
 
 

 

 

 
Abstract—The traveling salesman problem, or TSP, is one of 

the most famous and well studied problems in combinatorial 
optimization. There are many studies with the objective of 
finding an optimal solution for this problem. These studies have 
not been successful, since it is considered to be an NP-Hard 
problem. This means that is not possible to find a method that 
ensures an optimal solution for all instances of this problem. In 
this paper we present two techniques to solve this problem, a 
tabu search based algorithm and a memetic algorithm. The 
results of both techniques are shown and compared to decide 
which one of the two alternatives gets better results. Apart from 
this, several studies are performed to determine certain aspects 
of the algorithms, such as the crossover function for the 
memetic algorithm or the size of the tabu list. 

I. INTRODUCTION 

he traveling salesman problem, or TSP, is a very well 
studied problem in combinatorial optimization [1]. Its 

formulation is simple: Given a finite number of cities or 
nodes N and the corresponding costs cij of travelling from 
the city i to the city j, the objective is to find a cyclic 
permutation that minimizes the cost of visiting every city 
only once. The TSP is very easy to describe, yet very 
difficult to solve. It is considered an NP-Hard [14] problem. 
This means that is not possible to find a method that ensures 
an optimal solution for all instances of this problem within 
reasonable execution time. For this reason, there are 
numerous strategies to find an acceptable solution, taking 
into account the basic criteria of the computational 
complexity: execution time and resources used. In this paper 
we present two algorithms, one algorithm is based on tabu 
search, the other is a memetic algorithm, which combines a 
genetic algorithm with a tabu. After presenting the 
algorithms, we show the results offered by each one applied 
to different instances. 

II.  TABU SEARCH 

The tabu search is an algorithm designed to find good 
solutions for combinatorial optimization problems. It is one 
of the most widely known metaheuristics, due to the quality 
of its solutions. In this section, the different parts of the 
implemented algorithm are presented. 

A. Initial solution 

This kind of algorithms starts with an initial solution, 
called initial state, which is modified during execution in 
order to find a near optimal solution. The initial solution can 
be generated at random or can be generated by a function. 
This function is used with the aim of starting the process 
with an acceptable solution.  Logically, this initial solution is 
not the optimal one, but in most cases it is a good starting 
point to begin the search. In this paper we present the 
implementation and comparison of four initialization 
functions, starting with a partial path and building step by 
step the initial solution. 

Nearest Neighbor: This function begins by selecting a 
random node as start node. Then iteratively, the nearest node 
to the last node added is added to the partial path. 

Insertion: This function starts the process with a partial 
path consisting of two cities. These cities are the closest on 
the map. This means that the process starts with the shortest 
edge. From this point and iteratively, the nearest node to any 
node in the partial path is obtained. This node is inserted into 
the path at the position that involves lower cost increase. 

Farthest Insertion: This is a modification of the above 
function. In this case, the node farthest from any of the nodes 
that are already in the partial path is taken as the node to 
insert. After that, the node is inserted into the position that 
involves lower cost increase. 

Solomon Heuristic I1 [2]: In 1987, Solomon proposed 
three heuristics for the VRPTW problem. From the three, the 
best is called I1. In this article, a modification of this 
heuristic has proposed, to adapt it to the TSP problem. This 
function starts execution with the longest edge, in other 
words, begins with a partial path consisting of the two most 
distant nodes. Then, iteratively, it calculates for each node 
(which is not yet in the path) the cost increase of inserting it 
at each one of the possible positions in the partial tour. The 
node that involves smaller increase is inserted into the path 
in the optimal position. 

These functions have been tested with different instances 
of the TSP problem, concluding that the two functions that 
offer better results are Farthest Insertion and I1. The 
instances are taken from TSPLIB [3] and [4]. 

T

Comparison of a memetic algorithm and a tabu search algorithm for 
the Traveling Salesman Problem 

Eneko Osaba 
Deusto Institute of Technology. 

