Comparison of a memetic algorithm and a tabu search algorithm for
the Traveling Salesman Problem

Eneko Osaba

Deusto Institute of Technology.

University of Deusto, Av.

Fernando Diaz
Deusto Institute of Technology.
University of Deusto, Av.

Universidades, 24, Bilbao, Spain. Universidades, 24, Bilbao, Spain.

Email: e.osaba@deusto.es

Abstract—The traveling salesman problem, or TSP, is one of
the most famous and well studied problems in combinatorial
optimization. There are many studies with the objective of
finding an optimal solution for this problem. These studies have
not been successful, since it is considered to be an NP-Hard
problem. This means that is not possible to find a method that
ensures an optimal solution for all instances of this problem. In
this paper we present two techniques to solve this problem, a
tabu search based algorithm and a memetic algorithm. The
results of both techniques are shown and compared to decide
which one of the two alternatives gets better results. Apart from
this, several studies are performed to determine certain aspects
of the algorithms, such as the crossover function for the
memetic algorithm or the size of the tabu list.

|. INTRODUCTION

I he traveling salesman problem, or TSP, is a verly we

studied problem in combinatorial optimization [1ffs
formulation is simple: Given a finite number ofieg or
nodes N and the corresponding costs cij of travglfrom
the city i to the city j, the objective is to find cyclic
permutation that minimizes the cost of visiting sveity

only once. The TSP is very easy to describe, yey ve

difficult to solve. It is considered an NP-Hard [Jtoblem.
This means that is not possible to find a methad émsures
an optimal solution for all instances of this pel within
reasonable execution time. For this reason, theee
numerous strategies to find an acceptable solutaking

into account the basic criteria of the computaﬁona{h

complexity: execution time and resources usedhikgaper
we present two algorithms, one algorithm is basedabu
search, the other is a memetic algorithm, whichlmoss a
genetic algorithm with a tabu. After
algorithms, we show the results offered by eachapmied
to different instances.

I1. TABU SEARCH

presenting th

Email: fernando.diaz@deusto.es

A. Initial solution

This kind of algorithms starts with an initial sban,
called initial state, which is modified during exdon in
order to find a near optimal solution. The inigalution can
be generated at random or can be generated byctidfon
This function is used with the aim of starting thecess
with an acceptable solution. Logically, this ialtsolution is
not the optimal one, but in most cases it is a gsiadting
point to begin the search. In this paper we presbat
implementation and comparison of four initializatio
functions, starting with a partial path and buitglistep by
step the initial solution.

Nearest Neighbor: This function begins by selecting a
random node as start node. Then iteratively, tlaeast node
to the last node added is added to the partial path
Insertion: This function starts the process with a partial
path consisting of two cities. These cities aredlosest on
the map. This means that the process starts watishibrtest
edge. From this point and iteratively, the neaneste to any
node in the partial path is obtained. This nodagerted into
the path at the position that involves lower castéase.

Farthest Insertion: This is a modification of the above
function. In this case, the node farthest from afhe nodes
that are already in the partial path is taken asrtbde to
insert. After that, the node is inserted into tlosifon that
Involves lower cost increase.

Solomon Heuristic 11 [2]: In 1987, Solomon proposed
ree heuristics for the VRPTW problem. From thredh the
best is called I1. In this article, a modificatiai this
heuristic has proposed, to adapt it to the TSP IpnobThis
function starts execution with the longest edge,other

e

words, begins with a partial path consisting of tive most
distant nodes. Then, iteratively, it calculates éach node
(which is not yet in the path) the cost increasesérting it
at each one of the possible positions in the gadia. The
node that involves smaller increase is inserted ihé path

The tabu search is an algorithm designed to finddgo i, the optimal position.

solutions for combinatorial optimization problentfisis one
of the most widely known metaheuristics, due todbality
of its solutions. In this section, the differentrgsaof the
implemented algorithm are presented.

These functions have been tested with differertaimes
of the TSP problem, concluding that the two funasidhat
offer better results are Farthest Insertion and The
instances are taken from TSPLIB [3] and [4].

TABLE I.
INITIAL SOLUTIONS OBTAINED BY EACH FUNCTION

TSP Instance Oliver30 Eilon50 Eilon75 Eil101
Optimal result 420 421 535 629
NN* 509 566 620 817
Insertion 466 475 622 738
Insertion_Farthest | 452 485 588 720

11 471 464 597 719

NN*= these values are approximated, since the regplends on the
randomly selected initial node.

