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ABSTRACT
Nowadays, public transportation has become an essential 
area  which  affects  our  quality  of  life.  Therefore,  the 
design of  new roads,  new vehicles or  new stations is  a 
complicated process that requires a preliminary study to 
analyze its impact. This paper shows the algorithm of a 
simulation  tool  that  allows  the  definition  of  transport 
routes, in regular and on-demand transportation systems. 
The  resulting  application  allows  adjustment  and 
modification of routes, depending on passenger demand. 
All  this  is  achieved  through  the  use  of  a  memetic 
algorithm  that  combines  a  genetic  algorithm  and  tabu 
search. The result of the work done is a simulation tool 
and  a  memetic  algorithm  used  for  solving  a  particular 
instance of the Dynamic TSP.
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1. Introduction
The traveling salesman problem is one of the most famous 
and studied problem in combinatorial  optimization. The 
TSP was first proposed around 1800 by WR Hamilton and 
the  British  mathematician  Thomas  Kirkman  [1].  Its 
definition is as follows: Given a finite number of cities or 
nodes and a cost associated with the trip from city i to j, 
the  objective  is  to  find  a  permutation  of  cities  that 
minimizes the cost of visiting every city only once.

The TSP is known for being NP-Hard [2]. This means 
that there is no known algorithm that guarantees optimal 
solutions  on instances with a large number of nodes in a 
reasonable runtime. Therefore, the strategies in this kind 
of  problem are  focused  on  finding  good  solutions  that 
approximate to the optimal, taking into account the basic 
criteria of the computational complexity: Needed time and 
resources employed. 

Over the history there have been many studies on the 
TSP [13,  14]. In  the  same way,  there  have  been  many 
variations  of  TSP  such  as  the  TSP  with  Pickup  and 
Delivery (TSPPD) [17] or m-TSP [18]. Another  widely 

studied variant is the Dynamic TSP (DTSP). The interest 
in this type of problem has increased in recent years [15, 
16],  due  to  the  enhanced  of  the  technology  and 
computational  resources  that  have  enabled  the 
implementation of these systems into real scenarios.

This  paper is  the  result  of  the  work  done  in  the 
resolution of a real Dynamic TSP instance. To solve that 
problem  a  hybrid  evolutionary  algorithm  has  been 
designed.  Our new algorithm (a.k.a  memetic  algorithm) 
combines a genetic algorithm and a tabu search technique. 
The problem in hand is an instance of a DTSP. The new 
algorithm  is  the  core  of  a  web  application  that  allows 
dynamic generation of bus routes. In this application the 
customer demand is dynamic, and so, the application can 
make changes in the routes during its execution. 

The  remainder  of  this  document  is  organized  as 
follows:  section 2 presents  a  general  description of  the 
DTSP. Section 3 introduces our problem instance while 
the section 4 describes algorithm design details. Finally, 
section  5  concludes  this  paper  and  gives  directions  for 
further research.

2. Dynamic TSP – DTSP
In the basic version of the TSP, all information about the 
demand  and  routing  is  available  from  the  beginning; 
before  the  construction  of  routes  and  also  before  the 
moment of the execution of  these routes.  In  the DTSP, 
some of this relevant information is not available at the 
time  of  designing  the  route.  This  information  may  be 
unknown  or  even  altered  during  the  process  of 
construction or execution of a route.

The first reference  to a DTSP belongs to Wilson and 
Colvin [3], who proposed a dynamic variation of the ARP 
[4],  where  the  client  requests,  consist  of  trips  from an 
origin  to  a  particular  destination,  could  appear 
dynamically. 

In this type of problems, vehicles must serve two types 
of requests: advanced and immediate requests. The firsts 
are those that customers have made before the start of the 
routing process,  so they are known from the beginning. 
Moreover, the immediate requests, introduced by Psaraftis 
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[5],  are  those  that  are  received  dynamically  and  which 
appear in real time while the path is being executed by the 
vehicle. The management of immediate demands is often 
very  complex,  and  it  requires  a  real-time  planning 
process.  According to the flexibility of the problem [6] 
the insertion of new requests can be more or less complex. 
For example, in problems with time windows, the adding 
becomes  more  complex  than  in  environments  without 
them. 

In these kinds of problems, the most common source 
of dynamism is given by the arrival of requests during the 
execution  of  the  route.  Normally,  these  requests  may 
require the supply of goods [7], or the request for a travel 
service [8]. Recently,  the dynamic travel  time, which is 
very common factor in the real world, has been taken into 
account in many studies [9]. Finally, some recent studies 
give  dynamism  to  the  demand  of  certain  customers 
already  known  [10]  and  the  availability  of  the  vehicle 
[11],  where  the  possible  breakdown  provides  the 
dynamism to the system.

