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Abstract

Accurate estimation of the future state of thefizaé an attracting area for researchers in thle fof Intelligent Transportation
Systems (ITS). This kind of predictions can leadraffic managers and drivers to act in conseggiereaucing the economic
and social impact of a possible congestion. Dutednter-urban traffic information nature, thektas predicting the future state
of the traffic requires, in most cases, a non-lirg=terns search in the input data. In recentsyeawide variety of models has
been used to solve this problem in the most acewvay. Due to that, models generated to providemndtion about the future
state of the road are, usually, incomprehensibketiaman operator, making impossible to give himémeexplanation about the
causes of the prediction. Given the capacity af hdsed systems to explain the reasoning followethssify a new pattern, the
advantages and disadvantages of such approachespéwesd in this work.

To conduct such task, datasets recorded from théof2éh Department of Transportation are create®-Klometer section of
the 15 highway of Sacramento is used for this neted’wo different types of datasets are builttfer experimentation. One of
them contains the entire information recorded. @ther one contains with a simplified version of ihf®rmation, considering
only the first, middle and last monitored pointstoé road. Twelve prediction horizons, from 5 tonéiutes, were considered
for prediction. An experimental comparative studyadlving 16 state of the art techniques is perfaniechniques tested
include those that fall within the categories obEnionary Crisp Rule Learning (ECRL) and Evolution&ryzzy Rule Learning
(EFRL). These methods were selected since they wffire final user, not only a prediction, but aslegible model about the
way in which the decision was taken. Techniquescampared in terms of accuracy and complexityhefrhodels generated.

Keywords:Intelligent Transportation Systems; Traffic cortg®s prediction; Traffic forecast; Genetic algoriik; Fuzzy logic; Evolutionary
fuzzy rule learning; Evolutionary crisp rule leargi

1. Introduction

Getting a fully sustainable mobility is one of thiggest challenges of modern traffic managemenstetuable
mobility refers to social and ecological objectivessociated with the transport. Today, traffic Is\are reaching
high values. This fact leads to serious problemso@ated with congestion, especially during peakirio
(Steenbruggen et al., 2013). According to the EeaopCommission, the share of road transport in fgight is at
the level of 76.9% (http://epp.eurostat.ec.eurapa.&€he current capacity of networks is not ablenteet the
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growing demand, which causes congestion in urbeasaand transit roads (Golinska and Hajdul, 20Z@hgestion
costs are estimated to increase by about 50% aidyr200 billion € annually (European Commissio@12).

Therefore, the proper prediction of traffic congmsts an attracting area for researchers in thid Bf Intelligent
Transportation Systems (ITS) (Cobo et al., 2014rCand Cheng, 2010). Accurate predictions can tedchffic
managers and drivers to act in consequence, reglistinthe economic and social impact of the occuogenf
congestion.

Over the last decades, the literature on short-teeaffic flow forecasting has undergone great depaient
(Hong, 2011). Many works describing a wide varietylifferent approaches have been published. Sdrtteeanost
used methodologies lie in Kalman state space ifigemodels (Okutani and Stephanedes, 1984, Statimpoand
Karlaftis, 2003), and the Autoregressive Integraitaling Average (ARIMA) methodology, initially delaped at
(Box et al., 2008), and widely used since then.e@ithat the rapid variational process changes Undgrtraffic
flow is complicated to be captured by a singledinstatistical algorithm, more recent techniqueshsas Atrtificial
Neural Networks (ANNSs) (Schalkoff, 1997) or SuppWector Machines (SVMs) (Hearst et al. 1998) hakaven
their good performance in this task (Vlahogianralet2005, Zhang et al., 1998).

The issue with imbalance in the class distributiecame more pronounced with the applications ofhthehine
learning algorithms to the real world. These amtians range from telecommunications, bioinformetitext
classification, or speech recognition, to detectiboil spills in satellite images. The imbalan@nde an artifact of
class distribution and/or different errors appleaer examples of different classes. A datasetlisd@mbalanced if
it contains many more samples from one class tham the rest of the classes. Datasets are imbalanben at
least one class is represented by only a small puwiiitraining examples while other classes makéhepmajority
(Ganganwar, 2012).