University of Deusto, Av. 
Universidades, 24, Bilbao, Spain.  

Email: e.osaba@deusto.es 

Fernando Díaz 
Deusto Institute of Technology. 

University of Deusto, Av. 
Universidades, 24, Bilbao, Spain.  
Email: fernando.diaz@deusto.es 



 
 

 

 

TABLE I. 
INITIAL SOLUTIONS OBTAINED BY EACH FUNCTION 

TSP Instance Oliver30 Eilon50 Eilon75 Eil101 
Optimal result 420 421 535 629 
NN* 509 566 620 817 
Insertion 466 475 622 738 
Insertion_Farthest 452 485 588 720 
I1 471 464 597 719 
NN*= these values are approximated, since the result depends on the 
randomly selected initial node. 

B. Successors generation function 

As explained above, the tabu search algorithm begins with 
an initial solution. Then iteratively, the current state will be 
modified by a successors generation function with the aim of 
finding better solutions. In this paper, we have implemented 
two functions, widely used for this type of algorithms [5] [6]: 

Vertex Insertion: In this function, the generator examines 
a part of current solution's neighborhood by executing a 
finite number of random movements. A single movement 
consists of selecting randomly one node and removing it 
from the current route. Then, this node is inserted at another 
position between two nodes to generate a new solution. The 
best move of all is selected and applied. This means that in 
every movement, function moves to the best neighbor found. 

Swapping: In this function, a movement consists of 
selecting two nodes and swapping their positions. Like the 
Vertex insertion, a finite number of movements in the 
neighborhood are examined and the best of them is selected 
and applied. 

C. Tabu memory 

The tabu search algorithm has the property of accepting 
worse solutions than the current one, with the aim of 
avoiding premature local optima. To prevent this, there is a 
structure called memory. This structure is used to prevent the 
search from re-visiting solutions visited in the immediate 
past. The forbidden movements are normally stored in a list 
called the tabu list. Whenever the successors generation 
function is going to make a movement, that is, a change in 
the current state, the tabu list is examined to check whether 
the movement is forbidden. If it is, the movement is 
discarded and another one is tried When an allowed 
movement is found, the new state is accepted and the 
movement is stored in the list to prevent the algorithm from 
visiting the same state in a near future. 

There are many criteria to decide whether a movement is 
tabu or not, some of them more restrictive than others. There 
are many studies on this subject [7]. In addition, there are 
different approaches according to the successors generation 
function that is being applied. Here are some examples of 
these criteria, sorted from least to most restrictive and valid 
for the VertexInsertion function, which is the one applied in 
this algorithm: 

• Vector (I, POSITION (I), POSITION (J)): This 
vector is used to prevent the node I move from POSITION 
(I) to POSITION (J). 

• Vector (I, POSITION (I)): Similar vector, to prevent 
the node I move from POSITION (I) to any other position. 

• Node I, L: The list includes the identifier of the node, 
and prevents it from being displaced to the left 

• Node I: The node identifier is stored, in the same way 
as the above criteria, and prevents it from any move. 

D. Tabu list and duration of tabu status 

When the algorithm generates new successors using the 
generating function, the last movement is inserted into the 
tabu list. The information inserted in this list is maintained a 
certain time, which means that the tabu movements will be 
prohibited only for a period of time, usually translated into a 
number of iterations of the algorithm. 

Another topic widely studied, and even undetermined, is 
the ideal size of the tabu list [8]. If the size is small, cycling 
phenomena will be evident, whereas, if it is large, the 
process might be driven away from the vicinity of global 
optimum. 

In the implemented algorithm the restrictive criterion 
"Node I" has been used, which is the most restrictive one. 
This implies that the tabu list will have a small size and 
movements will be prohibited for a short period of time. In 
our case, this period is defined by the size of the list. For 
example, if the list stores the last 10 movements, each of 
them remains on the list for 10 iterations, since the new 
movements are added to the list as a queue. 