To  understand  this  dynamism,  the  following  figure 
shows the execution of an instance of DTSP [12]:
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Figure 1: Example of DTSP

The  picture  shows  that  the  initial  route  constructed 
with the known requests is {A, B, C, D, E}. While the 
vehicle is moving, two immediate requests come (X and 
Y), so, the initial route is modified to satisfy the demand 
of the new customers: {A, B, C, D, X, E, Y}.

Thanks to technological and computer advances, this 
kind  of  problem has  gained  popularity  in  recent  years. 

Successful  performance  of  this  system  requires  special 
equipment in order  to transmit information between the 
dispatch center and the vehicles. The introduction of the 
Global  Positioning System (GPS),  the development  and 
expansion  of  smartphones,  and  the  accuracy  of  the 
Geographic Information Systems (GIS) have made these 
systems to be applicable in real world scenarios.

The  following  figure  shows  the  communication 
architecture  of  our  simulation  tool.  This  architecture 
enables  bidirectional  communication  between  vehicles 
and control center. This allows to know the position of the 
vehicles  (obtained  with  a  GPS  system),  and  that  the 
vehicles receive modifications of the routes in real time.
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 Figure 2: Communications Architecture

3. Description of our DTSP Problem
Nowadays there are many kinds of public transports, on 
demand or regular ones. This requires the public transport 
to  be  more  demanding  and  sophisticated.  But  before 
performing  variations  to  the  regular  service,  by  adding 
more transport units, new stops or creating new routes or 
lines, it is necessary to make preliminary studies to with 
the objective of improving the quality of service and the 
client  satisfaction without  making mistakes.  To achieve 
this excellence different techniques and tools are used and 
applied  before  deploying  the  changes,  in  order  to 
guarantee that the staff will be able to have an idea of the 
impact of the new variations.

In this work it has been developed a simulation tool, 
oriented to bus public transport, on demand or regular, in 
rural or urban environments. With this tool, different tests 
can be made to check the performance improvement when 
adding a new stop to a route or the creation of a new line.

With this tool the users will be able to create different 
environments composed of stations, that user may place 
wherever  he  desires.  The  application  will  calculate  the 
optimized route to navigate through all the placed stations 
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using the artificial  intelligence algorithm developed that 
will be further explained later. Once the route is created, 
the  user  may  make  requests,  which  the  system  will 
manage on an efficient way. The system will also be able 
to make a simulation of how the bus would be completing 
the route and managing the dynamic requests made in real 
time.

It’s  important  to  remark  the  difference  between 
primary and secondary stations. The primary stations are 
the ones the bus must pass through, the secondary are the 
ones that will only be part of the route if it exists enough 
demanding from the users. This feature allows creating on 
demand transport lines, and helps to decide which stations 
will  be  secondary  and  the  threshold  that  marks  adding 
them to the route. 

Figure 3, shows the application’s main screen. In this 
screen  several  deployable  tabs  contain  diverse 
information. The top ones for example, have information 
about the route of each of the buses and the history of the 
active bus. The bottom one contains a history of all the 
requests  made,  a  panel  to  make transportation  requests 
and some controls to manage the simulation of the bus 
tour.

Figure 3: application’s main screen

Apart  from  this,  a  mobile  application  has  been 
developed. Thanks to this, the users can view current bus 
route, in map or text format. Furthermore,  it also offers 
the possibility of making requests in the same way as the 
web  application.  To  finish,  in  Figure  4  a  conceptual 
schema of the final system architecture is shown.

Figure 4: Structure of the application

4. Proposed memetic algorithm
Population-based algorithms are based on the laws of the 
evolution  of  species.  These  algorithms  work  with 
populations of chromosomes (solutions of the problem). 
Best  chromosomes  interact  together  to  generate  new 
chromosomes and these new individuals are added to the 
population.  After  a  finite  number  of  generations,  or 
iterations, the algorithm ends its execution and returns the 
best  chromosome  in  the  population.  This  best 
chromosome represents the final solution to the problem 
in hand.

There  are  different  types  of  population-based 
algorithms such as evolutionary or genetic algorithms. In 
the  literature  there  are  many  hybrid  approaches  that 
combine different techniques. Two examples of this can 
be found in [19] and [20].

