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Abstract Many applications of optimization techniques, such as classification and regres-
sion problems, require long simulations to evaluate the performance of their solutions. Prob-
lems where the fitness function can be divided into smaller pieces—problem partitioning—
demand techniques that approximate the overall fitness from that obtained in a small region
of the problem space. This means that less time is spent evaluating individual solutions,
which makes such approaches computationally efficient.

In this work, it is proposed a method to deal with a dynamically calculated fitness func-
tion; it is called Genetic Algorithm with Base Fitness (GABF). This method is built over
a Genetic Algorithm (GA) to optimize a Fuzzy Rule-Based System (FRBS). The proposed
method works by partitioning training data into smaller subsets. The main idea is to assign
fitness values derived from part of the training set (or a short simulation) to individuals in
the current generation. This fitness value is then inherited and combined with those obtained
in subsequent generations.

To test the proposal, a scenario in which two vehicles are approaching an intersection
is implemented. One vehicle is presumed to be driven by a human and does not change
its speed, whereas the other implements an autonomous speed regulator based on fuzzy
logic. The regulator must maneuver the autonomous vehicle in a safe and efficient manner.
The objective is to optimize both the membership functions and the rule base of the fuzzy
system controlling the autonomous vehicle.

Keywords Intelligent Transportation Systems; Autonomous Vehicles; Intelligent Inter-
sections; Genetic Algorithms; Efficiency Enhancement Techniques; Fuzzy Rule-Based
Systems

1 Introduction

Genetic Algorithms (GAs) are search techniques based on the process of evolution. They
provide robust search capabilities in complex spaces, and thereby offer a valid approach
to problems requiring efficient and effective search processes [13,19]. Once a problem has
been represented for treatment by the GA, the key aspect is the method of distinguishing
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between good and bad solutions (called the fitness function). This can either be interactively
determined by a human, or be the result of a computer simulation. GAs do not differentiate
between these different modes of fitness assignments, as long as good solutions have better
fitness values than bad ones. Unlike many traditional optimization techniques, there is no
requirement for the fitness function of a GA to be continuous, convex, or well-formed [30].

A promising area of research in genetic and evolutionary algorithms is the design and
development of competent GAs, which solve hard problems quickly, reliably and accurately
[14]. When the fitness function requires a complex simulation or computation, a single eval-
uation might take a large amount of time. This places a premium on Efficiency Enhancement
Techniques (EETs) [30]. These techniques can be broadly classified into four categories:

1. Parallelization: GAs are run on multiple processors, and the computational resources
are distributed among them [7,6].

2. Hybridization: Domain-specific knowledge and other techniques are coupled with a GA
to create a search bias and accelerate the search process. The most common form is
to couple GAs with local search techniques. Such approaches are known as memetic
algorithms [17,24].

3. Time continuation or time utilization: A tradeoff is sought between the search for solu-
tions with a large population and a single convergence epoch, or a small population with
multiple convergence epochs [31,32].

4. Evaluation relaxation: Sometimes, a complex fitness function can be replaced by a sim-
ple and inexpensive one. This can reduce the total number of costly fitness evaluations
[23].

The simple fitness function used in evaluation relaxation can be either exogenous, as
for surrogate (or approximate) fitness [20], or endogenous, as for fitness inheritance [3,12]
whereby fitness is based on that of the parents. In classification or regression problems, the
approximate fitness is calculated by dividing the training set into a smaller, representative
set [22], thus reducing the computational time required to evaluate individuals. This process,
known as stratification, can also be done by means of evolutionary techniques [5,4]. In con-
trast, fitness inheritance allows the GA to estimate the fitness of a portion of the population
from the fitness of its parents, again saving computational effort [10].

Fuzzy logic techniques [38] has demonstrated the ability to solve different kinds of
problems, such as: classification [11], modeling [27,21] and control [29]. Fuzzy Rule-Based
Systems (FRBSs) that rely on evolutionary optimization techniques are known as Genetic
Fuzzy Systems (GFSs) [18]. Thus, a GFS is a FRBS augmented by a learning process based
on a GA. GFSs have been used in a variety of applications, such as the classification of
high-dimensional data [1] and control systems for air conditioners [11].

This work presents a combination of evaluation relaxation and fitness inheritance in
a GA-optimized FRBS [35]; thus, the method is called Genetic Algorithm with Base Fit-
ness (GABF). The FRBS determines the speed of a vehicle when traversing an unregulated
intersection. The algorithm considers both the approximate fitness, in the evaluation of indi-
viduals, and the fitness inheritance after crossover and mutation. The objective is to use the
results from a small set of test cases to obtain a FRBS that can deal with any intersection
scenario.

The FRBSs are tested in scenarios involving an intersection and two approaching vehi-
cles. One of them is presumed to be human-driven (with no obligation to cooperate), whereas
the other is an autonomous vehicle which implements automatic speed regulation. The latter
takes responsibility for adapting its own speed according to the position and speed of the
former. The FRBS is in charge of providing speed indications to the autonomous vehicle
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with the objective of crossing the intersection without sudden speed variations or risk. To
obtain generality in the obtained FRBSs, multiple training scenarios must be used. However,
the use of a large number of scenarios might affect the execution time of the GA. At this
point, the proper management and inheritance of the approximate fitness function could be
a considerable advantage, as demonstrated in this work.

The remainder of this paper is structured as follows: Section 2 presents the proposed
method before Section 3 introduces the problem and the fitness function used in the proposed
approach. Section 4 describes both the experimental setup and results obtained. Finally,
Section 5 presents concluding remarks and ideas for future developments.

