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Abstract. Transportation is an essential area in the nowadays society.
Due to the rapid technological progress, it has gained a great importance,
both for business sector and citizenry. Among the different types of
transport, one that has gained notoriety recently is the transportation
on-demand, because it can affect very positively the people quality of life.
There are different kinds of on-demand transportation systems, being
the Demand Responsive Transit (DRT) one of the most important one.
In this work, a real-life DRT problem is proposed, and modeled as a
Rich Traveling Salesman Problem. Specifically, the problem presented is
a Multiple Asymmetric Traveling Salesman Problem with Simultaneous
Pickup and Delivery. Furthermore, a benchmark for this new problem is
also proposed, and its first resolution is offered. For the resolution of this
benchmark the recently developed Golden Ball meta-heuristic has been
implemented.
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1 Introduction

Transportation is an important issue for the society these days, both for citizens
and the business sector. Regarding the transportation in the business world, the
rapid advance of technology has made the logistic increasingly important in this
area. The fact that anyone in the world can be well connected has led transport
networks to be very demanding, something that was less important in the past.
Today, a competitive logistic network can make the difference between some
companies and others.

On the other hand, public transport is used by almost all the population
and it affects the life quality of the people. In addition, there are different
kinds of public transportation systems, each one with its own characteristics.



Nonetheless, all of them share the same disadvantages, which are the finite
capacity of the vehicles, the geographical area of coverage, and the service
schedules and frequencies.

With the intention of addressing these drawbacks the concept of Transportation-
On-Demand (TOD) arises [1]. This concept is related with the transportation
of goods or passengers between specific origins and destinations at the request
of customers. Almost all the TOD systems are characterized by sharing the fol-
lowing three conflicting objectives: minimizing operating costs, maximizing the
number of requests served, and minimizing clients inconveniences.

There are several kind of TOD problems, being the Demand Responsive
Transport, or Demand Responsive Transit (DRT) one of the most important [2].
This problem is characterized by flexible routing and scheduling of small/medium
vehicles operating in shared-ride mode between pick-up and drop-off locations
according to passengers needs. A DRT system can be applicable in situations
where passengers are transported between concrete origins and destinations. One
common application of these kinds of systems is the transport service in areas
of low passenger demand, where a regular transport service is not economically
viable. Another typical application is the door-to-door services for handicapped
or elderly people. In this context, users formulate two different related requests:
an outbound request from home to a destination, and an inbound request for
the return trip. This kind of transport has a great social interest since, above
all, it helps to ensure welfare of people with special needs.

DRT and other kind of on-demand problems are the focus of many studies
nowadays [3, 4]. In addition, many sophisticated on-demand systems have
been implemented in several major cities across the world, as Bristol (United
Kingdom)1, Cape Town2, or London3.

The objective of this research is to address one DRT problem. To achieve
this goal, the DRT problem has been modeled as a Rich Traveling Salesman
Problem (R-TSP), also known as Multi-Attribute Traveling Salesman Problem.
Nowadays, these rich or multi-attribute problems, as well as the multi-attribute
vehicle routing ones, are a hot issue in the literature [5]. These sorts of problems
are specific cases of routing problems, with complex formulations and multiple
restrictions. Furthermore, they have a great scientific interest because of their
complexity of resolution, which represents a scientific challenge, and their
applicability to real-world situations, which is greater than the conventional
routing problems.

In this work an R-TSP is presented, to be more accurate, a Multiple
Asymmetric Traveling Salesman Problem with Simultaneous Pickup and
Delivery. Furthermore, the first benchmark for this problem is also detailed in
this paper, and its first ever resolution is offered. To deal with this problem the
recently proposed Golden Ball (GB) meta-heuristic has been implemented [6].

1 http://www.bristoldialaride.org.uk/
2 https://www.capetown.gov.za/en/Transport/Pages/AboutDialaRide.aspx
3 https://www.tfl.gov.uk/modes/dial-a-ride/



The remainder of this work is structured as follows: In the following section
the proposed MA-TSP-SPD is described and formulated. In Section 3 the
benchmark used for the presented problem is detailed. In Section 4 the technique
implemented for the resolution of this benchmark is depicted. Additionally, the
experimentation carried out is described in Section 5. Finally, conclusions and
future work are explained in Section 6.

2 Description of the proposed MA-TSP-SPD

As has been introduced in the previous section, an R-TSP is proposed in this
paper, with the aim of addressing different kind of DRT problems. The principal
feature of a R-TSP problem is its complex formulation, which is composed by
multiple constraints. This feature directly leads to an increased complexity of
resolution, which entails to a major scientific challenge at the same time. DRT
problems are important because they model many real world problems and,
therefore, efficient solving techniques for that kind of problems can be useful in
many interesting practical applications. The problem presented in this research
is a MA-TSP-SPD, which has three main characteristics.