Our  work  has  been  focused  in  the  design  and  the 
development of a new hybrid algorithm which combines a 
genetic algorithm with a tabu search strategy. The design 
of  a new population-based algorithm involves primarily 
four  major  steps  or  phases:  generation  of  the  initial 
population,  selection  of  the  best  chromosomes  to  be 
parents,  crossover  and  mutation.  Below  the  approach 
taken for the mentioned steps is described.

4.1 Generation of the initial population
As we explained before, each chromosome (or individual) 
represents a solution of the problem in hand. In particular, 
for a vehicle routing problem, the solution is a route that 

is defined by means of a string of numbers. One of the 
most important steps of a genetic algorithm is to create 
the individuals of the first or initial population.
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In  many  cases,  these  initial  chromosomes  are 
generated randomly. But our intuition tells that the better 
the initial  population,  the better  the following.  For  that 
reason,  in the proposed algorithm we suggest  a  mix of 
randomness with the use of an initialization criterion. This 
technique generates some individuals using a well-known 
initialization  technique,  while  other  are  generated 
randomly,  until  completion  of  the  entire  population.  In 
this way the process begins with a population in which 
there are a number of acceptable solutions and a number 
of  random  solutions.  We  have  implemented  4 
initialization strategies:

Nearest neighbor criterion: The first location of the 
route  is  selected  at  random.  Then,  and  repeatedly,  the 
location closest to the last selected location is added to the 
route. 

Insertion  criterion:  This  strategy  starts  the  process 
with a partial route composed of two cities. These cities 
are the two that are nearby one another,  i.e.  the closest 
locations. Below, a location closest to any of the locations 
that are already part  of the partial path, is added to the 
partial  route.  Each  selected  location is  inserted into the 
route in the position which supposes a  smaller  cost  (or 
distance) increase.

Farthest insertion criterion: This is a modification of 
the previous  strategy.  After  several  studies,  it  has  been 
demonstrated  to  be  more  efficient  the  selection  of  the 
location that is farthest from any location that is part of 
the partial route. Once a location is selected, it is inserted 
in the position involving a minor cost increase.

Solomon  I1  insertion  heuristic [21]:  In  1987, 
Solomon  proposed  three  heuristics  for  the  VRPTW 
problem. Among all these, the so-called I1 is the one that 
offers the best results. This strategy begins its execution 
with  the  longer  edge  (locations  that  are  farthest  each 
other). Then, for each unrouted location, calculate the cost 
of  inserting  the  location  at  any  position on  the  current 
route. The location having the smaller increase in the cost 
is  inserted  in  the  path.  The  process  continues  until  all 
locations are routed.

These 4 strategies were tested with different instances 
of TSP (obtained from TSPLIB [22] and [23]). The results 
of our tests are presented in Table 1. The tests showed up 
that the last two ones (farthest insertion and I1) offer the 
best  results.  This  does  not  mean that  either  of  the two 
other  is  not  adequate  to  be  used  in  our  proposed 
algorithm, as demonstrated later.

Table 1
Initial solutions obtained by each criterion

TSP Instance Oliver30 Eilon50 Eilon75
Optimal solution 420 421 535
Nearest neighbor * 509 566 620
Insertion 466 475 622
Farthest Insertion 452 485 588
Solomon I1 471 464 597

* These values are approximate because the result depends on 
the initial location (which is selected at random)

4.2 Parent selection
The  crossover  or  crossing  is  the  process  in  which  the 
chromosomes in a population interact with each other to 
generate  new individuals.  Generated  individuals  are 
referred to as children, and as in natural laws, each child 
has  to  have  pair  of  parents.  As  intuition  suggests,  the 
better the parents, the better the children. For that reason, 
parents  selection  process,  is  one  of  the  most  important 
steps of a genetic algorithm. There are many ways for the 
selection of the parents. In this case we have made use of 
an elitist method, which selects the best chromosomes in 
order to be parents.

4.3 Crossover process
In  the  process  of  crossing,  as  explained  above,  two 
chromosomes interact  to form new chromosomes. There 
are plenty of crossover functions or operators. Below, we 
detail the crossover operators that we have implemented, 
although  only  one  of  them has  been  used  for  the  final 
algorithm.

