.7 11.8 7.49 0.38 1635.9 62.5 13.8 10.98 0.44 * *
p43 5620 5628.3 6.1 13.4 5.42 0.38 5635.2 10.6 12.6 9.42 0.62 + *
ftv44 1613 1782.2 83.6 17.5 9.87 0.59 1748.1 50.2 14.9 6.46 0.73 - *
ftv47 1776 1904.0 96.6 20.4 8.86 0.71 1862.4 56.2 28.4 12.67 0.99 - +
ry48p 14422 14824.9 177.6 20.7 8.32 0.73 15095.3 490.0 21.5 13.81 1.03 + *
ft53 6905 7777.6 283.8 33.2 17.11 1.44 7732.3 428.2 31.1 16.01 1.78 * *
ftv55 1608 1791.4 69.9 29.1 24.11 1.54 1837.2 89.2 31.5 20.42 1.88 + *
ftv64 1839 2081.4 133.5 35.7 16.32 2.22 2112.2 48.4 38.8 19.53 2.93 * *
ftv70 1950 2204.6 106.3 58.1 25.12 3.98 2144.4 95.6 56.9 22.21 4.59 - *
ft70 38673 40375.3 436.2 65.1 27.24 4.80 40778.9 1041.6 77.9 29.61 5.32 + +
kro124p 36230 39009.8 824.9 80.1 35.39 8.89 40063.7 1270.8 84.0 37.32 11.23 + *
ftv170 2755 4022.9 354.1 150.1 40.31 24.88 3947.5 320.3 142.0 37.80 39.97 * *
rbg323 1326 1901.5 113.9 99.3 38.67 68.01 2123.1 144.5 104.3 36.59 77.68 + *
rbg358 1163 1907.9 152.6 162.1 42.17 97.86 2034.0 165.6 157.7 44.69 112.33 + *
rbg403 2465 2896.9 58.1 175.8 34.44 210.11 2978.5 79.8 195.2 71.40 259.61 + *
rbg443 2720 3415.3 137.4 213.0 38.98 289.48 3380.6 105.6 201.6 45.08 346.27 * *

Table 4: Results of the proposed AMCPA and GA for the ATSP

Finally, the normal distribution z-test is shown in Table 7. In this table the statistical tests
performed for all the problems and for both parameters (results and convergence behaviour)
are depicted.

4.4 Analysis of the results

A clear conclusion can be drawn from the results shown above: the presented AMCPA
outperforms the GA in terms of solution quality and runtimes in all the problems used. The
AMCPA gets better results in 89.89% of the instances (89 out of 99). In 1 instance (NQP,
8-Queens) the results obtained by both algorithms are the same. Finally, in the remaining
9.09% (9 out of 99), the GA outperforms the AMCPA. Additionally, looking at Table 7, it can
be concluded that these differences are significantly better for the proposed technique in the
85.85% of the cases (85 out of 99). In the 11.11% (11 out of 99) these differences are not
substantial, and they are significantly worse only in the remaining 3.03%. On the other hand,
the proposed methods needs less runtime in the 96.96% of the cases (96 out of 99), increasing
the differences when the size of the instances grows.
Same conclusions can be extracted by performing an analysis for each problem separately.
The presented AMCPA outperforms the GA for the TSP, CVRP, VRPB, NQP, and BPP. Anyway,
although the findings are also applicable, it is important to highlight that the differences are
narrower for the ATSP. For this problem, the proposed metaheuristic reaches better results in
63.16% of the instances (12 out of 19). Moreover, in the remaining 36.84% it obtains worse
results. Additionally, these differentes are significantly better for the AMCPA in 47.36% of the
instances, significantly worse in the 15.78%. and not substantial is 36.86%.

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.