B. Successors generation function

As explained above, the tabu search algorithm Isegith
an initial solution. Then iteratively, the currestate will be
modified by a successors generation function withaim of
finding better solutions. In this paper, we havelemented
two functions, widely used for this type of algbrits [5] [6]:

e Vector (I, POSITION (1)): Similar vector, to prevent
the node | move from POSITION (I) to any other fiosi.

* Nodel, L: The list includes the identifier of the node,
and prevents it from being displaced to the left

* Node I: The node identifier is stored, in the same way
as the above criteria, and prevents it from anyanov

D. Tabu list and duration of tabu status

When the algorithm generates new successors useg t
generating function, the last movement is inseited the
tabu list. The information inserted in this listnmintained a
certain time, which means that the tabu movemeiitsbes
prohibited only for a period of time, usually tréaied into a
number of iterations of the algorithm.

Another topic widely studied, and even undetermirisd
the ideal size of the tabu list [8]. If the sizesiwall, cycling

Vertex Insertion: In this function, the generator examinesphenomena will be evident, whereas, if it is larges

a part of current solution's neighborhood by exagut
finite number of random movements. A single moveme
consists of selecting randomly one node and rengoitin
from the current route. Then, this node is inseetdnother
position between two nodes to generate a new eolulihe
best move of all is selected and applied. This mehat in
every movement, function moves to the best neigfdoord.

Swapping:
selecting two nodes and swapping their positiorike lthe
Vertex insertion, a finite number of movements e t
neighborhood are examined and the best of therrlésted
and applied.

C. Tabu memory

The tabu search algorithm has the property of dowgp
worse solutions than the current one, with the afm
avoiding premature local optima. To prevent thigre is a
structure called memory. This structure is usegrévent the
search from re-visiting solutions visited in thenediate
past. The forbidden movements are normally stoned list
called the tabu list. Whenever the successors gdoer
function is going to make a movement, that is, ange in
the current state, the tabu list is examined tckhehether
the movement is forbidden. If it is, the movemest i

3

In this function, a movement consists of

rocess might be driven away from the vicinity d6lgl
ptimum.

In the implemented algorithm the restrictive ciier
"Node I" has been used, which is the most restdctine.
This implies that the tabu list will have a smailtes and
movements will be prohibited for a short periodtiafe. In
our case, this period is defined by the size ofliste For
example, if the list stores the last 10 movemeassh of
them remains on the list for 10 iterations, sinbe hew
movements are added to the list as a queue.

A small survey that allows to decide the optimalesof
the list for our algorithm will be shown later.

E. Aspiration criterion

The execution of the algorithm finishes after aitdéin
number of iterations without improving the bestusioin
found. The ideal is to set this number accordingthe

neighborhood size, which depends on the successors

generation function. This number, in our algorithsequal
to the neighborhood size multiplied by 15 in inses with
few cities and neighborhood size multiplied by 10 i
problems with many nodes, such as Eil101.

F. Results of theinitialization function

discarded and another one is tried When an allowedHere are the results obtained by the algorithmngusi
movement is found, the new state is accepted aed thifferent initialization functions. For these tesis used the

movement is stored in the list to prevent the atgor from
visiting the same state in a near future.

There are many criteria to decide whether a movéiisen
tabu or not, some of them more restrictive tharisthThere
are many studies on this subject [7]. In additidere are

successors Vertexinsertion generation function mmdabu
mechanism. A hit is an execution in which the optim
solution has been found.

TABLE Il
TESTS FOR INSTANCEOLIVER30

different approaches according to the successaorerggon

function that is being applied. Here are some eXasnpf

these criteria, sorted from least to most restgcind valid

for the VertexInsertion function, which is the cagplied in

Oliver 30 (420) Hits Average Avg. % Ex. Time
NN 29/30 420.03 0.007% < 1 sec.
11 30/30 420 0% < 1 sec.
Insertion 23/30 420.23 0.23% <1 sec.
Insertion_F 30/30 420 0% <1 sec.

this algorithm:

* Vector (I, POSITION (1), POSITION (J)): This
vector is used to prevent the node | move from HGEN
() to POSITION (J).