4.3.1 Order crossover (OX1)
The Order  crossover  was proposed by Davis [24].  This 
operator  constructs  the children by choosing small  sub-
routes  of  one's  parent  and maintaining the order  of the 
locations of the remaining parent. For example, assuming 
these two individuals:

P = (1 2 3 4 5 6 7 8)
M = (2 4 6 8 7 5 3 1)

Now two cut-off points are randomly selected. These 
cut  points  are  similar  for  both  parents.  Assuming  that 
these  cut-off  points  are  between  the  position  two  and 
three, and the position five and six:

P = (1 2 | 3 4 5 | 6 7 8)
M = (2 4 | 6 8 7 | 5 3 1)
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After that, two children (new solutions of the problem) 
are created. First, the segments between the cut-off points 
are preserved:

H1 = (* * | 3 4 5 | * * *)
H2 = (* * | 6 8 7 | * * *)

Finally,  starting  with  the  second  cut-off  point,  the 
remaining locations are inserted in the same order  they 
appear  in  the  other  relative,  bearing  in  mind  that  the 
already routed locations are omitted. When the end of the 
route is reached, the process continues at the beginning of 
corresponding parent individual. The resulting children of 
this example are these ones:

H1 = (8 7 | 3 4 5 | 1 2 6)
H2 = (4 5 | 6 8 7 | 1 2 3)

4.3.2 Modified Order crossover (MOX)

This  crossover  was  proposed  by  Shubhra  [25].  The 
process starts by selecting a cut-off point that divides the 
parents  into  two  sub-routes.  Assuming  the  following 
parents:

P = (1 2 3 4 | 6 9 8 5 7)
M = (2 1 9 8 | 5 6 3 7 4)

The locations that are on the left of the cut-off point 
maintain the position they had in the original individual. 
In  our example,  the locations 1,  2,  3 and 4 of  the first 
parent are in their original positions of the second child; 
the same happens for the locations 2, 1, 9 and 8 of the 
second parent:

H1 = (1 2 * * * 9 8 * *)
H2 = (2 1 * * * * 3 * 4)

The remaining locations are inserted into the children 
in the order appearing in the opposite parent.  Then, the 
resulting children would be the following:

H1 = (1 2 5 6 3 9 8 7 4)
H2 = (2 1 6 9 8 5 3 7 4)

4.3.3 Very Greedy crossover (VGX)

This operator presented by Bryant [26] is more "directed" 
than the previous two. In generating children, it that takes 

into account the distances between locations. First selects 
a  location  at  random.  Assuming  that  these  two 
chromosomes are the parents:

P = (1 2 3 4 5 6 7 8)
M = (2 4 6 8 7 5 3 1)

Having selected location 2 as the initial portion of a 
new chromosome, the new child is:

H = (2 * * * * * * *)

Now, the unrouted locations that are adjacent (in both 
parents) to the last routed location are selected as potential 
locations.  In  this  case,  those  locations  are:  1,  3  and  4. 
From all possible locations, the one that is closed to the 
last  routed  location,  added  to  the  child.  Assuming that 
location 4 is the closest to location 2, now the new child 
would be:

H = (2 4 * * * * * *)

This process is repeated until all locations have been 
routed. For example, in the next step, the possible nodes 
would be 3, 5 and 1. Between those three locations, the 
one that is closest to the location 4 is selected.

After  testing these three operators,  it  was concluded 
that the VGX crossover is the most effective, so that is the 
one used in our genetic algorithm.

4.4 Mutation process

This process is executed after making all crossings, and it 
is  performed  on  the  resulting  children.  During  the 
execution of the algorithm, the population is likely to be 
directed toward a local minimum. For this reason,  once 
created new individuals, they undergo a mutation process 
with a certain probability. As in the nature, the aim of the 
mutation  process  is  to  evolve  the  chromosomes  and 
ensure the diversity of the new population.

There  are  many ways  to  perform the  mutation.  The 
most  common  ones  are  based  on  the  exchange  of 
locations at random. In this case, we have implemented a 
mutation process that modifies each chromosome with a 
probability of 20 per cent. If  the mutation is realized, a 
number of locations of the chromosome are modified. The 
number of changed locations is defined by a configuration 
parameter of the algorithm is called “MutationFactor”.

For  example,  assuming  we  have  the  following 
chromosome, composed by 10 locations:
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 C = (1 2 3 4 5 6 7 8 9 0)

Mutation factor is 0.2; i.e. 20% of the locations of the 
route will be modified. As the number of locations of the 
route is  10,  2 locations will  be modified.  The mutation 
process  is  performed as follows: first  two locations  are 
selected at random (e.g. 3 and 7), and their positions are 
exchanged. Then the process is repeated (locations 2 and 
9 are exchanged):

C’ = (1 2 7 4 5 6 3 8 9 0)
C’’ = (1 9 7 4 5 6 3 8 2 0)

And the resulting chromosome will be as follows:

CM = (1 9 7 4 5 6 3 8 2 0)

In  order  to  preserve  the quality of  the population,  both 
chromosomes  (the  original  one  and  the  mutated),  are 
saved.