8-Queens 0.0 0.0 0.1 0.03 0.01 0.0 0.0 0.2 0.02 0.01 * +
20-Queens 0.9 0.5 0.4 0.43 0.04 1.8 1.1 0.2 0.15 0.02 + -
50-Queens 5.7 1.5 0.7 0.22 0.13 8.5 1.9 1.0 0.64 0.17 + +
75-Queens 11.6 2.6 1.7 2.08 0.21 15.4 3.1 2.2 1.05 0.61 + *
100-Queens 15.4 3.1 2.1 0.75 0.58 23.2 3.2 2.7 1.32 1.31 + +
125-Queens 19.3 3.3 3.5 1.15 1.39 30.2 3.6 4.2 2.81 2.99 + *
150-Queens 22.4 3.0 4.9 1.55 2.71 37.2 4.6 6.3 3.60 5.94 + +
200-Queens 32.4 5.8 8.2 2.91 7.69 49.9 5.1 11.8 5.16 18.51 + +
225-Queens 39.8 5.7 9.2 3.00 10.85 57.8 6.0 13.0 6.03 25.92 + +
250-Queens 43.2 4.6 11.3 3.16 16.42 63.9 6.0 15.4 7.13 36.04 + +
275-Queens 47.3 6.5 13.6 2.94 23.48 69.0 9.6 19.9 8.08 56.97 + +
300-Queens 51.2 6.0 15.3 3.77 31.83 76.9 6.5 22.4 7.10 76.22 + +
325-Queens 56.2 5.6 17.4 3.97 42.37 86.0 9.4 23.9 10.57 99.25 + +
350-Queens 60.9 7.8 19.7 5.73 55.32 90.8 11.3 31.6 12.86 143.30 + +
400-Queens 72.7 6.6 25.5 5.94 93.33 101.8 10.0 50.7 11.28 319.50 + +

Table 5: Results of the proposed AMCPA and GA for the NQP

The reason why the proposed algorithm needs less runtime is logical, and it can be explained
as follows: if crossover and mutation operations are compared, the last one operates with
one solution, and it is a simple modification in a chromosome which can be made in a
minimum time. Furthermore, the former needs more runtime, since it operates with two
different individuals, and its working way is more complex. The proposed AMCPA makes fewer
crossovers than the GA, and this fact is perfectly reflected in runtimes, providing an advantage
to the AMCPA.
On the other hand, the reason why the proposed AMCPA gets better results can also be
explained, and it is based on the recently published study (Osaba, Carballedo, Diaz and
Perallos, 2013). According to that work, crossovers are useful resources to make jumps in
the space of solutions when they are applied to combinatorial optimization problems. Thereby,
the use of crossovers helps a wide exploration of the solution space, but it does not help to
perform an exhaustive search of promising regions. To get a deeper search, a function that
takes care of optimizing the solutions independently becomes necessary, in order to conduct
small jump in the space of solutions. The mutation function can handle this goal.
Regarding the convergence behaviour, looking at Tables 1-6, it can be said that the proposed
AMCPA presents a better convergence behaviour. This fact means that the AMCPA need less
generations to reach its final solution. Performing a general analysis, the presented algorithm
has a better behavior in 70.70% (70 out of 99) of the cases. On the other hand, in the 27.27%
of the instances the GA shows a better performance. Finally, in the remaining 2 instances both
metaheuristics present the same behaviour.
Anyway, these differences in the convergence behaviour are significantly better for the AMCPA
only in the 33.33% of the instances (33 out of 99), being insignificant in 57.57% of the cases
(57 out of 99), and substantially worse in the remaining 9.09%. This fact means that, despite
of showing a better convergence in 70 instance, this improvement is not remarkable in almost

Proposed AMCPA Genetic Algorithm
Instance Results Convergence Time Results Convergence Time z-test

