
SIMULATION TOOL BASED ON A MEMETIC ALGORITHM TO SOLVE A
REAL INSTANCE OF A DYNAMIC TSP

Eneko Osaba, Roberto Carballedo, Fernando Díaz, Asier Perallos
University of Deusto, Deusto Institute of Technology

Av. Universidades, 24, Bilbao, Spain
{e.osaba, Roberto.carballedo, fernando.diaz, perallos}@deusto.es

ABSTRACT
Nowadays, public transportation has become an essential
area which affects our quality of life. Therefore, the
design of new roads, new vehicles or new stations is a
complicated process that requires a preliminary study to
analyze its impact. This paper shows the algorithm of a
simulation tool that allows the definition of transport
routes, in regular and on-demand transportation systems.
The resulting application allows adjustment and
modification of routes, depending on passenger demand.
All this is achieved through the use of a memetic
algorithm that combines a genetic algorithm and tabu
search. The result of the work done is a simulation tool
and a memetic algorithm used for solving a particular
instance of the Dynamic TSP.

KEY WORDS
Simulation tool, Evolutionary computing, Dynamic TSP,
Intelligent Transport System.

1. Introduction
The traveling salesman problem is one of the most famous
and studied problem in combinatorial optimization. The
TSP was first proposed around 1800 by WR Hamilton and
the British mathematician Thomas Kirkman [1]. Its
definition is as follows: Given a finite number of cities or
nodes and a cost associated with the trip from city i to j,
the objective is to find a permutation of cities that
minimizes the cost of visiting every city only once.

The TSP is known for being NP-Hard [2]. This means
that there is no known algorithm that guarantees optimal
solutions on instances with a large number of nodes in a
reasonable runtime. Therefore, the strategies in this kind
of problem are focused on finding good solutions that
approximate to the optimal, taking into account the basic
criteria of the computational complexity: Needed time and
resources employed.

Over the history there have been many studies on the
TSP [13, 14]. In the same way, there have been many
variations of TSP such as the TSP with Pickup and
Delivery (TSPPD) [17] or m-TSP [18]. Another widely

studied variant is the Dynamic TSP (DTSP). The interest
in this type of problem has increased in recent years [15,
16], due to the enhanced of the technology and
computational resources that have enabled the
implementation of these systems into real scenarios.

This paper is the result of the work done in the
resolution of a real Dynamic TSP instance. To solve that
problem a hybrid evolutionary algorithm has been
designed. Our new algorithm (a.k.a memetic algorithm)
combines a genetic algorithm and a tabu search technique.
The problem in hand is an instance of a DTSP. The new
algorithm is the core of a web application that allows
dynamic generation of bus routes. In this application the
customer demand is dynamic, and so, the application can
make changes in the routes during its execution.

The remainder of this document is organized as
follows: section 2 presents a general description of the
DTSP. Section 3 introduces our problem instance while
the section 4 describes algorithm design details. Finally,
section 5 concludes this paper and gives directions for
further research.

2. Dynamic TSP – DTSP
In the basic version of the TSP, all information about the
demand and routing is available from the beginning;
before the construction of routes and also before the
moment of the execution of these routes. In the DTSP,
some of this relevant information is not available at the
time of designing the route. This information may be
unknown or even altered during the process of
construction or execution of a route.

The first reference to a DTSP belongs to Wilson and
Colvin [3], who proposed a dynamic variation of the ARP
[4], where the client requests, consist of trips from an
origin to a particular destination, could appear
dynamically.

In this type of problems, vehicles must serve two types
of requests: advanced and immediate requests. The firsts
are those that customers have made before the start of the
routing process, so they are known from the beginning.
Moreover, the immediate requests, introduced by Psaraftis

 Proceedings of the IASTED International Conference

June 25 - 27, 2012 Napoli, Italy
Applied Simulation and Modelling (ASM 2012)

DOI: 10.2316/P.2012.776-029 27

[5], are those that are received dynamically and which
appear in real time while the path is being executed by the
vehicle. The management of immediate demands is often
very complex, and it requires a real-time planning
process. According to the flexibility of the problem [6]
the insertion of new requests can be more or less complex.
For example, in problems with time windows, the adding
becomes more complex than in environments without
them.