1. Multiple Vehicles: This is a typical feature of the often studied Multiple
Traveling Salesman Problem [7]. In this way, a fleet K composed by a
finite and fixed k number of vehicles is available in the proposed MA-TSP-
SPD. These k vehicles have to be employed to meet the customers needs.
Additionally, there is a central depot in which all the vehicle routes have to
begin and end. This feature requires the problem to plan exactly k paths, one
for each available vehicle. Besides, each vehicle cannot plan a route composed
by more than a fixed q nodes.

2. Asymmetry : The traveling costs in the proposed MA-TSP-SPD are
asymmetric. This means that the traveling cost from any i node to another
j node is different from the reverse trip cost. This feature is not common
in most routing problems that can be found in the literature, and it brings
realism and complexity to the problem. Anyway, asymmetric costs has been
applied previously in the literature [8, 9]. Because of the realism it brings, it
noteworthy that this feature is very valuable in DRT situations.

3. Simultaneous Pickup and Delivery : This property is an adaptation of the
often used pickup and delivery system of some routing problems [10, 11].
Basically, this system consists in the existence of two types of nodes, the
delivery nodes and the pickup nodes. The first ones are those points in where
the peoples leave the vehicle. On the other hand, in pickup nodes is where
the people who have requested the transportation access to the vehicle.
In addition, it is important to highlight that, due to the simultaneous nature
of this feature, in one concrete node more than one customer can leave or
take the vehicle. This fact leads to the generation of routes in which the
number of delivery nodes is greater than the amount of pickup nodes, and
vice versa. Furthermore, the depot, mimicking the behavior of a central bus
station, can also act as a pickup or delivery node.



Fig. 1. A 15-noded and k=4 possible instance of the MA-TSP-SPD, and a possible
solution

This feature is important in many DRT problems, as for example, the door-
to-door transportation of elderly people.

Therefore, the proposed MA-TSP-SPD is a rich routing problem with
asymmetric costs, in which the objective is to find exactly k number of different
routes, each one with a maximum length of q nodes, minimizing the total cost
of the complete solution.

In Figure 1(a) an example of a MA-TSP-SPD instance with 15 nodes, and
k=4 is depicted. Furthermore, in Figure 1(b) a possible solution for this instance
is shown.

In this manner, the presented MA-TSP-SPD can be defined on a complete
graph G = (V,A) where V = {v0, v1, v2, . . . , vn, } is the set of vertexes which
represents the nodes of the system. On the other hand, A = {(vi, vj) : vi, vj ∈
V, i 6= j} is the set of arcs which represents the interconnection between nodes.
Each arc has an associated distance cost dij . Due to the asymmetry feature
dij 6= dji. Furthermore, the vertex v0 represents the depot, and the rest are the
visiting points. In addition, with the aim of facilitating the problem formulation,
the set of customers V can be separated into two different subsets, the first one
for the pickup nodes PN = {pn1, pn2, . . . , pnn}, and the second one for the
delivery nodes DN = {dnn+1, dnn+2, . . . , dnn+m}.

Additionally, the permutation codification has been used for the repre-
sentation of the solutions. Thus, each solution X is encoded by a permu-
tation of numbers, which represents the different routes that compose that
solution. Besides, with the aim of distinguishing the routes in one solution,
they are separated by zeros. For example, supposing a set of six pickup
nodes PN = {pn1, pn2, pn3, pn4, pn5, pn6}, and seven delivery nodes DN =



{dn7, dn8, dn9, dn10, dn11, dn12, dn13}. One possible solution with k=3 would be
X = (pn2, pn5, dn7, dn9,0, pn4, dn12, dn11, pn6, dn13,0, pn1, dn10, pn3, dn8).

Finally, the proposed MA-TSP-SPD can be mathematically formulated in
the following way:

Minimize:
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i=0

n+m∑
j=0

k∑
r=1

dijx
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The first clause represents the objective function, which is the sum of the
costs of all routes of the solution, and it must be minimized. The formula 2
depicts the nature of the binary variable xk

ij , which is 1 if the vehicle k uses
the arc (i, j), and 0 otherwise. Functions 3 and 4 assure that all the nodes are
visited exactly once. Besides, sentence 5 guarantees that all routes are shorter
than the maximum allowed length q. On the other hand, constraints 6 and 7
ensure that the total amount of vehicles leaving the depot, and the number of
vehicles that return to it is the same. In addition, that number has to be k, i.e.,
the total amount of available vehicles. Finally, the correct flow of each route is
ensured thanks to functions 8 and 9 functions.