A small survey that allows to decide the optimal size of 
the list for our algorithm will be shown later. 

E. Aspiration criterion 

The execution of the algorithm finishes after a finite 
number of iterations without improving the best solution 
found. The ideal is to set this number according to the 
neighborhood size, which depends on the successors 
generation function. This number, in our algorithm, is equal 
to the neighborhood size multiplied by 15 in instances with 
few cities and neighborhood size multiplied by 10 in 
problems with many nodes, such as Eil101. 

F. Results of the initialization function 

Here are the results obtained by the algorithm, using 
different initialization functions. For these tests we used the 
successors VertexInsertion generation function and no tabu 
mechanism. A hit is an execution in which the optimal 
solution has been found. 

TABLE II. 
TESTS FOR INSTANCE OLIVER30 

Oliver30 (420) Hits Average Avg. % Ex. Time 
NN 29/30 420.03 0.007% < 1 sec. 
I1 30/30 420 0% < 1 sec. 
Insertion 23/30 420.23 0.23% < 1 sec. 
Insertion_F 30/30 420 0% < 1 sec. 



 
 

 

 

 

TABLE III. 
TESTS FOR INSTANCE EILON50 

Eilon50 (425) Hits Average Avg. % Ex. Time 
NN 6/30 427.16 0.50% 1.5 sec. 
I1 8/30 426.26 0.29% 1.5 sec. 
Insertion 7/30 426.96 0.46% 1.5 sec. 
Insertion_F 8/30 426.43 0.33% 1.5 sec. 

TABLE IV. 
TESTS FOR INSTANCE EILON75 

Eilon75 (535) Hits Average Avg. % Ex. Time 
NN 6/30 537.63 0.45% 9 sec. 
I1 17/30 536.16 0.21% 6 sec. 
Insertion 10/30 536.33 0.24% 6 sec. 
Insertion_F 5/30 539.56 0.85% 8 sec. 

TABLE V. 
TESTS FOR INSTANCE EIL101 

Eil101 (629) Hits Average Avg. % Ex. Time 
NN 0/30 635.56 1.04% 25 sec. 
I1 24/30 630.5 0.23% 15 sec. 
Insertion 0/30 637.23 1.30% 25 sec. 
Insertion_F 0/30 632.96 0.62% 25 sec. 

 
After analyzing the results, several conclusions can be 

obtained. In instances where there are few stations, such as 
Oliver30, the tabu list size is irrelevant, because with a good 
initial solution, it is easy to reach the global optimum. 
However, in instances with larger number of nodes, the size 
of the list is very important. These results confirm the theory 
explained above: 

• Conclusion 1: If the size of the list is small, it is easy to 
fall into local optima. In contrast, if the size is large, the 
search space can be very constrained, and can deviate from 
the vicinity of global optimum. 

Based on this conclusion, the best option is to perform 
tests with different sizes to see which is best suited. There is 
no universal rule to decide the optimal size of the list since it 
is very dependent on the size of the instance, the tabu 
criterion and the successors generation function. 

In this case, we can distinguish a best choice, achieving 
remarkable results in Eil101 and Eilon75 instances, and with 
exceptional results in the other alternatives. This option is 
N/4. In Eilon50, however, the best alternative is N/2, but the 
alternative N/4 also gives good results. 

Analyzing the result set, and more specifically the instance 
Eil101, we can see clearly how a large size of the list causes 
the deterioration of the results. In this instance the size N/8 is 
a really good option and N/10 becomes the best alternative. 

Anyway, in case of selecting one of the 5 options studied, 
we arrive at the following deduction. 

• Conclusion 2: Using VertexInsertion successors 
generator and a strict criterion of tabu movements, for 
instances of up to 101 cities, the ideal size of the tabu list is 
an approximate size of N/4, one quarter of the total number 
of nodes. 

Anyway, we have seen in these results how the optimal 
size can vary, depending on the instance. It is for this reason 
that the right thing is to reach the following conclusion. 