In these kinds of problems, the most common source
of dynamism is given by the arrival of requests during the
execution of the route. Normally, these requests may
require the supply of goods [7], or the request for a travel
service [8]. Recently, the dynamic travel time, which is
very common factor in the real world, has been taken into
account in many studies [9]. Finally, some recent studies
give dynamism to the demand of certain customers
already known [10] and the availability of the vehicle
[11], where the possible breakdown provides the
dynamism to the system.

To understand this dynamism, the following figure
shows the execution of an instance of DTSP [12]:

A
B

D

C

E

A
B

D

E
X

X

C

X

Y

A
B

D

E

C

X

Y

A A Customers (Unserved/Served)

Depot

Planed Arc

Executed arc

Figure 1: Example of DTSP

The picture shows that the initial route constructed
with the known requests is {A, B, C, D, E}. While the
vehicle is moving, two immediate requests come (X and
Y), so, the initial route is modified to satisfy the demand
of the new customers: {A, B, C, D, X, E, Y}.

Thanks to technological and computer advances, this
kind of problem has gained popularity in recent years.

Successful performance of this system requires special
equipment in order to transmit information between the
dispatch center and the vehicles. The introduction of the
Global Positioning System (GPS), the development and
expansion of smartphones, and the accuracy of the
Geographic Information Systems (GIS) have made these
systems to be applicable in real world scenarios.

The following figure shows the communication
architecture of our simulation tool. This architecture
enables bidirectional communication between vehicles
and control center. This allows to know the position of the
vehicles (obtained with a GPS system), and that the
vehicles receive modifications of the routes in real time.

GPSGPS

Dispatch
Center

Po
si

tio
n

Route Changes
Status & Position

Route
 Change

s

St
atu

s &
 Posit

io
n

 Figure 2: Communications Architecture

3. Description of our DTSP Problem
Nowadays there are many kinds of public transports, on
demand or regular ones. This requires the public transport
to be more demanding and sophisticated. But before
performing variations to the regular service, by adding
more transport units, new stops or creating new routes or
lines, it is necessary to make preliminary studies to with
the objective of improving the quality of service and the
client satisfaction without making mistakes. To achieve
this excellence different techniques and tools are used and
applied before deploying the changes, in order to
guarantee that the staff will be able to have an idea of the
impact of the new variations.

In this work it has been developed a simulation tool,
oriented to bus public transport, on demand or regular, in
rural or urban environments. With this tool, different tests
can be made to check the performance improvement when
adding a new stop to a route or the creation of a new line.

With this tool the users will be able to create different
environments composed of stations, that user may place
wherever he desires. The application will calculate the
optimized route to navigate through all the placed stations

28

using the artificial intelligence algorithm developed that
will be further explained later. Once the route is created,
the user may make requests, which the system will
manage on an efficient way. The system will also be able
to make a simulation of how the bus would be completing
the route and managing the dynamic requests made in real
time.

It’s important to remark the difference between
primary and secondary stations. The primary stations are
the ones the bus must pass through, the secondary are the
ones that will only be part of the route if it exists enough
demanding from the users. This feature allows creating on
demand transport lines, and helps to decide which stations
will be secondary and the threshold that marks adding
them to the route.

Figure 3, shows the application’s main screen. In this
screen several deployable tabs contain diverse
information. The top ones for example, have information
about the route of each of the buses and the history of the
active bus. The bottom one contains a history of all the
requests made, a panel to make transportation requests
and some controls to manage the simulation of the bus
tour.

Figure 3: application’s main screen

Apart from this, a mobile application has been
developed. Thanks to this, the users can view current bus
route, in map or text format. Furthermore, it also offers
the possibility of making requests in the same way as the
web application. To finish, in Figure 4 a conceptual
schema of the final system architecture is shown.

Figure 4: Structure of the application

4. Proposed memetic algorithm
Population-based algorithms are based on the laws of the
evolution of species. These algorithms work with
populations of chromosomes (solutions of the problem).
Best chromosomes interact together to generate new
chromosomes and these new individuals are added to the
population. After a finite number of generations, or
iterations, the algorithm ends its execution and returns the
best chromosome in the population. This best
chromosome represents the final solution to the problem
in hand.

There are different types of population-based
algorithms such as evolutionary or genetic algorithms. In
the literature there are many hybrid approaches that
combine different techniques. Two examples of this can
be found in [19] and [20].