Name Optima Avg. S. dev. Avg. S. dev. Avg. Avg. S. dev. Avg. S. dev. Avg. resu. conv.
N1C1W1 A 25 27.0 0.3 0.15 0.09 0.01 27.4 0.5 0.17 0.07 0.06 + *
N1C1W1 B 31 31.8 0.4 0.21 0.22 0.01 32.2 0.7 0.27 0.30 0.04 + *
N1C2W1 A 21 21.9 0.6 0.26 0.25 0.01 22.2 0.5 0.20 0.15 0.04 + *
N1C2W1 B 26 27.1 0.3 0.16 0.11 0.01 27.6 0.5 0.23 0.24 0.04 + *
N2C1W1 A 48 53.1 0.8 1.23 0.74 0.05 53.6 0.7 1.30 1.68 0.27 + *
N2C1W1 B 49 53.4 0.8 0.81 0.38 0.05 53.8 0.4 0.59 0.30 0.22 + -
N2C2W1 A 42 45.7 1.0 0.69 0.39 0.02 46.3 0.7 0.78 0.47 0.24 + *
N2C2W1 B 50 53.7 0.8 0.81 0.37 0.03 54.1 0.5 0.69 0.43 0.22 + *
N3C2W2 A 107 120.6 1.2 2.55 1.42 0.10 121.5 1.8 3.02 1.36 1.74 + *
N3C2W2 B 105 116.2 1.4 3.04 1.61 0.11 116.0 1.4 3.18 1.79 1.75 * *
N3C3W1 A 66 72.8 0.9 1.47 0.88 0.08 74.1 1.0 1.33 0.98 1.26 + *
N3C3W1 B 71 79.0 0.6 1.30 0.53 0.08 80.1 2.4 1.49 1.22 1.27 + *
N4C2W1 A 210 241.8 1.7 10.20 3.90 1.54 244.7 2.5 13.63 5.92 24.57 + +
N4C2W1 B 213 245.2 1.7 15.62 6.38 1.57 247.8 2.5 12.47 7.18 23.61 + -
N4C2W1 C 213 245.1 1.9 13.82 7.18 1.62 247.9 2.3 12.46 5.96 23.27 + *

Table 6: Results of the proposed AMCPA and GA for the BPP

z-test
Results TSP CVRP VRPB ATSP NQP BPP Total

+ 22 14 12 9 14 14 85
∗ 0 1 1 7 1 1 11
- 0 0 0 3 0 0 3

Convergence TSP CVRP VRPB ATSP NQP BPP Total
+ 7 6 5 2 12 1 33
∗ 13 7 7 16 2 12 57
- 2 2 1 1 1 2 9

Table 7: Summary of the z-test. ’+’ indicates that AMCPA is better. ’-’ depicts that it is worse.
’*’ indicates that the differences are not significant (at 95% confidence level)

the half of cases (33 out of 70). This is why it can be said that the AMCPA presents a better
performance, but is not as distinctive as the improvement in the results discussed above. Even
so, in overall, the proposed method outperforms the GA also in this aspect. This fact provides
a great advantage to AMCPA, since, thanks to its better exploration capacity, it is able to find
the final solution performing less generations and consuming less computational resources.
By way of conclusion, the proposed AMCPA is a metaheuristic perfectly able to perform an
intense and thorough search in promising regions of the solution space using the mutation
function. Meanwhile, it performs crossover in case the search is in a local optimum, with the
aim of escaping local optimums. Using crossovers, the current population is expanded through
the entire solution space. In this way, it is easier to find regions that allow the search to reach
better results. This diversification is enhanced thanks to the multi-crossover, allowing a wider
exploration.
Conversely, with the GA the search performed comprises a large area of the solution space,
but it has a smaller capacity to deepen in those areas which are most promising. This fact
leads to the GA to obtain worse results than the AMCPA.

5 Conclusions

In this paper a new Adaptive Multi-Crossover Population Algorithm for solving combinatorial
optimization problems has been presented, which is a variant of the classical genetic algorithm.
The proposed metaheuristic reverses GAs conventional philosophy, giving priority to the
individual autonomous improvement, making crossovers only when they are beneficial for
the search process. The proposed technique has two mechanisms to avoid the premature
convergence, helping to the population diversity. These mechanisms are the crossover
probability adaption and the use of multiple crossover operators.
Initially, the presented technique has been introduced, explaining how it works. Then, the six
problems used and the experimentation have been described. After that, the results obtained
by the technique have been shown. These outcomes have been compared with the ones
obtained by a classical GA, to conclude that the proposed method gets better results. Finally,
why the presented AMCPA is better than the GA has been reasoned.
As future work, it is intended to compare the performance of the introduced technique with
other approaches of similar philosophy that can be found in the literature. Furthermore, it is
planned to apply the AMCPA to real life routing problems. At this time, it will be applied to a
dynamic distribution system of car windscreen repairs. In this case the problem is designed
as a dynamic CVRP, wherein the routes may be re-planned according to the needs of the
customers.

Acknowledgment

This work is an extension of the paper ”An Adaptive Multi-Crossover Population Algorithm for
Solving Routing Problems”, presented at the VI International Workshop on Nature Inspired
Cooperative Strategies for Optimization (NICSO 2013) (Osaba, Onieva, Carballedo, Diaz and
Perallos, 2014).