• Conclusion 3: There is no an optimum size for the tabu 
list, because this depends on the size of the instance, the 
successors generation function and the movement prohibition 
criteria. 

G. Final results of the algorithm 

The final results of the implemented algorithm can be 
summarized in the following table. The tests were performed 
on an Intel Core i5 – 2410 laptop, with 2.30 GHz and a 
RAM of 4 GB. This time, instead of 30 executions per 
instance, we have carried out 50. 

TABLE VI. 
FINAL RESULTS OF THE ALGORITHM 

 Hits Average Avg% Time 
Oliver30 (420) 50/50 420 0% 0.28 sec. 
Eilon50 (425) 22/50 425.7 0.16% 3.14 sec. 
Eilon75 (535) 40/50 535.6 0.11% 20.25 sec. 
Eil101 (629) 40/50 629.46 0.07% 34 sec. 

III.  PROPOSED MEMETIC ALGORITHM 

Evolutionary algorithms are based on the laws of the 
evolution of species. These algorithms work on populations 
of organisms, in other words, on sets of intermediate 
solutions. The organisms interact with each other to generate 
new organisms and these are added to the population. After a 
finite number of generations, or iterations, the algorithm 
terminates execution and returns as a final solution the best 
organism in the population. 

In this paper we have developed a new hybrid algorithm, 
which combines a genetic algorithm with a tabu search. 
There are different types of hybrid or memetic algorithms, 
which combine different techniques, two examples are [9] 
and [10]. The aim is to study the effectiveness of this new 
algorithm and see if it is worth using an algorithm of this 
nature rather than a tabu search algorithm.  

In the next sections we explain in detail the algorithm and 
the results obtained. 

A. Generation of initial population 

The starting point of the algorithm is a set of solutions 
called population of individuals. Every individual in the 
population consists of a single chromosome, a vector of 
integers that represents a route. In many cases, these 
individuals are randomly generated. In our case, we use a 
technique that combines initialization heuristics and random 
generation. This technique creates an individual for every 
initialization heuristic described in the tabu search section, 
while the others are generated randomly, until completing 
the entire population. Thus, the process begins with a 
population in which there are a number of "acceptable" 
solutions and a number of random solutions. 



 
 

 

 

B. Selection of parents 

The crossover is the process in which the chromosomes of 
a population interact to generate new individuals. Generated 
individuals are called children, and as in natural law, every 
child must have a father and a mother. Therefore, for this 
process, the algorithm has to choose the chromosomes that 
will form part of the process. 

There are many ways for selecting parents. In this case we 
have used an elitist method, in which the individuals with the 
highest fitness value are selected. In other words, the best 
individuals of the population are selected. 

C. Crossover 

There are many crossover functions [15]. In this section, 
the functions we have been implemented will be described 
and some results will be shown to see which of them is the 
best. 

Order Crossover (OX1): The Order crossover was 
proposed by Davis [11]. This operator builds the children by 
choosing a sub-route of one of the parents and maintaining 
the order of the cities of the remaining parent. For example, 
suppose these two individuals. 

P = (1 2 3 4 5 6 7 8) 
M = (2 4 6 8 7 5 3 1) 

Now, two cut points are selected, identical for both 
parents. Assuming that these breakpoints are located 
between the position two and three and between five and six: 

P = (1 2 | 3 4 5 | 6 7 8) 
M = (2 4 | 6 8 7 | 5 3 1) 

The children will be created as follows. First, the 
segments between the cut points are preserved, as follows: 

H1 = (* * | 3 4 5 | * * *) 
H2 = (* * | 6 8 7 | * * *) 

Then, starting with the second breakpoint, the remaining 
nodes are inserted in the same order they appear in the other 
parent, considering that the cities that has already been 
inserted have to be omitted. When the end of the string is 
reached, it continues through the beginning of this. The 
children resulting from this example would be these: 