In this work, the problem of dealing with trafficformation as a machine learning problem is comsuieWhen
dealing with traffic information, with the objectvof detecting or predicting abnormal traffic sttan, data
collected became highly imbalanced, due to theoredisat, in most of the time, the traffic will floim a normal
way. For this reason, it is normal not to find gestion or incidents in most of the time the raabeing monitored.

The rest of the work is organized as follows. S8c® presents the process used to capture andreréata for
the application of the selection of methods to gtundthis article. After that, Section 3 presertte inethods to be
tested. Section 4 is dedicated to explain the pexdace measures used to compare among techniqugsciion 5,
results of the comparative study are shown, in $ewh the parameters explained until then. Finaigme
conclusions and future works are presented in @eéti

2. Datasets used

Data used in this work was collected from the PRemfmce Measurement System (PeMS) platform
(http://[pems.dot.ca.gov/). PeMS is a real-time liase from the California Department of Transparstathat offers
over 10 years of historical traffic measurementdaoalysis. A 9-kilometers section of I5 highwaySacramento,
California, is used for this research.

A schematic graphic of the scenario used in thiskvi® provided in Figure 1. In this figure, looptdetors are
distributed in 13 points along the main rodd, {i = 1, 2, 3 ...13}. In addition, four loop detectors are located in
each one of the off-ramp®©8§, {i = 1, 2, 3, 4), and another four loop detectors in each oné@®foin-rampsl§, {i
=1, 2, 3, 4). Data from 0:00 September 1st, 2013 until 23:8pt&mber 30th, 2013 was collected for this study,
obtaining 7938 samples in total. Each sample costdie following attributes:

e F,{x=1, 2,3 ...13}Flow reported by sensor in the road at pgimieasured in number of vehicles.

e O, {x=1, 2, 3...13}Occupancy reported by sensor in the road at polfercentage of time the sensor has
detected a vehicle.

S, {x=1, 2, 3...13}Average speed of the vehicles passing througlpoli, in km/h.

e iF,, {Xx=1, 2, 3, 4} Flow reported by each sensor located at the oypseof the road or, in other words, number
of vehicles that entered the highway.

« oF, {x=1, 2, 3, 4} Flow reported by each sensor located at theaoffps of the road or, in other words,
number of vehicles that leaved the highway.
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Fig. 1. Scheme of the scenario used in this study.

It is important to note that ramps do not repottiga of occupancy or speed, so only flow valuesaasmciated
with them. With all of them, the total number ofriadles involved in the prediction is 47. Two difet datasets
have been built from this information; the firsteois namedCompleteand involves all the 47 attributes collected.
The second one, nam&implified includes 13 attributes; 11 of them are directifiarited from the Complete
dataset, denoting the flow, occupancy and speéedirst and last sensors in the section of tlaelyand the same
at the point of interestF1, O, S, F7, O;, S, Fi3, O3, S3}. The input and output flows before the intereshiso
{iF4, oF} are also included. Last two attributes denoteatipgregation of input and output flows after thesiiast
point, and they are calculated as presented attibgsal and 2.

oF, = oF, + oF; + oF, (2)

A calculated value of congestion associated with pihint of interestY;) is added as the last column of the
datasets. This congestion level is calculated aiegrwith the extended HCM LOS F rating (Marylar2f09),
reported in Table 1. Finally, in order to generdsgasets with different time horizons, the congestralue is
translated one by one to the previous set of ate#) obtaining an increment in the prediction zmmiof 5 minutes
(but losing one sample) each time. This procesiiustrated in Figure 2. This procedure was repeaiatil a
prediction horizon of 60 minutes was reached. Immary, 24 datasets were finally obtained, whoseasaare
Com, for the complete ones (47 attributes), &idy, for the simplified ones (13 attributed).= {10, 20 ...60}
represents the prediction horizon.