References

Albayrak, M. and Allahverdi, N. 2011. Development a new mutation operator to solve the
traveling salesman problem by aid of genetic algorithms, Expert Systems with Applications
38(3): 1313–1320.

Ali, M. Z., Alkhatib, K. and Tashtoush, Y. 2013. Cultural algorithms: Emerging social
structures for the solution of complex optimization problems, International Journal of
Artificial Intelligence 11(A13): 20–42.

Atashpaz-Gargari, E. and Lucas, C. 2007. Imperialist competitive algorithm: an algorithm
for optimization inspired by imperialistic competition, Proceedings of the Congress on
Evolutionary Computation, IEEE, pp. 4661–4667.

Bell, J. and Stevens, B. 2009. A survey of known results and research areas for n-queens,
Discrete Mathematics 309(1): 1–31.

Bezzel, M. 1848. Proposal of 8-queens problem, Berliner Schachzeitung 3: 363.

Bianchessi, N. and Righini, G. 2007. Heuristic algorithms for the vehicle routing problem with
simultaneous pick-up and delivery, Computers & Operations Research 34(2): 578–594.

Blum, C., Puchinger, J., Raidl, G. R. and Roli, A. 2011. Hybrid metaheuristics in combinatorial
optimization: A survey, Applied Soft Computing 11(6): 4135–4151.

Cantú-Paz, E. 1998. A survey of parallel genetic algorithms, Calculateurs paralleles, reseaux
et systems repartis 10(2): 141–171.

Chang, W.-D. 2007. A multi-crossover genetic approach to multivariable pid controllers tuning,
Expert Systems with Applications 33(3): 620–626.

Cho, D. W., Lee, Y. H., Lee, T. Y. and Gen, M. 2013. An adaptive genetic algorithm for the time
dependent inventory routing problem, Journal of Intelligent Manufacturing pp. 1–18.

Christofides, N. and Eilon, S. 1969. An algorithm for the vehicle-dispatching problem, OR
pp. 309–318.

Coffman, E. G. and Bruno, J. L. 1976. Computer and job-shop scheduling theory, John Wiley
& Sons.

Cordeau, J. and Maischberger, M. 2012. A parallel iterated tabu search heuristic for vehicle
routing problems, Computers & Operations Research 39(9): 2033–2050.

Davis, L. 1985. Applying adaptive algorithms to epistatic domains, Proceedings of the
international joint conference on artificial intelligence, Vol. 1, pp. 161–163.

Davis, L. 1989. Adapting operator probabilities in genetic algorithms, Proceeding of the Third
International Conference on Genetic Algorithms, pp. 61–69.

De Giovanni, L., Massi, G. and Pezzella, F. 2013. An adaptive genetic algorithm for large-size
open stack problems, International Journal of Production Research 51(3): 682–697.

De Jong, K. 1975. Analysis of the behavior of a class of genetic adaptive systems, PhD thesis,
University of Michigan, Michigan, USA.

Dorigo, M. and Gambardella, L. M. 1997. Ant colony system: A cooperative learning approach
to the traveling salesman problem, IEEE Transactions on Evolutionary Computation
1(1): 53–66.

Eberhart, R. C. and Shi, Y. 2001. Particle swarm optimization: developments, applications
and resources, Proceedings of the Congress on Evolutionary Computation, Vol. 1, IEEE,
pp. 81–86.

Fernandez-Prieto, J., Gadeo-Martos, M. and Velasco, J. R. 2011. Optimisation of control
parameters for genetic algorithms to test computer networks under realistic traffic loads,
Applied Soft Computing 11(4): 3744–3752.

Fleszar, K. and Charalambous, C. 2011. Average-weight-controlled bin-oriented heuristics
for the one-dimensional bin-packing problem, European Journal of Operational Research
210(2): 176–184.

Fogel, D. B. 1994. An introduction to simulated evolutionary optimization, IEEE Transactions
on Neural Networks 5(1): 3–14.

Gao, J., Gen, M., Sun, L. and Zhao, X. 2007. A hybrid of genetic algorithm and bottleneck
shifting for multiobjective flexible job shop scheduling problems, Computers & Industrial
Engineering 53(1): 149–162.

Glover, F. 1989. Tabu search, part i, ORSA Journal on computing 1(3): 190–206.