H1 = (8 7 | 3 4 5 | 1 2 6) 
H2 = (4 5 | 6 8 7 | 1 2 3) 

Modified Order Crossover (MOX): This crossover 
proposed by Shubhra [12] selects a cut point that divides 
each parent into two sections. Assuming the following 
parents: 

P = (1 2 3 4 | 6 9 8 5 7) 
M = (2 1 9 8 | 5 6 3 7 4) 

The cities on the left of the cut point impose their order on 
the other parent: 

H1 = (1 2 * * * 9 8 * *) 
H2 = (2 1 * * * * 3 * 4) 

The remaining cities are inserted into the children in the 
same order they appear in the other parent. This means that 
the resulting children would be: 

 

H1 = (1 2 5 6 3 9 8 7 4) 
H2 = (2 1 6 9 8 5 3 7 4) 

Very Greedy Crossover (VGX): This operator 
introduced by Bryant [13] is more "customized" than 
previous ones, since it takes into account the distances 
between cities to generate the children. First, the function 
randomly selects a node. Assuming that these two 
chromosomes are the parents: 

P = (1 2 3 4 5 6 7 8) 
M = (2 4 6 8 7 5 3 1) 

Randomly selected as initial node number 2, momentarily, 
the child would be the next: 

H = (2 * * * * * * *) 
Now, looking at the parents, the nodes adjacent to the last 

node added (and still not part of the child) are selected as 
“possible nodes”. In this case these nodes are 1, 3 and 4. 
From all “possible nodes”, the closest to the last node added 
is added to the child. Suppose that in this case is number 4. 
At the moment, this would be the new child: 

H = (2 4 * * * * * *) 
This process is repeated until all cities have been inserted. 

D. Results of the crossover 

With these three functions, various tests were performed 
to check which of them was the most efficient. The test 
results will not be shown, as they have a very long length. 
Even so, we will explain what are the conclusions obtained. 

First of all is that the operator Very Greedy is the most 
efficient function, because it creates the best individuals. 
This is because it is a specifically designed operator for this 
type of problem. This function takes into account the 
distances between cities, therefore, whenever two 
chromosomes are crossed, resulting child will always be 
equal or better than either parent.  

This feature is not present in the other two crossover 
functions, because they make "semi-blind" crosses. It is true 
that they attempt to maintain the structure and quality of the 
parents in the resulting individuals. Even so, these functions 
make "blind" unions, since in most of them, the routes are 
divided into sub-routes or small portions of routes, and then 
they are joined together regardless to the cost that this 
operation involves. This has the consequence that the 
resulting children may be worse than their parents, which is 
clearly seen in the presented results. Three conclusions can 
be drawn: 

• Conclusion 1: Considering the three functions, Very 
Greedy Crossover (VGX) is which produces better 
individuals 

• Conclusion 2: It is recommendable to use 
“customized” crossover operators for each problem. For 
example, for the TSP, it is possible to make operators taking 
into account the distances among cities. Thus, the resulting 
individuals will always be better than their parents. 

• Conclusion 3: Crossover functions without 
"customization" do not ensure that the resulting children 



 
 

 

 

improve the fitness of their parents, because they are based 
on "blind" unions. 

Another thing to mention is that the VGX operator 
generates fewer individuals than the other operators. This 
shows that, despite generating a lot of children is a good 
quality, the fact of producing “customized” individuals is 
more advisable. 

E. Mutation process 

This process is done after the crossover, and it is 
performed on the resulting individuals. It is possible that 
during the execution of the algorithm, the population is 
moving towards a local optimum. For this reason exists this 
process, which selects with a certain percentage of 
probability the individuals produced by crossover and makes 
a small change in them.  

There are different ways to mutate. In this case we have 
implemented a process in which each chromosome is 
mutated with a probability of 20%. In case of making the 
process, the mutation generates various node exchanges in 
the individual. The number of exchanges is given by an 
attribute of the algorithm, which is introduced beforehand 
and called mutation factor. 