Prediction Prediction Horizon
Original Dataset Horizon 5 minutes 10 minutes

Fig. 2. Graphical representation of the procedevi@d in order to obtain datasets with differergdiction horizon
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Table 1. Levels of Congestion and their daleu

Congestion Flow/Speed (ve/km/In) Speed (km/h)

Severe > 50 <40

Moderate [37-50] [24-64]
Slight [29-37] [48-80]

Free Other cases

3. Techniques used

Experiments have been developed using the KEElp:(hiww.keel.es) software (Alcala-Fdez et al., 2009
Among the methods available in KEEL, a selectios haen made among those that fall within the caiegof
Evolutionary Crisp Rule Learning (ECRL) and Evabumiiry Fuzzy Rule Learning (EFRL). These categanielside
methods that make use of any Evolutionary compariaEC) mechanism for the generation and tuninget$ of
rules to perform classification tasks. Methodsudeld in the ECRL category used in this work are:

» CA4.5 (Quinlan, 1993): This is a well-known algonitlused to generate decision trees from a set ioirtcpdata
in the same way as the ID3 algorithm.

» Bioinformatics-oriented Hierarchical Evolutionaryedrning (BioHEL) (Bacardit et al., 2009): This st
applies an almost standard generational Genetiorihlgn (GA). In this case, classification rules #re evolving
individuals. The learning process creates a rulbgéeratively learning one rule at a time usmGA.

» GAssist_ADI (Bacardit and Garrell, 2003): The carethe system consists of a GA whose population is
composed by a set of production rules. Individaasevaluated according to the proportion of airciassified
training examples.

» GAssist_Intervalar (Bacardit and Garrell, 2007)isTimethod is an extension of the previous one,rpm@ting a
rule deletion mechanism and a selection operatsigded to guide the search to both accurate and sho
individuals.

» Hierarchical decision rules (Hider) (Aguilar-Ruiz &., 2003): This method produces a hierarchiealo$ rules
by means of a real coded GA. Two genes will defireelower and upper bounds of the rule attributee @ile is
extracted from the GA every iteration and all tharaples covered by that rule are removed for tix¢ iteration.

* Incremental Learning with Genetic Algorithms (ILG£Guan and Zhu, 2005): It follows the incremenéarhing
approach supported by a GA with different initialibn schemes. In addition, ILGA iteratively seaslin one
dimension each time, inheriting the informationaibéd step by step.

* Memetic Pittsburgh Learning Classifier System (MP)C(Bacardit and Krasnogor, 2009): This method
hybridizes a GA with local search operators in tdomtext of a Pittsburgh learning classifier systéimo
different policies of integration are used, eithpplying the operators to the whole populationmy ¢o the best
individual of the population.

» Ordered Incremental training with Genetic Algorithg®IGA) (Zhu and Guan, 2004): This method worksain
steps: first, it learns one-condition rules forteane of the attributes. Then it optimizes theiuea using a GA.
Once all the attributes have been explored in ars¢ed way, it joins the obtained rule sets ordésefitness.

* Real Encoding Particle Swarm Optimization (REPSKQOY €t al., 2004): This method uses a Particle Swar
Optimization for rule discovery following a Michigapproach, where an individual encodes a sindge ru
It is important to note that C4.5 is not formallp & CRL algorithm, since it does not apply any kiod

evolutionary process. Anyway, for this study, ishzeen considered because of being one of the neosgnized

techniques in the field of machine learning. Methodthe EFRL category used in the comparativeystud:

* GFS_GCCL (Ishibuchi et al., 1999): In this methedch fuzzy rule is handled as an individual. Tiehné&ue
uses linguistic values with fixed membership fuoies as antecedent of the rules.

* GFS_SP (Sanchez et al., 2001): In this approasimalated annealing is used to learn a fuzzy diassiith tree
structure that can use any combination of conjonctind disjunctions in the antecedent part of titesr
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 GFS_LogitBoost (Otero and Sanchez, 2006): This auktlses the boosting paradigm to fuzzy rules etetdac
from data by means of a GA. Each time a new rubdided to the classifier, the examples in the itrgiset are
re-weighted. In this way, future rules will focus the most difficult examples.