Anyway, we have seen in these results how the @bptim
size can vary, depending on the instance. It igHisrreason
that the right thing is to reach the following chusion.

» Conclusion 3: There is no an optimum size for the tabu

TaBLE IlI.
TESTS FOR INSTANCEEILONS0

Eilon50 (425) Hits | Average | Avg % Ex. Time list, because this depends on the size of thericstathe
NN 6/30 427.16 0.50% 1.5 sec. . . .
1 830 226.26 0.29% 15 sec. successors generation function and the movemehtlition
Insertion 7/30 426.96 0.46% 1.5 sec. criteria.
Insertion F 8/30 426.43 0.33% 1.5 sec. _)
G. Final results of the algorithm
TABLE IV. .)]

TESTS FOR INSTANCEEILON7S The final results of the implemented algorithm dam
Eilon7s (555) s Avarae Ao % X Time summarized in the following table. The tests wezefigrmed
NN 6/30 53763 0.45% 9 sec. on an Intel Core i5 — 2410 laptop, with 2.30 GHd an
11 17/30 | 536.16 0.21% 6 sec. RAM of 4 GB. This time, instead of 30 executionsr pe
Insertion 10/30 | 536.33 0.24% 6 sec. instance, we have carried out 50.
Insertion F 5/30 539.56 0.85% 8 sec.

TABLE VI.
TABLE V. FINAL RESULTS OF THE ALGORITHM
TESTS FOR INSTANCEEIL101
Hits Average Avg% Time

Eil101 (629) Hits Average | Avg. % Ex. Time Oliver 30 (420) 50/50 | 420 0% 0.28 sec.
NN 0/30 635.56 1.04% 25 sec. Eilon50 (425) 22/50 | 425.7 0.16% 3.14 sec.
11 24/30 | 6305 0.23% 15 sec. Eilon75 (535) 40/50 | 535.6 0.11% 20.25 sec.
Insertion 0/30 637.23 1.30% 25 sec. Eil101 (629) 40/50 | 629.46 0.07% 34 sec.
Insertion F 0/30 632.96 0.62% 25 sec.

Ill. PROPOSED MEMETIC ALGORITHM

Evolutionary algorithms are based on the laws @& th
evolution of species. These algorithms work on pefmns
of organisms, in other words, on sets of interntedia
solutions. The organisms interact with each othegenerate
new organisms and these are added to the populatiem a
finite number of generations, or iterations, thgoathm
terminates execution and returns as a final soiutie best
organism in the population.

In this paper we have developed a new hybrid algori
which combines a genetic algorithm with a tabu dear
There are different types of hybrid or memetic alpms,
which combine different techniques, two examples [#]
and [10]. The aim is to study the effectivenesghig new
algorithm and see if it is worth using an algorittmfthis
nature rather than a tabu search algorithm.

In the next sections we explain in detail the athor and
the results obtained.

After analyzing the results, several conclusiona ba
obtained. In instances where there are few statisunsh as
Oliver30, the tabu list size is irrelevant, becaw#th a good
initial solution, it is easy to reach the globaltiopum.
However, in instances with larger number of nodes,size
of the list is very important. These results canfthe theory
explained above:

e Conclusion 1: If the size of the list is small, it is easy to
fall into local optima. In contrast, if the size l&rge, the
search space can be very constrained, and cantalénoa
the vicinity of global optimum.

Based on this conclusion, the best option is tdoper
tests with different sizes to see which is begesuiThere is
no universal rule to decide the optimal size oflisiesince it
is very dependent on the size of the instance, téfe
criterion and the successors generation function.

In this case, we can distinguish a best choiceiesitiy
remarkable results in Eil101 and Eilon75 instanees!, with
exceptional results in the other alternatives. Tdpsion is A, Generation of initial population
N/4. In Eilon50, however, the best alternative i Nout the
alternative N/4 also gives good results.

Analyzing the result set, and more specificallyitisance
Eil101, we can see clearly how a large size ofiigtecauses
the deterioration of the results. In this instatieesize N/8 is
a really good option and N/10 becomes the bestaltive.