4.5 Application of the tabu algorithm

This step is the one that distinguishes this algorithm from 
a  traditional  genetic  algorithm.  After  crossover  and 
mutation  process,  with  the  aim  of  optimizing  the  new 
chromosomes, an execution of a tabu algorithm is applied. 
As in the mutation process, this process applies only to a 
small  part  of  the  population,  in  order  not  to  increase 
excessively the execution time. This process is applied to 
each individual with 20% probability.

The  tabu  algorithm  implemented  has  the  following 
characteristics:

• Movement  criterion:  Vertex  Insertion.  In  this 
function a node of the route is selected, this node is 
removed from the route and it is inserted into another 
position to generate a new solution [27].

• Tabu criteria: Node I.  This is the strictest criterion. 
The  ID  of  the  last  node  used  in  the  process  of 
successor  generation  is  inserted  into  tabu  list.  This 
node cannot be moved of its position until he leaves 
the tabu list [28].

• Tabu list size and duration of tabu status:  The list 
will have a size of N / 4 where N is the number of 
nodes in the environment. With strict criteria, the size 
of  the  list  has  to  be  small.  Several  tests  were 
performed in which it was concluded that N / 4 was 
the right size. The list has a queued process in which 

each movement is considered prohibited for a number 
of runs equal to the size of the list.

• Aspiration  criteria: The  aspiration  criterion  is  an 
extended  concept  in  the  implementation  of  tabu 
algorithms. When this criterion is satisfied, allows the 
algorithm to execute prohibited or tabu movements. In 
the implemented algorithm, for  example,  there  is  an 
aspiration  criterion,  which  allows  tabu  moves  to  be 
made if the execution of this movement can improve 
the current solution, and not return to the immediately 
preceding solution.

As can be seen, the algorithm has the same characteristics 
as an autonomous tabu algorithm, with the difference that 
the initial solution is not generated by the process itself, 
instead it is provided by the memetic algorithm.

In order to not increase excessively the execution time 
of  the  algorithm,  the  difference  with  an  autonomous 
algorithm occurs in the number of iterations that have to 
be executed without the improvement of the best solution 
found so far. In the simple version, this value was close to 
the neighborhood. In this case, this value is equal to a fifth 
of  the  neighborhood,  so,  the  execution  time is  reduced 
drastically.

4.6 Selection of survivors
The population in a memetic algorithm has a finite size. 
Therefore,  it  is  necessary  to  reduce  the  number  of 
chromosomes  after  crossover  and  mutation  and  discard 
those that are less interesting. This is accomplished by the 
selection  of  survivors  function.  In  this  case  is  used  a 
function  called  ElitistRandomSurvaivals.  This  function 
selects the surviving population in two parts, one part will 
consist of the best chromosomes, while the other part will 
be  selected  at  random.  For  example,  if  we  have  a 
population of 50 chromosomes, and we have to reduce it 
to  30  individuals,  this  function  will  select  the  15  best 
chromosomes  according  to  their  fitness,  and  the 
remaining 15 will select at random from the 35 remaining. 

The reason to select half of the population at random 
is  to  maintain  some  diversity,  in  order  to  avoid  local 
optimums.

4.7 Results of the algorithm
These  are  the  results  obtained  by  the  implemented 
algorithm by applying them to different known instances. 
Tests  have  been  performed on a  laptop Intel  Core  i5  - 
2410,  with  2.30  GHz  and  a  4  GB  RAM.  
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There  have  been  performed  50  iterations  for  each 
instance.

Table 2
Final results of the algorithm:

Hits* Media Media % Ex. Time
Oliver30 50/50 420 0% 0.3 seg
Eilon50 48/50 425.04 0.009% 11 seg.
Eilon75 40/50 535.3 0.05% 55 seg.
Eil101 50/50 629 0% 10 min.
*A hit  is an execution  in which the algorithm has found the optimal 
solution.

5. Conclusion and future work

The  work  presented  is  the  result  of  a  research  project 
funded by the Basque government. The project focuses on 
the design of a software tool that assists in the creation of 
routes and schedules of passenger transport systems. For 
this, we have developed an application that is based on 
evolutionary computing techniques to simulate passenger 
demand  and  adjust  the  routes  and  frequency  of  the 
services to meet those demands. The result of work done 
is a software tool, and a metaheuristic algorithm that can 
be used for solving optimization problems.

We are currently working on adapting this algorithm 
to  the  problem  DVRP.  Apart  from  this,  we  plan  to 
perform various studies to determine the influence of the 
mutation process in the algorithms and the influence of 
population survival functions.
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