For example, suppose this chromosome: 
C = (1 2 3 4 5 6 7 8 9 0) 

The mutation factor is 0.2. This means that 20% of the 
chromosome will be changed. In this case the path is 
composed of 10 cities, therefore the number of exchanges 
will be two. Supposing that these two changes are between 
nodes 3 and 7, and node 2 and 9: 
                              C’ = (1 2 7 4 5 6 3 8 9 0) 

C’’ = (1 9 7 4 5 6 3 8 2 0) 
Thus, the resulting chromosome is as follows: 

CM = (1 9 7 4 5 6 3 8 2 0) 
In order to preserve the quality of the population, the 

mutated chromosome and original chromosome are stored. 

F. Application of Tabu Algorithm 

This step is the one that distinguishes this algorithm from 
a traditional genetic algorithm. After crossover and mutation 
process, with the aim of optimize the new chromosomes, a 
reduced version of the tabu search algorithm described 
above is applied. As in the mutation process, this process is 
applied only to a small part of the population, in order not to 
increase excessively the execution time. This process is 
applied to each individual with 20% probability. 

The characteristics of tabu algorithm are the same as the 
previously explained, with the difference that the initial 
solution is provided by the memetic algorithm. From this 
partial solution, the process runs autonomously. 

In the simple version, the finish criterion of the tabu 
search was determined by a number of iterations without 
improvements in the quality of the solutions, close to the 
neighborhood multiplied by 10 or 15. In this case, this value 
is lower, so, the execution time is reduced drastically. 

G. Selection of survivors 

The population in a memetic algorithm has a finite size. 
Therefore, it is necessary to reduce the number of individuals 
after crossover and mutation and discard those that are less 
interesting. This is accomplished by the survivors selection 
function. In this case a function called 
ElitistRandomSurvivals is used. This function selects the 
surviving population considering two parts, one part will 
consist of the best individuals, while the other part will be 
selected at random. For example, if we have a population of 
50 individuals, and we have to reduce it to 30 individuals, 
this function will select the best 15 chromosomes according 
to their fitness, and the other 15 will be selected at random 
from the remaining 35.  

The reason to select half of the population at random is to 
maintain some diversity, in order to avoid local optima. 

H. Results of the memetic algorithm 

These are the results obtained with the implemented 
memetic algorithm.  The computer used is the same as in 
section 2.8.We have executed 50 iterations for each instance: 

TABLE VII. 
FINAL RESULTS OF THE ALGORITHM 

 Hits Average Avg. % Ex. Time 
Oliver30 (420) 50/50 420 0% 0.3 sec. 
Eilon50 (425) 48/50 425.04 0.009% 11 sec. 
Eilon75 (535) 40/50 535.3 0.05% 55 sec. 
Eil101 (629) 50/50 629 0% 12 min. 

IV.  TABU VS. MEMETIC ALGORITHM 

After analyzing the results, the first conclusion and 
clearer, is obtained by observing that the results obtained by 
the memetic algorithm are visibly better than those obtained 
by the tabu algorithm. This improvement in the results comes 
with an increase in execution time, which in the case of the 
first three instances, it is not very large. By contrast, in the 
instance Eil101 although the algorithm finds an optimum in 
all executions, the time increases in excess. 

• Conclusion 1: The memetic algorithm obtains better 
results than the tabu algorithm, although in instances with 
more than 75 nodes the runtime is too high. 

Generally, both algorithms offer good results, but each 
one has a characteristic that makes it different from the other. 
The tabu search algorithm gives better execution times, 
while the memetic algorithm provides a higher success rate. 
For this reason, depending on the needs an algorithm or  the 
other should be used. 

• Conclusion 2: If the runtime is more important than 
obtaining better results, the correct choice is to use the tabu 
search algorithm. Otherwise, the right choice is the memetic 
algorithm. 