The starting point of the algorithm is a set ofusioins
called population of individuals. Every individua the
population consists of a single chromosome, a veofo
integers that represents a route. In many casesseth
individuals are randomly generated. In our case,use a
technique that combines initialization heuristicgl aandom

Anyway, in case of selecting one of the 5 optidusiied, generation. This technique creates an individual eicery
we arrive at the following deduction. initialization heuristic described in the tabu stasection,

* Conclusion 2: Using Vertexinsertion successorsyile the others are generated randomly, until detmg
generator and a strict criterion of tabu movemefs, ihe entire population. Thus, the process begins ait

instances of up to 101 cities, the ideal size eftbu listis popylation in which there are a number of "acceptab
an approximate size of N/4, one quarter of thel tatanber go|utions and a number of random solutions.

of nodes.

B. Selection of parents

The crossover is the process in which the chromesarh
a population interact to generate new individu@snerated
individuals are called children, and as in natlaal, every
child must have a father and a mother. Therefare tHis
process, the algorithm has to choose the chromasoinae
will form part of the process.

There are many ways for selecting parents. Indhie we
have used an elitist method, in which the individweith the
highest fithess value are selected. In other wotfiks, best
individuals of the population are selected.

C. Crossover

There are many crossover functions [15]. In thigtiea,
the functions we have been implemented will be desd
and some results will be shown to see which of tiethe
best.

H1=(125639874)
H2=(216985374)

Very Greedy Crossover (VGX): This operator
introduced by Bryant [13] is more "customized" than
previous ones, since it takes into account theanéss
between cities to generate the children. First, fthrestion
randomly selects a node. Assuming that these
chromosomes are the parents:

P=(123456728)
M=(24687531)

Randomly selected as initial node number 2, momignta
the child would be the next:

H =(2*******)

Now, looking at the parents, the nodes adjacetti¢dast
node added (and still not part of the child) arlected as
“possible nodes”. In this case these nodes are dnd34.
From all “possible nodes”, the closest to the taxte added

two

Order Crossover (OX1): The Order crossover wasis added to the child. Suppose that in this casmiisber 4.

proposed by Davis [11]. This operator builds thidcan by
choosing a sub-route of one of the parents andteiaing
the order of the cities of the remaining parent. &mample,
suppose these two individuals.
P=(123456728)
M=(24687531)

At the moment, this would be the new child:
H - (24******)
This process is repeated until all cities have heserted.
D. Results of the crossover
With these three functions, various tests weregoeréd

Now, two cut points are selected, identical for HbottO checklwhich of them was the most efficient. Tthet
parents. Assuming that these breakpoints are Idcatéesults will not be shown, as they have a very l@gth.

between the position two and three and betweerafidesix:
P=(12]345|678)
M=(24|687|531)

Even so, we will explain what are the conclusiobtgmed.
First of all is that the operator Very Greedy ig tmost
efficient function, because it creates the besividdals.

The children will be created as follows. First, thelhis is because it is a specifically designed dpertr this

segments between the cut points are preservedllasd:
Hl=(**|345|***)
HZZ(**|687|***)

Then, starting with the second breakpoint, the reimg
nodes are inserted in the same order they appéhe iother
parent, considering that the cities that has airebeen
inserted have to be omitted. When the end of thagsts
reached, it continues through the beginning of.thike
children resulting from this example would be these

H1=(87]345]|126)
H2=(45]1687]123)

Modified Order Crossover (MOX): This crossover
proposed by Shubhra [12] selects a cut point tiates
each parent into two sections. Assuming the folhgwi
parents:

P=(1234169857)
M=(2198|56374)

The cities on the left of the cut point impose tlwgder on
the other parent:

Hl1=(12***98*%)
H2=(21****3*4)

The remaining cities are inserted into the childirerthe
same order they appear in the other parent. Thasthat
the resulting children would be:

type of problem. This function takes into accouhe t
distances between cities, therefore, whenever two
chromosomes are crossed, resulting child will atwvée
equal or better than either parent.

This feature is not present in the other two cresso
functions, because they make "semi-blind" croskes.true
that they attempt to maintain the structure andityuaf the
parents in the resulting individuals. Even so, ¢hiemctions
make "blind" unions, since in most of them, thetesuare
divided into sub-routes or small portions of routasd then
they are joined together regardless to the cost tthia
operation involves. This has the consequence that t
resulting children may be worse than their parentsch is
clearly seen in the presented results. Three csiatls can
be drawn:

» Conclusion 1: Considering the three functions, Very
Greedy Crossover (VGX) is which produces better
individuals

e Conclusion 2: It is recommendable to use
“customized” crossover operators for each problémar
example, for the TSP, it is possible to make opesatiaking
into account the distances among cities. Thusrekalting
individuals will always be better than their pasent

» Concluson 3: Crossover functions without
"customization" do not ensure that the resultingdebn

improve the fitness of their parents, because Hreybased
on "blind" unions.