3 Description of the used benchmark

As it is well-known, the use of a benchmark to study how good a technique is at
solving an optimization problem is a crucial factor. In this way, the benchmark
presented in this work for the proposed MA-TSP-SDP is the same as presented
in the work [12], which is a modification of the ATSP Benchmark that can be
found in the TSPLib Benchmark [13].

In this way, 19 different instances have been used for the experimentation,
which have from 17 to 443 nodes. It is noteworthy that the first node of each
instance is the depot. Additionally, a parameter called typei suggests if the node
i is a delivery node or a pickup node. This parameter has been set using the
following procedure:

typei = pickup node, ∀i ∈ {1, 3, 5, . . . , n}

typei = delivery node, ∀i ∈ {2, 4, 6, . . . , n}
Furthermore, the number of vehicles available for each instance has been
established in k=4. Besides, the maximum length of each route has been set
in q = n/3, where n is the total number of nodes of the instance.

With the aim of allowing the replication of this experimentation, the
benchmark developed is available under request to the corresponding author
of this paper.

4 The proposed Golden Ball

The problem proposed in this paper is applicable to real-world situations, this
is the reason why it has been opted for a meta-heuristic with a great robustness
and quick execution. Robustness is the ability of providing always similar
results, leading to a small standard deviation. This feature, along with the quick
execution, is very appreciated in real-world applications. The algorithm selected
to deal with the presented MA-TSP-SPD, the Golden Ball, is a recently proposed
technique which meets these two requirements. The first complete version of the
GB, and its practical use for solving complex problems have been presented in
2014 by Osaba, Diaz and Onieva [6].

The main characteristics of the GB can be summarized as follows. The GB is
a multiple-population based meta-heuristic inspired by some concepts of soccer
sport. First, in the initialization phase, the whole population of solutions (called
players) is randomly created. Then, these created players are randomly divided
among a fixed number of subpopulations (called team). Each team has its own
training method (or coach), which is randomly assigned in this first phase. This
training is the way in which each player in the team individually evolves along
the execution. One training function could be, for example, the well-known
2-opt [14]. Another important training is the called Custom Training. In this
training, a player which is trapped in a local optimum receives a special training
in cooperation with the best player of its team. One custom training function
could be, for example, the well-known Order Crossover [15].



Algorithm 1: Pseudocode of the GB algorithm

1 Initialization of the initial population;
2 Division of players into different teams;
3 repeat
4 Competition league is restarted for each matchday do
5 for each team ti in the system do
6 Training phase for ti;
7 Custom training session for ti;
8 Calculation of the quality of ti;

9 end
10 Matchday in which matches are played;

11 end
12 Period of transfers;

13 until termination criterion reached ;
14 Return the fitness of best player of the system;

Once the initialization phase is finished, the competition phase starts. This
second step is divided in seasons, composed by weeks. Every week all the teams
train independently, and they face each other creating a competition league.
At the end of every season, a transfer procedure takes place. In this procedure
the players and coaches can switch teams. The competition phase is repeated
iteratively until the termination criterion is reached.

The execution of the GB is briefly schematized in Algorithm 1. For further
information about the GB, the reading of [6] is highly recommended.

5 Experimentation

In this section the conducted experimentation is detailed, and it is divided into
two different subsections. In the first one (Section 5.1), the parametrization used
for the GB is described. On the other hand, in Section 5.2 the obtained results
obtained are depicted.

5.1 Parameters of the GB

The population size used for the GB is 48, which has been divided into 4 teams
of 12 players each. In addition, the number of trainings without improvement
needed to perform a custom training and a special transfer are, respectively,
6 and 12. The well-known 2-opt and Insertion functions have been used as
conventional training functions. These operators are intra-route functions [16],
i.e., they work within a specific route. Additionally, two inter-route functions
have been developed:

– Swapping Routes: This operator selects randomly two nodes of two randomly
selected routes. These nodes are swapped.



Number of teams (TN) 4

Number of players per team (PT) 12

Number of trainings without improvement
for a custom training

6

Number of trainings without improvement
for a special transfers

12

Conventional training functions
2-opt, Insertion, Swapping Routes,
& Insertion Routes

Custom training function Random Route Crossover

Table 1. Summary of the characteristics of GB

– Insertion Routes: This function selects and extracts one random node from
one random route. After that, this node is re-inserted in a random position
in another randomly selected route.

It is noteworthy that all these functions take into account both the vehicles
capacity, and the class of the nodes demands, never making infeasible solutions.
Furthermore, the Random Route Crossover has been used as custom training
function [6]. Finally, the configuration used for GB is summarized in Table 1.