Our work has been focused in the design and the
development of a new hybrid algorithm which combines a
genetic algorithm with a tabu search strategy. The design
of a new population-based algorithm involves primarily
four major steps or phases: generation of the initial
population, selection of the best chromosomes to be
parents, crossover and mutation. Below the approach
taken for the mentioned steps is described.

4.1 Generation of the initial population
As we explained before, each chromosome (or individual)
represents a solution of the problem in hand. In particular,
for a vehicle routing problem, the solution is a route that

is defined by means of a string of numbers. One of the
most important steps of a genetic algorithm is to create
the individuals of the first or initial population.

29

In many cases, these initial chromosomes are
generated randomly. But our intuition tells that the better
the initial population, the better the following. For that
reason, in the proposed algorithm we suggest a mix of
randomness with the use of an initialization criterion. This
technique generates some individuals using a well-known
initialization technique, while other are generated
randomly, until completion of the entire population. In
this way the process begins with a population in which
there are a number of acceptable solutions and a number
of random solutions. We have implemented 4
initialization strategies:

Nearest neighbor criterion: The first location of the
route is selected at random. Then, and repeatedly, the
location closest to the last selected location is added to the
route.

Insertion criterion: This strategy starts the process
with a partial route composed of two cities. These cities
are the two that are nearby one another, i.e. the closest
locations. Below, a location closest to any of the locations
that are already part of the partial path, is added to the
partial route. Each selected location is inserted into the
route in the position which supposes a smaller cost (or
distance) increase.

Farthest insertion criterion: This is a modification of
the previous strategy. After several studies, it has been
demonstrated to be more efficient the selection of the
location that is farthest from any location that is part of
the partial route. Once a location is selected, it is inserted
in the position involving a minor cost increase.

Solomon I1 insertion heuristic [21]: In 1987,
Solomon proposed three heuristics for the VRPTW
problem. Among all these, the so-called I1 is the one that
offers the best results. This strategy begins its execution
with the longer edge (locations that are farthest each
other). Then, for each unrouted location, calculate the cost
of inserting the location at any position on the current
route. The location having the smaller increase in the cost
is inserted in the path. The process continues until all
locations are routed.

These 4 strategies were tested with different instances
of TSP (obtained from TSPLIB [22] and [23]). The results
of our tests are presented in Table 1. The tests showed up
that the last two ones (farthest insertion and I1) offer the
best results. This does not mean that either of the two
other is not adequate to be used in our proposed
algorithm, as demonstrated later.

Table 1
Initial solutions obtained by each criterion

TSP Instance Oliver30 Eilon50 Eilon75
Optimal solution 420 421 535
Nearest neighbor * 509 566 620
Insertion 466 475 622
Farthest Insertion 452 485 588
Solomon I1 471 464 597

* These values are approximate because the result depends on
the initial location (which is selected at random)

4.2 Parent selection
The crossover or crossing is the process in which the
chromosomes in a population interact with each other to
generate new individuals. Generated individuals are
referred to as children, and as in natural laws, each child
has to have pair of parents. As intuition suggests, the
better the parents, the better the children. For that reason,
parents selection process, is one of the most important
steps of a genetic algorithm. There are many ways for the
selection of the parents. In this case we have made use of
an elitist method, which selects the best chromosomes in
order to be parents.

4.3 Crossover process
In the process of crossing, as explained above, two
chromosomes interact to form new chromosomes. There
are plenty of crossover functions or operators. Below, we
detail the crossover operators that we have implemented,
although only one of them has been used for the final
algorithm.

4.3.1 Order crossover (OX1)
The Order crossover was proposed by Davis [24]. This
operator constructs the children by choosing small sub-
routes of one's parent and maintaining the order of the
locations of the remaining parent. For example, assuming
these two individuals:

P = (1 2 3 4 5 6 7 8)
M = (2 4 6 8 7 5 3 1)

Now two cut-off points are randomly selected. These
cut points are similar for both parents. Assuming that
these cut-off points are between the position two and
three, and the position five and six:

P = (1 2 | 3 4 5 | 6 7 8)
M = (2 4 | 6 8 7 | 5 3 1)

30

After that, two children (new solutions of the problem)
are created. First, the segments between the cut-off points
are preserved:

H1 = (* * | 3 4 5 | * * *)
H2 = (* * | 6 8 7 | * * *)

Finally, starting with the second cut-off point, the
remaining locations are inserted in the same order they
appear in the other relative, bearing in mind that the
already routed locations are omitted. When the end of the
route is reached, the process continues at the beginning of
corresponding parent individual. The resulting children of
this example are these ones:

H1 = (8 7 | 3 4 5 | 1 2 6)
H2 = (4 5 | 6 8 7 | 1 2 3)

4.3.2 Modified Order crossover (MOX)

This crossover was proposed by Shubhra [25]. The
process starts by selecting a cut-off point that divides the
parents into two sub-routes. Assuming the following
parents:

P = (1 2 3 4 | 6 9 8 5 7)
M = (2 1 9 8 | 5 6 3 7 4)

The locations that are on the left of the cut-off point
maintain the position they had in the original individual.
In our example, the locations 1, 2, 3 and 4 of the first
parent are in their original positions of the second child;
the same happens for the locations 2, 1, 9 and 8 of the
second parent:

H1 = (1 2 * * * 9 8 * *)
H2 = (2 1 * * * * 3 * 4)

The remaining locations are inserted into the children
in the order appearing in the opposite parent. Then, the
resulting children would be the following:

H1 = (1 2 5 6 3 9 8 7 4)
H2 = (2 1 6 9 8 5 3 7 4)

4.3.3 Very Greedy crossover (VGX)

This operator presented by Bryant [26] is more "directed"
than the previous two. In generating children, it that takes

into account the distances between locations. First selects
a location at random. Assuming that these two
chromosomes are the parents:

P = (1 2 3 4 5 6 7 8)
M = (2 4 6 8 7 5 3 1)

Having selected location 2 as the initial portion of a
new chromosome, the new child is:

H = (2 * * * * * * *)

Now, the unrouted locations that are adjacent (in both
parents) to the last routed location are selected as potential
locations. In this case, those locations are: 1, 3 and 4.
From all possible locations, the one that is closed to the
last routed location, added to the child. Assuming that
location 4 is the closest to location 2, now the new child
would be:

H = (2 4 * * * * * *)

This process is repeated until all locations have been
routed. For example, in the next step, the possible nodes
would be 3, 5 and 1. Between those three locations, the
one that is closest to the location 4 is selected.

After testing these three operators, it was concluded
that the VGX crossover is the most effective, so that is the
one used in our genetic algorithm.

4.4 Mutation process

This process is executed after making all crossings, and it
is performed on the resulting children. During the
execution of the algorithm, the population is likely to be
directed toward a local minimum. For this reason, once
created new individuals, they undergo a mutation process
with a certain probability. As in the nature, the aim of the
mutation process is to evolve the chromosomes and
ensure the diversity of the new population.

There are many ways to perform the mutation. The
most common ones are based on the exchange of
locations at random. In this case, we have implemented a
mutation process that modifies each chromosome with a
probability of 20 per cent. If the mutation is realized, a
number of locations of the chromosome are modified. The
number of changed locations is defined by a configuration
parameter of the algorithm is called “MutationFactor”.

For example, assuming we have the following
chromosome, composed by 10 locations:

31

 C = (1 2 3 4 5 6 7 8 9 0)

Mutation factor is 0.2; i.e. 20% of the locations of the
route will be modified. As the number of locations of the
route is 10, 2 locations will be modified. The mutation
process is performed as follows: first two locations are
selected at random (e.g. 3 and 7), and their positions are
exchanged. Then the process is repeated (locations 2 and
9 are exchanged):

C’ = (1 2 7 4 5 6 3 8 9 0)
C’’ = (1 9 7 4 5 6 3 8 2 0)

And the resulting chromosome will be as follows:

CM = (1 9 7 4 5 6 3 8 2 0)

In order to preserve the quality of the population, both
chromosomes (the original one and the mutated), are
saved.

4.5 Application of the tabu algorithm

This step is the one that distinguishes this algorithm from
a traditional genetic algorithm. After crossover and
mutation process, with the aim of optimizing the new
chromosomes, an execution of a tabu algorithm is applied.
As in the mutation process, this process applies only to a
small part of the population, in order not to increase
excessively the execution time. This process is applied to
each individual with 20% probability.

The tabu algorithm implemented has the following
characteristics:

• Movement criterion: Vertex Insertion. In this
function a node of the route is selected, this node is
removed from the route and it is inserted into another
position to generate a new solution [27].

• Tabu criteria: Node I. This is the strictest criterion.
The ID of the last node used in the process of
successor generation is inserted into tabu list. This
node cannot be moved of its position until he leaves
the tabu list [28].