Another thing to mention is that the VGX operator
generates fewer individuals than the other opesafdtis
shows that, despite generating a lot of childreadg®od
quality, the fact of producing “customized” indivalls is
more advisable.

E. Mutation process

This process is done after the crossover, and it is

performed on the resulting individuals. It is pb#sithat
during the execution of the algorithm, the popuolatiis
moving towards a local optimum. For this reasorstsxihis
process, which selects with a certain percentage
probability the individuals produced by crossoved anakes
a small change in them.

There are different ways to mutate. In this casehaee
implemented a process in which each chromosome
mutated with a probability of 20%. In case of makite
process, the mutation generates various node egehan
the individual. The number of exchanges is given any
attribute of the algorithm, which is introduced drethand
and called mutation factor.

G. Sdection of survivors

The population in a memetic algorithm has a firsitee.
Therefore, it is necessary to reduce the numbgrdofiduals
after crossover and mutation and discard thosedteatess
interesting. This is accomplished by the surviveetection
function. In this case a function called
ElitistRandomSurvivals is used. This function stdethe
surviving population considering two parts, onetpaill
consist of the best individuals, while the othert paill be
selected at random. For example, if we have a dipul of
50 individuals, and we have to reduce it to 30 vittlials,
this function will select the best 15 chromosomesoading
tq their fitness, and the other 15 will be seleciédandom
ﬁom the remaining 35.

The reason to select half of the population at oamés to
maintain some diversity, in order to avoid locatio.

iH. Results of the memetic algorithm
These are the results obtained with the implemented

memetic algorithm. The computer used is the saséa

section 2.8.We have executed 50 iterations for @ethnce:

TaABLE VILI.
FINAL RESULTS OF THE ALGORITHM

For example, suppose this chromosome:

C=(1234567890)

The mutation factor is 0.2. This means that 20%hef

chromosome will be changed. In this case the path

Hits Average | Avg. % Ex. Time
Oliver 30 (420) 50/50 420 0% 0.3 sec.
Eilon50 (425) 48/50 425.04 0.009% 11 sec.
Eilon75 (535) 40/50 535.3 0.05% 55 sec.
Eil101 (629) 50/50 629 0% 12 min.

composed of 10 cities, therefore the number of amxghs
will be two. Supposing that these two changes atevden
nodes 3 and 7, and node 2 and 9:
C=(12745639)
C"'=(1974563820)
Thus, the resulting chromosome is as follows:
CM=(1974563820)
In order to preserve the quality of the populatitim
mutated chromosome and original chromosome aredstor

F. Application of Tabu Algorithm

This step is the one that distinguishes this allgorifrom
a traditional genetic algorithm. After crossoved anutation
process, with the aim of optimize the new chromasna
reduced version of the tabu search algorithm desdri
above is applied. As in the mutation process, phixess is
applied only to a small part of the populationpider not to
increase excessively the execution time. This m®ce
applied to each individual with 20% probability.

The characteristics of tabu algorithm are the saméhe
previously explained, with the difference that thmdtial
solution is provided by the memetic algorithm. Frdinis
partial solution, the process runs autonomously.

In the simple version, the finish criterion of thabu
search was determined by a number of iterationhowtt
improvements in the quality of the solutions, cldeethe
neighborhood multiplied by 10 or 15. In this casés value
is lower, so, the execution time is reduced dralyic

V.

After analyzing the results, the first conclusionda
clearer, is obtained by observing that the resalitained by
the memetic algorithm are visibly better than thob&ained
by the tabu algorithm. This improvement in the flesstomes
with an increase in execution time, which in theecaf the
first three instances, it is not very large. By trast, in the
instance Eil101 although the algorithm finds anirapt in
all executions, the time increases in excess.

» Conclusion 1: The memetic algorithm obtains better
results than the tabu algorithm, although in instsnwith
more than 75 nodes the runtime is too high.