5.2 Results

All the tests have been performed on an Intel Core i5 2410 laptop, with 2.30 GHz
and a RAM of 4 GB. All the instances described in Section 3 has been used in the
experimentation. The name of each instance has a number that represents the
number of nodes it has. 30 executions have been run for each instance, and five
different parameters are shown: average fitness value and its standard deviation,
the median, the interquartile range and the average runtime (in seconds). These
results can be observed in Table 2.

Besides, the fitness of the best solution found for each instance is shown in
Table 3. Furthermore, the amount of objective function evaluations needed to
reach these solutions are also represented, as well as the runtime.

6 Conclusions and future work

In this research a new multi-attribute TSP has been proposed, with the aim of
addressing different sort of DRT problems. Concretely, the presented problem is
a Multiple Asymmetric Traveling Salesman Problem with Simultaneous Pickup
and Delivery. The objective of this problem is to find and exact number of routes,
visiting all the nodes once, and only once, and minimizing the total traveling



Instance Avg. S. dev. Median I. R. Time

MA-TSP-SPD br17 66.1 1.4 65 2.2 0.71

MA-TSP-SPD ftv33 1652.2 88.4 1575 149.2 1.35

MA-TSP-SPD ftv35 1828.8 93.3 1765 123.5 1.46

MA-TSP-SPD ftv38 1883.7 77.5 1813 120.7 1.64

MA-TSP-SPD p43 5888.5 19.2 5873 24.7 1.69

MA-TSP-SPD ftv44 2063.5 142.2 1896 260.7 1.83

MA-TSP-SPD ftv47 2214.3 517.2 2235 186.0 2.23

MA-TSP-SPD ry48p 18160.2 604.7 17784 601.5 3.09

MA-TSP-SPD ft53 8614.5 444.8 8303 655.0 4.21

MA-TSP-SPD ftv55 2239.6 141.6 2204 156.7 3.77

MA-TSP-SPD ftv64 2505.9 145.1 2385 196.0 3.31

MA-TSP-SPD ftv70 2720.5 136.7 2598 256.7 3.75

MA-TSP-SPD ft70 44460.3 809.9 43717 1199.0 4.49

MA-TSP-SPD kro124p 48277.6 2036.4 46407 3028.0 13.41

MA-TSP-SPD ftv170 5482.5 309.6 5261 320.7 21.12

MA-TSP-SPD rbg323 1851.3 59.8 1797 112.7 72.54

MA-TSP-SPD rbg358 1856.3 72.6 1800 122.2 81.29

MA-TSP-SPD rbg403 2859.2 50.6 2807 88.0 87.25

MA-TSP-SPD rbg443 3121.4 55.7 3110 91.2 136.59

Table 2. Results obtained by the GB for the proposed MA-TSP-SPD. For each instance
results average, standard deviation, median, interquartile range and time average are
shown

cost. Furthermore, it is noteworthy that these traveling costs are asymmetric,
and that two kinds of nodes coexist in the system: delivery nodes and pickup
nodes.

Additionally, the recently proposed Golden Ball meta-heuristic has been used
to solve the proposed benchmark composed by 19 instances. This benchmark
is an adaption of the well-known ATSP benchmark that can be found in the
TSPLib, and it has been previously used to solve other R-TSP problems. Finally,
the solutions offered for the mentioned benchmark are considered the best ones,
since it is the first time that the MA-TSP-SPD has been dealt in the literature.

As further work, it is intended to find another real-life situation, with a
great social interest, with the aim of modeling them as a multi-attribute vehicle
routing problem, and addressing them.
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Instance Fitness Evaluations Time

MA-TSP-SPD br17 65 40 0.65

MA-TSP-SPD ftv33 1515 3783 1.72

MA-TSP-SPD ftv35 1703 1939 1.71

MA-TSP-SPD ftv38 1800 6351 2.28

MA-TSP-SPD p43 5850 3421 1.53

MA-TSP-SPD ftv44 1872 8887 3.57

MA-TSP-SPD ftv47 2202 5047 2.07

MA-TSP-SPD ry48p 17394 5157 2.14

MA-TSP-SPD ft53 7901 8028 3.97

MA-TSP-SPD ftv55 2001 5757 2.92

MA-TSP-SPD ftv64 2323 7867 3.82

MA-TSP-SPD ftv70 2540 16719 6.35

MA-TSP-SPD ft70 43563 14190 5.26

MA-TSP-SPD kro124p 45991 31664 13.85

MA-TSP-SPD ftv170 5054 30779 21.20

MA-TSP-SPD rbg323 1795 62850 80.72

MA-TSP-SPD rbg358 1773 87121 112.56

MA-TSP-SPD rbg403 2801 44375 81.67

MA-TSP-SPD rbg443 3044 86175 163.57

Table 3. Best solutions found by the GB for the proposed problem
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