• Tabu list size and duration of tabu status: The list
will have a size of N / 4 where N is the number of
nodes in the environment. With strict criteria, the size
of the list has to be small. Several tests were
performed in which it was concluded that N / 4 was
the right size. The list has a queued process in which

each movement is considered prohibited for a number
of runs equal to the size of the list.

• Aspiration criteria: The aspiration criterion is an
extended concept in the implementation of tabu
algorithms. When this criterion is satisfied, allows the
algorithm to execute prohibited or tabu movements. In
the implemented algorithm, for example, there is an
aspiration criterion, which allows tabu moves to be
made if the execution of this movement can improve
the current solution, and not return to the immediately
preceding solution.

As can be seen, the algorithm has the same characteristics
as an autonomous tabu algorithm, with the difference that
the initial solution is not generated by the process itself,
instead it is provided by the memetic algorithm.

In order to not increase excessively the execution time
of the algorithm, the difference with an autonomous
algorithm occurs in the number of iterations that have to
be executed without the improvement of the best solution
found so far. In the simple version, this value was close to
the neighborhood. In this case, this value is equal to a fifth
of the neighborhood, so, the execution time is reduced
drastically.

4.6 Selection of survivors
The population in a memetic algorithm has a finite size.
Therefore, it is necessary to reduce the number of
chromosomes after crossover and mutation and discard
those that are less interesting. This is accomplished by the
selection of survivors function. In this case is used a
function called ElitistRandomSurvaivals. This function
selects the surviving population in two parts, one part will
consist of the best chromosomes, while the other part will
be selected at random. For example, if we have a
population of 50 chromosomes, and we have to reduce it
to 30 individuals, this function will select the 15 best
chromosomes according to their fitness, and the
remaining 15 will select at random from the 35 remaining.

The reason to select half of the population at random
is to maintain some diversity, in order to avoid local
optimums.

4.7 Results of the algorithm
These are the results obtained by the implemented
algorithm by applying them to different known instances.
Tests have been performed on a laptop Intel Core i5 -
2410, with 2.30 GHz and a 4 GB RAM.

32

There have been performed 50 iterations for each
instance.

Table 2
Final results of the algorithm:

Hits* Media Media % Ex. Time
Oliver30 50/50 420 0% 0.3 seg
Eilon50 48/50 425.04 0.009% 11 seg.
Eilon75 40/50 535.3 0.05% 55 seg.
Eil101 50/50 629 0% 10 min.
*A hit is an execution in which the algorithm has found the optimal
solution.

5. Conclusion and future work

The work presented is the result of a research project
funded by the Basque government. The project focuses on
the design of a software tool that assists in the creation of
routes and schedules of passenger transport systems. For
this, we have developed an application that is based on
evolutionary computing techniques to simulate passenger
demand and adjust the routes and frequency of the
services to meet those demands. The result of work done
is a software tool, and a metaheuristic algorithm that can
be used for solving optimization problems.

We are currently working on adapting this algorithm
to the problem DVRP. Apart from this, we plan to
perform various studies to determine the influence of the
mutation process in the algorithms and the influence of
population survival functions.

References

[1] E.L. Lawler, J.K. Lenstra, K. Rinnooy and D.B. Shmoys.

The Traveling Salesman Problem: A guided tour of
combinatorial optimization. Wiley - Interscience
Publication, 1985

[2] M.R. Garey, and D.S. Johnson. Computers and

Intractability; a Guide to the Theory of Np-Completeness.
W. H. Freeman & Co. 1990.

[3] N. Wilson and N. Colvin. Computer control of the

Rochester dial-a-ride system. Technical Report R77-31,
Dept. of Civil Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts. 1977.

[4] H.A. Eiselt, M. Gendreau and G. Laporte. Arc Routing

Problems, Part 1: The Chinese Postman Problem.
Operations Research, 43, 1995, 231-242.

[5] H. Psaraftis. A dynamic-programming solution to the

single vehicle many-to-many immediate request dial-a-
ride problem. Transportation Science, 14, 1980, 130-154.

[6] A. Attanasio, J.F. Cordeau, G. Ghiani and G. Laporte.

Parallel tabu search heuristics for the dynamic multi-
vehicle dial-a-ride problem. Parallel Computing, 30, 2004
377-387.