Goldberg, D. 1989. Genetic algorithms in search, optimization, and machine learning, Addison-
Wesley Professional.

Golden, B., Baker, E., Alfaro, J. and Schaffer, J. 1985. The vehicle routing problem with
backhauling: two approaches, Proceedings of the Twenty-first Annual Meeting of SE
TIMS, South Carolina USA, pp. 90–92.

Golden, B. L., Raghavan, S. and Wasil, E. A. 2008. The Vehicle Routing Problem: Latest
Advances and New Challenges, Vol. 43, Springer.

Golden, B. L., Wasil, E. A., Kelly, J. P. and Chao, I.-M. 1998. The impact of metaheuristics on
solving the vehicle routing problem: algorithms, problem sets, and computational results,
Fleet management and logistics, Kluwer, Boston, pp. 33–56.

Grefenstette, J. J. 1986. Optimization of control parameters for genetic algorithms, IEEE
Transactions on Systems, Man and Cybernetics 16(1): 122–128.

Holland, J. H. 1975. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence, MIT press.

Hu, X., Eberhart, R. C. and Shi, Y. 2003. Swarm intelligence for permutation optimization:
a case study of n-queens problem, Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 243–246.

Joelianto, E. and Wiranto, I. 2011. An application of ant colony optimization, kalman filter
and artificial neural network for multiple target tracking problems, International Journal of
Artificial Intelligence 7(A11): 384–400.

Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. 2012. A comprehensive survey:
artificial bee colony (abc) algorithm and applications, Artificial Intelligence Review pp. 1–
37.

Karmarkar, N. and Karp, R. M. 1982. An efficient approximation scheme for the one-
dimensional bin-packing problem, 23rd Annual Symposium on Foundations of Computer
Science, IEEE, pp. 312–320.

Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization, Proceedings of IEEE
international conference on neural networks, Vol. 4, Perth, Australia, pp. 1942–1948.

Kirkpatrick, S., Gellat, C. and Vecchi, M. 1983. Optimization by simmulated annealing, Science
220(4598): 671–680.

Knysh, D. and Kureichik, V. 2010. Parallel genetic algorithms: a survey and problem state of
the art, Journal of Computer and Systems Sciences International 49(4): 579–589.

Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I. and Dizdarevic, S. 1999. Genetic
algorithms for the travelling salesman problem: A review of representations and operators,
Artificial Intelligence Review 13(2): 129–170.

Lawler, E., Lenstra, J., Kan, A. and Shmoys, D. 1985. The traveling salesman problem: a
guided tour of combinatorial optimization, Vol. 3, Wiley New York.

Lenstra, J. and Kan, A. 1981. Complexity of vehicle routing and scheduling problems, Networks
11(2): 221–227.

Lin, S. 1965. Computer solutions of the traveling salesman problem, Bell System Technical
Journal 44(10): 2245–2269.

Martello, S. and Toth, P. 1990. Knapsack problems, Wiley New York.

Martinjak, I. and Golub, M. 2007. Comparison of heuristic algorithms for the n-queen problem,
29th IEEE International Conference on Information Technology Interfaces, pp. 759–764.

Masehian, E., Akbaripour, H. and Mohabbati-Kalejahi, N. 2013. Landscape analysis and
efficient metaheuristics for solving the n-queens problem, Computational Optimization and
Applications 56(3): 735–764.

Moon, I., Lee, J.-H. and Seong, J. 2012. Vehicle routing problem with time windows considering
overtime and outsourcing vehicles, Expert Systems with Applications 39(18): 13202–
13213.

Moraglio, A. and Poli, R. 2011. Geometric crossover for the permutation representation,
Intelligenza Artificiale 5(1): 49–63.

Mukherjee, S., Ganguly, S. and Das, S. 2012. A strategy adaptive genetic algorithm for solving
the travelling salesman problem, Swarm, Evolutionary, and Memetic Computing, Springer,
pp. 778–784.

Nasiri, B. and Meybodi, M. 2012. Speciation based firefly algorithm for optimization in dynamic
environments, International Journal of Artificial Intelligence 8(S12): 118–132.

Osaba, E., Carballedo, R., Diaz, F. and Perallos, A. 2013. Analysis of the suitability of using
blind crossover operators in genetic algorithms for solving routing problems, Proceedings
of the 8th International Symposium on Applied Computational Intelligence and Informatics,
IEEE, pp. 17–23.