» Steady-state GA for Extracting fuzzy classificatiRales from Data (SGERD) (Mansoori et al., 2008)isT
method uses a steady-state GA that generates #iegph@imber of rules per class. In each generattandidate
rules are divided according to their consequents;land they are ranked with respect to their S&nd his
technique uses multiple fuzzy partitions simultarsyp with different granularities anddon’t carecondition for
fuzzy rule extraction.

e Structural Learning Algorithm on Vague EnvironmdBLAVE) (Gonzalez and Pérez, 1999): This approach
extracts a set of fuzzy rules from a set of examfiieough an iterative process in which a ruleelected each
time. It uses a GA to select the rule which beptasents the system. The rule obtained is incotpdriato the
final set of rules. In order to obtain new andaiént rules, the rule previously got is penalizad] the process is
repeated.

e Chi_RW (Chi et al., 1996): This method generatészay rule for each one of the examples, usingealgfined,
normalized partition of the universe of discour§each one of the variables. Once the initial catglule base,
weights of the individual rules are adjusted.

e Fuzzy Association Rule-based Classification modelHigh-Dimensional problems (FARCHD) (Alcala-Fdez
al., 2011): This method mines fuzzy associatioesuimiting the order of the associations in ortfeobtain a
reduced set of candidate rules with less attribitabe antecedent. Finally, a genetic rule sedactind lateral
tuning are applied to select a small set of fuzgpaiation rules with high classification accuracy.

It is important to note that both Chi_RW and FARCHE: not included in the EFRL category in the KEEL
distribution. Chi_RW is one of the first and mostognized methods for the automatic learning ofyugystems,
despite not having the EC component. In the casBARCHD, it appears under the associative clasdifia
category, but it has been included in this listaaese it considers fuzzy association rules and aisdsC process in
its work-flow. All the methods were run consideridgfault configurations given by KEEL, which aree ttame
suggested by authors in the publications in whinctsé methods were presented.

4. Perfor mance evaluation measures

In the four-class problem faced here, the confusiattrix (shown in Table 2) records the resultsafectly and
incorrectly recognized examples of each class dfterexecution of the method. Since a large nurobenethods
use the accuracy rate (Eq. 3) as empirical medesuithe quality of the models, a first comparisarthis term will
be provided. However, in the framework of imbalahdata-sets, as the one presented here, it doaelistioguish
between the numbers of correctly classified exampfalifferent classes.

FF+LL+MM+SS
Acc = Y r (3)
F'+L'+M"+S/r

Table 2. Confusion matrix for the four-class problesed in this work.

Actual/Predicted  Free Light Medium Severe Total

Free FF FL FM FS F
Light LF L LM LS K
Medium MF ML MM MS M’
Severe SF sL SM SS s

To save this inconvenience, a generalized verditinecaveraged accuracy measure (Kubat et al.,)1888nore
than two classes (Eg. 4) is used. This value meagte balanced performance of the model betweeditferent
classes of the problem, allowing to simultaneoushximizing the accuracy in each one of them (Gal.e2009).

1 FF

LL MM SS.
AaCC—Z(E'i‘H'i‘W'FE) (4)
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In order to compare the complexity of the modetsthinumber of rules generated and average lengthle$
were used for comparison purposes. Since mosteofetbhniques presented here use a format of rutesenthe
antecedent is composed by a set of and-linked atolauses (crisp or fuzzy, depending on the methbd)length
of the rule becomes equal to the number of claimsiés antecedent.

5. Experimentation and results

All the experiments conducted in this work haverbperformed on an Intel Core i5 2410 laptop, witBO2GHz
and a RAM of 4 GB. In order to evaluate the perfance of the models with independence of the pdaticu
instances used for training them, 10-fold crosgdadion partition was applied over each datasedbnglthe present
section, results obtained by all the techniquesvshia Section 3 applied over the datasets desciib&dction 2 are
presented. First, results in terms of accuracyawstaged accuracy per class are analyzed. Afterat@mparison
in terms of time to generate models and compleisitperformed. Finally, a discussion among differeggults
obtained by crisp and fuzzy techniques in ovesafirovided.