[7] A. Beaundry, G. Laporte, T. Melo and S. Nickel. Dynamic

transportation of patients in hospitals. OR Spectrum, 32,
2010, 77-107.

[8] H. –K. Chen, C. -F Hsueh and M.-S. Chang. The real-time

time-dependent vehicle routing problem. Transportation
research Part E. Logistics and Transportation Review, 42,
2006, 383-408.

[9] C. Novoa and R. Storer. An approximate dynamic

programming approach for the vehicle routing problem
with stochastic demands. European Journal of
Operational Research, 196, 2009, 509-515.

[10] Q. Mu, Z. Fu, J. Lysgaard and R. Eglese. Disruption

management of the vehicle routing problem with vehicle
breakdown. Journal of the Operational Research Society,
62, 2011, 742-749.

[11] V. Pillac, M. Gendreau, C. Guéret and A.L. Medaglia. A

review of Dynamic Vehicle Routing Problem. Industrial
Engineering, 2011, 0-28.

[12] A. Larsen, O.B.G. Madsen and M.M. Solomon. Recent

Developments in Dynamic Vehicle Routing System.
Golden, B., Raghavan, S. and Wasil, E. The Vehicle
Routing Problem: Latest Advances and New Challenges,
Springer, 2008, 199-218.

[13] S. Basu and D. Ghosh. A review of the tabu search

literature on traveling salesman problem. IIMA Working
Papers 2008. Indian Institute of Management Ahmedabad,
2008, 1-16.

[14] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Innza and

S. Dizdarevic. Genetic Algorithms for the Traveling
Salesman Problem: A Review of Representations and
Operators. Artificial Intelligence Review,13, 1999, 129-
170.

33

[15] W. Li. A Parallel Multi-start Search Algorithm for

Dynamic Traveling Salesman Problem. Lecture Notes in
Computer Science, 6630/2011, 2011, 65-75.

[16] Y. Song, Y. Qin and X. Chen. Dynamic TSP Optimization

Base on Elastic Adjustment. ICNC Fifth International
Conference on Natural Computation, 5, 2009, 205-210.

[17] I. Dumitrescu, S. Ropke, J. F. Cordeau and G. Laporte.

The traveling salesman problem with pickup and delivery:
polyhedral results and a branch-and-cut algorithm.
Mathematical Programming, 121, 2010, 269-305.

[18] T. Bektas. The multiple traveling salesman problem: an

overview of formulations and solution procedures. The
International Journal of Management Science, 34, 2006,
209-219.

[19] P.C. Pop, S. Iordache. A hybrid heuristic approach for

solving the generalized traveling salesman problem.
Genetic and evolutionary computation conference,
GECCO 2011, 2011, 481-488.

[20] G. Gutin and D. Karapetyan. A memetic algorithm for the

generalized traveling salesman problem. International
Journal of Natural Computing Research, 9, 2010, 47-60.

[21] M.M Solomon. Algorithms for the vehicle routing and

scheduling problems with time windows. IFORMS
Operations Research, 35, 1987, 254-265.

[22] TSPLIB,comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[23] D. Whitley, T. Starkweather and D. Fuquay. Scheduling

Problems and Traveling Salesmen The Genetic Edge
Recombination Operator. International Conference on
Genetic Algorithms, 3, 1989, 133-140.

[24] L. David. Applying Adaptive Algorithms to Epistatic

Domains. Proceedings of the International Joint
Conference on Artificial Intelligence, 1985, 162-164.

[25] S.S. Ray, S. Bandyopadhyay and S.K. Pal. New

Operators of Genetic Algorithm for Traveling Salesman
Problem. Proceedings of the 17th International
Conference on Pattern Recognition, 2, 2004, 497-500.

[26] B. A. Julstrom. Very Greedy Crossover in a Genetic

Algorithm for the TSP. Proceedings of the 1995 ACM
symposium on Applied computing, 1995, 324-328.

[27] F.A.T Montane and R.D Galvao. A tabu search algorithm

for the vehicle routing problem with simultaneous pick-up
and delivery service. Computers & Operation Research,
33, 2006, 595-619.

[28] M. Malek, M. Guruswamy, M. Pandya and H. Owens.

Serial and parallel simulated annealing and tabu search
algorithms for the traveling salesman problem. Annals of
Operations Research, 21, 1989, 59-84.

34

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9258
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9258