 



 
 

 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented two different algorithms 
for solving the TSP. On the one hand, a tabu algorithm, on 
the other hand, a memetic algorithm. We have described 
their characteristics, including various studies about some 
important aspects, such as the initialization function of the 
tabu search algorithm or the crossover functions of the 
memetic algorithm. Different instances have been used for 
testing, as Oliver30, Eilon50, Eilon75 and Eil101, and the 
results have shown. Finally, a comparison between the two 
algorithms has been made, concluding that the choice of 
algorithm is influenced by the priorities of the user. In case 
of giving priority to the execution time, the right choice is 
the tabu search algorithm. In case of giving priority to the 
quality of the solution, the correct choice is the memetic 
algorithm. 

We are currently working on the adaptation of these 
algorithms to the VRP problem. We have planned several 
studies to determine the influence of the process of mutation 
in evolutionary algorithms and the influence of survivors 
selection functions.  

Finally, this research is part of the PRODIS project (Grant 
PI2011-58, funded by the Basque Government in Spain). 

REFERENCES 

[1] Lawler E.L., Lenstra J.K., Rinnooy K. and Shmoys D.B. The 
Traveling Salesman Problem: A guided tour of combinatorial 
optimization. Wiley-Interscience Publication, 1985. 

[2] Solomon M. M. Algorithms for the vehicle routing and scheduling 
problems with time windows. IFORMS Operations Research, no. 35, 
pp. 254-265, 1987. 

[3] TSPLIB, comopt.ifi.uni- heidelberg.de/software/TSPLIB95/ 
[4] Whitley D., Starkweather T. and Fuquay D. Scheduling Problems and 

Traveling Salesmen The Genetic Edge Recombination Operator 
International Conference on Genetic Algorithms, 3:133-140, 1989. 

[5] Scheuerer S. A tabu search heuristic for the truck and trailer routing 
problem. Computers & Operations Research, 33:894-909, 2006. 

[6] Montane F.A.T. and Galvao R.D. A tabu search algorithm for the 
vehicle routing problem with simultaneous pick-up and delivery 
service. Computers & Operation Research, 33:595-619, 2006. 

[7] Malek M., Guruswamy M., Pandya M., and Owens H. Serial and 
parallel simulated annealing and tabu search algorithms for the 
traveling salesman problem. Annals of Operations Research, 21:59-
84, 1989. 

[8] Tsubakitani S. and Evans J.R. Optimizing tabu list size for the 
traveling salesman problem. Computers & Operations Research, 
25:91-97, 1998. 

[9] Pop P.C., Iordache S. A hybrid heuristic approach for solving the 
generalized traveling salesman problem. Genetic and evolutionary 
computation conference, GECCO 2011:481-488, 2011. 

[10] Gutin G. and Karapetyan D. A memetic algorithm for the generalized 
traveling salesman problem. International Journal of Natural 
Computing Research, 9: 47-60. 2010. 

[11] David L. Applying Adaptive Algorithms to Epistatic Domains. 
Proceedings of the International Joint Conference on Artificial 
Intelligence, 162-164, 1985. 

[12] Ray, S.S.;   Bandyopadhyay, S. and   Pal, S.K. New Operators of 
Genetic Algorithm for Traveling Salesman Problem. Proceedings of 
the 17th International Conference on Pattern Recognition, 497-500, 
Vol. 2, 2004. 

[13] Julstrom B. A. Very Greedy Crossover in a Genetic Algorithm for the 
TSP. Proceedings of the 1995 ACM symposium on Applied 
computing, 324-328, 1995. 

[14] M.R. Garey, and D.S. Johnson. Computers and Intractability; a Guide 
to the Theory of Np-Completeness. W. H. Freeman & Co. 1990. 

[15] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Innza and S. 
Dizdarevic. Genetic Algorithms for the Traveling Salesman Problem: 
A Review of Representations and Operators. Artificial Intelligence 
Review,13:129-170.1999. 