Figure 3 presents, in a graphical way, accuracysmesa obtained by each one of the techniques wpglned
over the datasets. From Figure 3, it can be apgestithat lower results in accuracy (darker) armiypabtained by
Hider and GFS_GCCL, in addition to GFS_LogitBoastthe case of complete datasets. Another conaiutiat
can be extracted from Figure 3 is the fact thathedl methods obtain, in all the cases, accuraayesabeyond 0.95.
Additionally, no clear (with exception in some pautar cases) differences can be appreciated. Tars be
translated in a percentage of matching of the le¥elongestion higher than 95% of the examplesainatl in the
dataset. But, as commented in previous sectiosagsumption may result in mistaken conclusions.

C45 C45

BioHEL BioHEL
GAssist_ADI GAssist_ADI
GAssist_Invervalar GAssist_Invervalar
Hider| Hider

ILGA ILGA

MPLCS MPLCS

OIGA OIGA

REPSO REPSO
GFS_GCCL GFS_GCCL
GFS_SP GFS_SP
GFS_LogitBoost GFS_LogitBoost
SGERD SGERD
SLAVE SLAVE
Chi_RW Chi RW
FARCHD FARCHD

Fig. 3. Accuracy obtained for each technique in plete (left) and simplified (right) datasets.

In order to provide a more clear view of the diéfieces on results obtained in this experimentafiabjes 3 and
4 present results in terms of averaged accuracgdomplete and simplified datasets, respectivelye THst column,
namedR, denotes the averaged ranking obtained by the iggodrin the total group of datasets. In all theesashe
three best values for each column are boldfacezhnitbe seen that, for both types of datasets, @tans, in most
of the cases, the best value. After it, FARCHD getsalmost all the cases, the second or third balste. Apart
from them, second or third best values are ussiiired among MPLCS, OIGA and ILGA, in the casearhlete
datasets. While for simplified datasets, MPLCS, M.@Gnd Gassist_Intervalar appear among the thre¢ bes
techniques. In addition, it is interesting to rekntirat, for all the cases, averaged accuracy isletdriorated as the
prediction horizon increases.
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Table 3. Accuracy (Eg. 4) value obtained for edhnique in normal datasets.

Comy Comp Coms Compg Coms Conmy Comgs Comyp Comys Comye Comys  Comye R
C45 0.604 0604 0604 0604 0604 0604 0604 0.604 0.604 0.604 0.604 0.604 12
BioHEL 0.538 0567 0544 0529 0537 0529 0535 0.542 400.5 0.543 0.520 0.538 9.2
Gassist_ADI 0.601 0588 0.567 0.554 0.582 0.590 0.583 0.569 0.560 0.585 0.569 0.555 4.5
Gassist_Invervalar 0.574 0569 0551 0543 0557 0540 0557 0560 420.50.553 0.565 0576 6.5
Hider 0.493 0.493 0.492 0.498 0.491 0.494 0.494 0.492 940.4 0.491 0.491 0.490 13.0
ILGA 0.564 0553 0578 0518 05190598 0573 0.554 0.500 0.550 0.558 0573 7.3
MPLCS 0.579 0549 0581 0567 0585 0.561 0.581 0.585 0590 0.570 0.5809 0.604 4.1
OIGA 0603 0.552 0578 0563 0535 0605 0562 05754 0.581 0586 0.607 0.583 4.2
REPSO 0.527 0.527 0.527 0.512 0.512 0.512 0.512 0.512 120.5 0.512 0.512 0.512 11.8
GFS_GCCL 0.338 0349 0364 0.364 0364 0371 0371 0.364 640.3 0.380 0.380 0.380 15.0
GFS_SP 0.479 0.479 0.479 0.479 0.479 0.477 0.451 0.451 830.4 0.483 0.451 0.451 14.0
GFS_LogitBoost 0.254 0.254  0.254 0.254 0.254 0.254 0.254 0.254 540.2 0.254  0.254 0.254 16.0
SGERD 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 310.5 0.531 0.531 0.531 10.3
SLAVE 0.533 0547 0525 0527 0545 0554 0530 0.542 450.5 0.564  0.552 0.549 838
Chi_ RW 0.551 0.551 0.551 0.551 0.551 0.551 0.551 0.551 510.5 0.551 0.551 0.551 7.5
FARCHD 0.578 0586 058 058 0593 0597 0593 0.593 0593 0593 0.590 0590 27