Generally, both algorithms offer good results, kach
one has a characteristic that makes it differemnhfthe other.
The tabu search algorithm gives better executiomegi
while the memetic algorithm provides a higher sssoate.
For this reason, depending on the needs an algoath the
other should be used.

» Conclusion 2: If the runtime is more important than
obtaining better results, the correct choice isde the tabu
search algorithm. Otherwise, the right choice & fiemetic
algorithm.

TABU VS. MEMETIC ALGORITHM

V.CONCLUSIONS AND FUTURE WORK

In this paper we have presented two different dlgms
for solving the TSP. On the one hand, a tabu &algorion
the other hand, a memetic algorithm. We have desdri
their characteristics, including various studie®wbsome
important aspects, such as the initialization fiomcof the
tabu search algorithm or the crossover functionsthef
memetic algorithm. Different instances have beesdu®r
testing, as Oliver30, Eilon50, Eilon75 and Eill@hd the
results have shown. Finally, a comparison betwaentwo
algorithms has been made, concluding that the ehoic
algorithm is influenced by the priorities of theeusIn case
of giving priority to the execution time, the rigbhoice is
the tabu search algorithm. In case of giving ptyoto the
quality of the solution, the correct choice is timemetic
algorithm.

[14] M.R. Garey, and D.S. Johnson. Computers and ltodity; a Guide
to the Theory of Np-Completeness. W. H. Freemano&1990.

[15] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, |. Innzead S.
Dizdarevic. Genetic Algorithms for the Travelingl&aman Problem:
A Review of Representations and Operators. Artfidntelligence
Review,13:129-170.1999.

We are currently working on the adaptation of these

algorithms to the VRP problem. We have planned rs¢ve
studies to determine the influence of the procéssutation
in evolutionary algorithms and the influence of éwors
selection functions.

Finally, this research is part of the PRODIS prbj&rant
P12011-58, funded by the Basque Government in $pain

REFERENCES

Lawler E.L., Lenstra J.K.,, Rinnooy K. and ShmoysBD.The
Traveling Salesman Problem: A guided tour of coratwrial
optimization. Wiley-Interscience Publication, 1985.

Solomon M. M. Algorithms for the vehicle routing dascheduling
problems with time windows. IFORMS Operations Reseano. 35,
pp. 254-265, 1987.

TSPLIB, comopt.ifi.uni- heidelberg.de/software/T 3B25/

Whitley D., Starkweather T. and Fuquay D. Scheduknoblems and
Traveling Salesmen The Genetic Edge Recombinatiqrerador
International Conference on Genetic Algorithms33:1.40, 1989.
Scheuerer S. A tabu search heuristic for the taruk trailer routing
problem. Computers & Operations Research, 33:8%4-2006.
Montane F.A.T. and Galvao R.D. A tabu search afgorifor the
vehicle routing problem with simultaneous pick-updadelivery
service. Computers & Operation Research, 33:595-80096.

Malek M., Guruswamy M., Pandya M., and Owens H.igbeand
parallel simulated annealing and tabu search algos for the
traveling salesman problem. Annals of OperationseRech, 21:59-
84, 1989.

Tsubakitani S. and Evans J.R. Optimizing tabu $igte for the
traveling salesman problem. Computers & Operati®esearch,
25:91-97, 1998.

Pop P.C., lordache S. A hybrid heuristic approamhsblving the
generalized traveling salesman problem. Genetic evamutionary
computation conference, GECCO 2011:481-488, 2011.

Gutin G. and Karapetyan D. A memetic algorithmtfue generalized
traveling salesman problem. International Journdl Natural
Computing Research, 9: 47-60. 2010.

David L. Applying Adaptive Algorithms to Epistati©omains.
Proceedings of the International Joint Conference Agtificial
Intelligence, 162-164, 1985.

Ray, S.S.; Bandyopadhyay, S. and Pal, S.K. Kperators of
Genetic Algorithm for Traveling Salesman Problemodeedings of
the 17th International Conference on Pattern Retiogn 497-500,
Vol. 2, 2004.

Julstrom B. A. Very Greedy Crossover in a Genelgo#thm for the
TSP. Proceedings of the 1995 ACM symposium on Agpli
computing, 324-328, 1995.

(1]

(2]

(3]
(4]

5]
(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