Osaba, E., Diaz, F. and Onieva, E. 2013. A novel meta-heuristic based on soccer concepts
to solve routing problems, Proceeding of the fifteenth annual conference companion on
Genetic and evolutionary computation, ACM, pp. 1743–1744.

Osaba, E., Diaz, F. and Onieva, E. 2014. Golden ball: a novel meta-heuristic to solve
combinatorial optimization problems based on soccer concepts, Applied Intelligence
41(1): 145–166.

Osaba, E., Onieva, E., Carballedo, R., Diaz, F. and Perallos, A. 2014. An adaptive
multi-crossover population algorithm for solving routing problems, Proceedings of the
6th International Workshop on Nature Inspired Cooperative Strategies for Optimization,
Springer, pp. 113–124.

Ponz-Tienda, J. L., Yepes, V., Pellicer, E. and Moreno-Flores, J. 2013. The resource leveling
problem with multiple resources using an adaptive genetic algorithm, Automation in
Construction 29: 161–172.

Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S. and Paul, A. S. 2011. Gravitational search
algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity, Soft
Computing in Industrial Applications, Springer, pp. 141–150.

Prins, C. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem,
Computers & Operations Research 31(12): 1985–2002.

Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O., David, R.-C. and Dragan, F. 2013.
Optimal robot path planning using gravitational search algorithm, International Journal of
Artificial Intelligence 10(S13): 1–20.

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. 2009. Gsa: a gravitational search
algorithm, Information sciences 179(13): 2232–2248.

Ray, S., Bandyopadhyay, S. and Pal, S. 2004. New operators of genetic algorithms for
traveling salesman problem, Proceedings of the 17th International Conference on Pattern
Recognition, Vol. 2, IEEE, pp. 497–500.

Rego, C., Gamboa, D., Glover, F. and Osterman, C. 2011. Traveling salesman problem
heuristics: leading methods, implementations and latest advances, European Journal of
Operational Research 211(3): 427–441.

Reinelt, G. 1991. Tsplib: A traveling salesman problem library, ORSA journal on computing
3(4): 376–384.

Reynolds, R. G. 1994. An introduction to cultural algorithms, Proceedings of the third annual
conference on evolutionary programming, Singapore, pp. 131–139.

Rocha, M., Sousa, P., Cortez, P. and Rio, M. 2011. Quality of service constrained routing
optimization using evolutionary computation, Applied Soft Computing 11(1): 356–364.

Salhi, S., Wassan, N. and Hajarat, M. 2013. The fleet size and mix vehicle routing problem with
backhauls: Formulation and set partitioning-based heuristics, Transportation Research
Part E: Logistics and Transportation Review 56: 22–35.

Schaffer, J. D. and Morishima, A. 1987. An adaptive crossover distribution mechanism
for genetic algorithms, Proceedings of the Second International Conference on Genetic
algorithms and their application, L. Erlbaum Associates Inc., pp. 36–40.

Sharma, S. and Gupta, K. 2011. Solving the traveling salesmen problem through genetic
algorithm with new variation order crossover, International Conference on Emerging
Trends in Networks and Computer Communications, IEEE, pp. 274–276.

Sim, K. and Hart, E. 2013. Generating single and multiple cooperative heuristics for the one
dimensional bin packing problem using a single node genetic programming island model,
Proceeding of the fifteenth annual conference on Genetic and evolutionary computation
conference, ACM, pp. 1549–1556.

Sim, K., Hart, E. and Paechter, B. 2012. A hyper-heuristic classifier for one dimensional bin
packing problems: Improving classification accuracy by attribute evolution, Proceeding of
the XII conference on Parallel Problem Solving from Nature, Springer, pp. 348–357.

Spears, W. M. 1995. Adapting crossover in evolutionary algorithms, Proceedings of the
Conference on Evolutionary Programming, pp. 367–384.

Srinivas, M. and Patnaik, L. M. 1994a. Adaptive probabilities of crossover and mutation in
genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics 24(4): 656–667.

Srinivas, M. and Patnaik, L. M. 1994b. Genetic algorithms: A survey, Computer 27(6): 17–26.

Syswerda, G. 1991. Schedule optimization using genetic algorithms, Handbook of genetic
algorithms pp. 332–349.