Table 4. Averaged accuracy (Eq. 4) value oletafor each technique in simplified datasets.
Simg Simyp  Simis  Simy  Simps Simgg Simgs Simye Simys Simgg . Simss . Simgg R

Cc45 0605 0605 0605 0605 0605 0605 0605 0605 0.605 0605 0605 0605 1
BioHEL 0529 0529 0539 0507 0511 0526 0529 0531 17050541 0524 0521 108
Gassist_ADI 0.535 0.572 0548 0550 0.561 0.573 0.558 0.557 650.5 0.571 0.539 0.579 6.0
Gassist_Invervalar 0.541 0547 0547 0569 0525 0541 0535 0541 05550581 0570 0.540 6.9
Hider 0.458 0.491 0.476  0.488 0.484 0.486 0.463 0.492 560.4 0.490 0.480 0.458 15.0
ILGA 0576 0533 0528 0556 0516 0535 0544 0545 055 20.560.566 058 7.3
MPLCS 0.577 0584 0591 0566 0589 0590 0572 0599 058 0566 0571 0580 31
OIGA 0.545 0558 0565 0555 0571 0537 0542 0566 640.50.547 0550 0559 6.4
REPSO 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 300.50.530 0.530 0.530 10.0
GFS_GCCL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 .250 0.25 16.0
GFS_SP 0.509 0.492 0.492 0.492 0.491 0.491 0.503 0.503 980.4 0.491 0.491 0.497 13.5
GFS_LogitBoost 0.508 0.508 0.51 0.514 0512 0506 0506 0.509 60.50.509 0.506 0.504 119
SGERD 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 480.5 0.548 0.548 0.548 7.3
SLAVE 0.557 0564 0566 0559 0566 0566 0571 0.565 51050576 0568 0568 5.0
Chi_RW 0.497  0.497 0.497  0.497 0.497 0.497 0.497 0.497 970.4 0497 0.497 0.497 13.3
FARCHD 0591 0591 0591 0591 0591 0584 0584 0584 0584 0584 0584 0584 24

With the aim of providing a general view on comjiiies of the algorithms, as well as the ones fer ritturned

models, Table 5 presents complexity results.

Ia thble the computational time needed by all thethods to

return the prediction model is shown, in columneaded withT. With respect to the complexity of the models, the
average number of rules (#R) and attributes (#&)mesented. All the measures are separated iesvalotained
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for both complete and simplified version of theasdatts. Regarding the complexity, it is importantdte that some
of the techniques use a fixed number of rules tecatents. These methods are remarked with arishsierthe
table.

Table 5. Complexity measures of the methodstla@ models returned.
T(Com) T(Sim) #R(Com) #R(Sim) #A(Com) #A(Sim,)

c45 117 5 45.93 39.15 7.85 7.26
BioHEL 48.7 27.1 13.61 14.56 4.01 3.92
Gassist_ADI 865.1 2234 536 5.56 3.57 2.46
Gassist_Invervalar 398.4 81.7 47 512 46.67 13.21
Hider 331.8 28.1 54.36 3.3 43.2 8.47
ILGA 1787.3  364.9 30 30 45.48 12.03
MPLCS 41641  643.4 13.82 11.73 5.28 4.1
OIGA 2135.7 3639 30 30 45.48 12.03
REPSO 315 15.4 7.57 7.42 3.68 3.03
GFS_GCCL 84 4 30.82 19.54 28 1.06
GFS_SP 1536.3  806.9 4 4 2.2 3.11
GFS_LogitBoost ~ 8141 2122 25+ 25 10* 10%
SGERD 9.9 6.9 5.41 6.81 1.93 1.94
SLAVE 1601.7  728.1 31.77 26.68 7.54 4.89
Chi_RW 99.3 43 2036.82  318.32 46.44 13
FARCHD 626 49.7 25.25 1434 227 2.08

Looking at Table 5, remarkable differences can limeoved in the complete datasets in terms of eigctimes
when comparing the three faster methods with teeakthem. Six methods are capable of returningpdel in less
than 120 seconds, while five of them do it in mthren 1200 seconds. Regarding the simplified onieg, of the
methods finish in less than 120 seconds, and dmlet of them last more than 600 seconds. The baha¥i
Chi_RW is remarkable since, while in the simplifiddtasets is the second less time consuming taaodnin the
complete one it achieves the sixth position, miyliqy the value more than 20 times. Observing thenlper of
rules, Chi_RW obtains the highest number of rutebath complete and simplified datasets, with hiifference
from the second highest value, which is achievedCy5. Finally, regarding the number of antecedeswsne
methods use almost all the available attributethéir rules (Gassist_Intervalar, ILGA, OIGA and CRW), while
other ones use very simple rules, composed byttess4 attributes, as FARCHD, SGERD, GFS_SP, GFEIGC
Gassist_ADI.

5.1.Discussion

In order to provide a final analysis of the studynducted in this work, Table 6 presents all theltegrouped by
type of technique, distinguishing between the setkcrisp and fuzzy learning methods (ECRL and EFElach
cell of the table represents the averaged rankbtgimed by the techniques of the groups, considettie four
criteria managed along the article, distinguishiegween the complete and simplified datasets. Nieistproceeded
to provide general conclusions about the resustsing into account that these conclusions may eoéiended to
all the fuzzy or crisp techniques, but limited te tfield of study and considering the parametrizatised. In
addition, it is important to note that these coasitions are deduced from results obtained fathalltechniques in
the group. Without taking into account specificamef behavior shown from particular techniques.
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Table 6. Complexity measures of the methodstlae models returned.
Aacc(Com) Aacc(Sim) T(Com) T(Sim) #R(Com) #R (Sim) #A(Com) #A (Sim)
ECRL 6.86 7.38 9.22 8.88 8 7.88 10 9.66
EFRL 10.61 9.91 7.75 8 9 9.14 6.42 6.85

As can be seen in Table 6, crisp methods improselteobtained by fuzzy ones in terms of averagediracy
and number of rules, while the fuzzy ones get betites in terms of time needed for constructheg models and
in the length of the rules included in them. Ihsteworthy that when a group of techniques getebetsults than
the other, it does for both complete and simplifieadiasets.

Bigger differences can be found between valuesaémuracy and number of antecedents. This is anceeghe
result when dealing with these two paradigms sinsaally, crisp methods do not use to considerdheability or
interpretability of the model provided, in casaitects to the performance, while fuzzy methodsabee of their
linguistic nature, are designed to return easilgripretable models.

6. Conclusions and future works

This work presents an empirical study on the apfibc of machine learning methods to the task etljgting a
certain level of congestion in a road. The studyriented to find relevant conclusions and diffexs among
techniques that generate a model consisting in af sales, considering both crisp and fuzzy vatsan

With the aim of carrying out the study, 16 techrigiunine of them included in the category of casd seven in
the category of fuzzy, are applied over 24 datastdf of the datasets make use of all the avadlaformation in
the studied road segment, while the other half aslys a reduced number of variables available.

Data used in this experimentation is highly imbakxh which represents a big challenge for techsiqueich
are mainly designed for dealing with well-distriedt data. However, methods used show reasonable good
performances, returning models with a large varigtgomplexities, from those which infer a high riuem of rules
that make use of almost all the attributes, toghakich infer a low number of short and interprégables.

Next research in the direction of using well-knomachine learning algorithms to prediction of theufa state
of the road will be oriented to solve deficieng@esented in this work. In particular, the maireggsh line will be
oriented in adapting those techniques to highlyailabced domains, or to hybridize those techniqués the ones
coming from specialized literature in the field.hét point that will be present in future researdh e to extract
those aspects of the studied methods that areabiésito get applied in the domain of processingrmation
coming from traffic scenarios, such as the low cotafional times, even for large datasets, and thglibrium
between the accuracy shown by systems and thefsihe generated models.
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