Tarantilis, C. and Kiranoudis, C. 2007. A flexible adaptive memory-based algorithm for real-life
transportation operations: Two case studies from dairy and construction sector, European
Journal of Operational Research 179(3): 806–822.

Tomassini, M. 1995. A survey of genetic algorithms, Annual Reviews of Computational Physics
3(2): 87–118.

Toth, P. and Vigo, D. 2002a. The vehicle routing problem, Vol. 9, Society for Industrial & Applied
Mathematics, SIAM, Philadelphia.

Toth, P. and Vigo, D. 2002b. Vrp with backhauls, The Vehicle Routing Problem, SIAM
Monographs on Discrete Mathematics and Applications 9: 195–221.

Vafaee, F. and Nelson, P. C. 2009. A genetic algorithm that incorporates an adaptive mutation
based on an evolutionary model, Proceedings of the International Conference on Machine
Learning and Applications, IEEE, pp. 101–107.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N. and Rei, W. 2012. A hybrid genetic algorithm
for multidepot and periodic vehicle routing problems, Operations Research 60(3): 611–
624.

Wang, C., Zhang, J., Yang, J., Hu, C. and Liu, J. 2005. A modified particle swarm optimization
algorithm and its application for solving traveling salesman problem, Proceedings of the
International Conference on Neural Networks and Brain, Vol. 2, IEEE, pp. 689–694.

Wang, L. and Tang, D.-b. 2011. An improved adaptive genetic algorithm based on
hormone modulation mechanism for job-shop scheduling problem, Expert Systems with
Applications 38(6): 7243–7250.

Xing, B. and Gao, W.-J. 2014. Imperialist competitive algorithm, Innovative Computational
Intelligence: A Rough Guide to 134 Clever Algorithms, Springer, pp. 203–209.

Xu, P., Zheng, J., Chen, H. and Liu, P. 2010. Optimal design of high pressure hydrogen
storage vessel using an adaptive genetic algorithm, International Journal of Hydrogen
Energy 35(7): 2840–2846.

Yang, K., Zheng, J., Yang, M., Zhou, R. and Liu, G. 2013. Adaptive genetic algorithm for daily
optimal operation of cascade reservoirs and its improvement strategy, Water resources
management 27(12): 4209–4235.

Yang, X.-S. 2010. Firefly algorithm, stochastic test functions and design optimisation,
International Journal of Bio-Inspired Computation 2(2): 78–84.

Yazdani, D., Nasiri, B., Azizi, R., Sepas-Moghaddam, A. and Meybodi, M. R. 2013.
Optimization in dynamic environments utilizing a novel method based on particle swarm
optimization, International Journal of Artificial Intelligence 11(A13): 170–192.

Ye, Z., Li, Z. and Xie, M. 2010. Some improvements on adaptive genetic algorithms for
reliability-related applications, Reliability Engineering & System Safety 95(2): 120–126.

Zhang, J., Chung, H. S. and Lo, W.-L. 2007. Clustering-based adaptive crossover and mutation
probabilities for genetic algorithms, IEEE Transactions on Evolutionary Computation
11(3): 326–335.

Zhang, J., Chung, H. S. and Zhong, J. 2005. Adaptive crossover and mutation in genetic
algorithms based on clustering technique, Proceedings of the Conference on Genetic and
Evolutionary Computation, ACM, pp. 1577–1578.

Zhang, X. and Yuen, S. Y. 2013. Improving artificial bee colony with one-position inheritance
mechanism, Memetic Computing 5(3): 187–211.

Zhang, Z., Zhang, S., Wang, Y., Jiang, Y. and Wang, H. 2013. Use of parallel deterministic
dynamic programming and hierarchical adaptive genetic algorithm for reservoir operation
optimization, Computers & Industrial Engineering 65(2): 310–321.

	Introduction
	The proposed Adaptive Multi-Crossover Population Algorithm
	Adaptive Mechanism
	Multi-Crossover mechanism

	Descripion of the problems
	Symmetric and Asymmetric Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Vehicle Routing Problem with Backhauls
	N-Queens Problem
	One-dimensional Bin Packing Problem

	Experimentation
	Parameters of the algorithms
	Description of the experimentation
	Results
	Analysis of the results

	Conclusions