2 Genetic Algorithm with Base Fitness

The purpose of including the concept of base fitness in a GA is to theoretically preserve
information about an individual’s performance in a subset of cases across different genera-
tions. To achieve this goal, the fitness function is presumed to be suitable for partitioning into
smaller pieces, whose aggregation leads to the final fitness value. Examples of partitioning
are:

– Optimization problems whose objective is to minimize certain measures related to a
dataset, or a set of examples. Most classification–regression problems can be included
in this group. The objective is the minimization of errors between an individual’s out-
put and that stored in a training set [9]. In these cases, the training set can be divided
into smaller sets of examples, thus reducing the computational cost of evaluating large
amounts of data to calculate the fitness of a single individual.

– Optimization problems in which the objective function must be calculated multiple times
to test as many situations as possible. Control or decision optimizations can be included
here. These problems are usually tested under different conditions to verify their robust-
ness [37]. In these situations, the fitness function can be decomposed into the result for
the controller in each possible situation.

In general, the problem must be suitable for partitioning into a set of small and corre-
lated pieces. This means that an individual who can solve a small part of the problem is more
likely to solve the remainder. For example, a classifier that has zero error over 10% of ex-
amples is more likely to properly classify the other 90% than another classifier that is not so
accurate. To be more exact, the main idea lies in using a different set of problems to evaluate
individuals at each generation. This forces changes to the fitness function at each generation,
because the fitness of an individual changes with the set of problems to be evaluated.

This work seeks to derive a base fitness that summarizes the performance of individuals
in different cases (even those in which individuals have not been tested). To achieve this
goal, the fitness function is modified to estimate the performance of the individual in both
the previous and current generations. Finally, offspring inherit the fitness function from their
parents, thus preserving information about the parents’ performance.

The objectives of the GABF are: to reduce the execution time by evaluating individu-
als in small portions of the problem for each generation, and to use a fitness function that
summarizes the performance of individuals in all cases. These objectives are satisfied by
implementing the following procedures:

– Cases Selection: this procedure picks the subset of cases that are used to calculate the
fitness function in the current generation. This step is performed prior to the evaluation
of the current population.
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– Fitness Aggregation: this procedure updates the fitness of an individual for the current
cases with its actual (inherited) value. This takes place once the fitness of the individuals
under the current test cases has been calculated.

– Fitness Inheritance: this procedure assigns the offspring a deteriorated fitness from their
parents. This is implemented after the crossover and mutation step.

Figure 1 shows how the proposed procedures are included in the classical flowchart of
a generational GA [19]. Note that the GABF almost retains the flow of the GA, but differs
in the way in which the fitness value of each individual is calculated and treated. For this
reason, the methodologies proposed in this work can easily be extended to other optimization
techniques. The only modification is that, because cases vary from one generation to the
next, the best individual must be re-evaluated to determine a new fitness value.

Fig. 1 Flowchart of the proposed GABF.

The following sections propose alternatives for each procedure involved in the mainte-
nance of this base fitness. Sections 2.1, 2.2 and 2.3 present alternatives to the Cases Selec-
tion, Fitness Aggregation and Fitness Inheritance methods, respectively.

2.1 Cases Selection

Given a problem that can be divided and sub-optimized, this method aims to select Nc sub-
problems from which to evaluate the accuracy of the entire set of individuals. For example,
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in a classification problem, the function would be in charge of selecting Nc examples to
measure the classification error of the individuals, whereas for control systems, it would be
in charge of determining the situations in which the controller responses must be evaluated.
This selection can be performed in different ways, for example:

– The simplest way to implement Cases Selection is to randomly select Nc cases from
which to evaluate individuals.

– Cases can also be selected in accordance with their (real or expected) difficulty, using
easy cases in early generations and hard ones in later stages of the GA.

– Another alternative is to maintain a register of cases and fitness values obtained for in-
dividuals, and to select cases according to the difficulty individuals experience in over-
coming them.

– In a more problem-oriented way, cases can be selected depending on the characteristics
of the problem.

– Finally, to enhance the precision of the GA, the number of cases used can be varied for
each generation. In this way, Nc becomes a function of t.

2.2 Fitness Aggregation

This procedure redefines the fitness value of an individual to be an aggregation of the fitness
obtained in current and previous cases, that is, as the base fitness. Once the individuals
in the current generation have been evaluated, the information from this evaluation should
be merged with the stored values (inherited from the parents). In this way, two different
alternatives can be proposed. The simplest is a weighted average of the current and stored
fitness, as presented in Equation 1.

f(t) = ω · f(t) + (1− ω) · f(t− 1) (1)

Here f(t) refers to the fitness of the individual in the current generation, and f(t − 1)
represents the stored fitness of the individual. The parameter ω weights the importance of
the current fitness value over the inherited value. The main advantage of this approach is
that there is no need for additional structures beyond those required to implement a GA.

The alternative involves using a specific memory to maintain the fitness obtained in a
certain number of previous generations. This memory allows more complex aggregations to
be implemented by using the fitness obtained in scenarios from more than one generation
ago, as stated in Equation 2.

f(t) = ω0 · f(t) + ω1 · f(t− 1) + . . .+ ωk · f(t− k) (2)

2.3 Fitness Inheritance

This procedure maintains the base fitness in the offspring following the crossover and mu-
tation operations, thus preserving the accumulated fitness of the parents in the children. To
achieve this, the following possibilities are suggested:

– Fitness is inherited directly from parents; where each offspring receives the fitness value
from one parent.
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– Fitness is inherited from the most similar of the child’s parents.
– Fitness is inherited from the most similar individual in the whole mating pool.

Other possibilities could be designed depending on the specific features of the problem
or technique in which the base fitness operators are added. After an offspring inherits a
fitness value, it must be degraded to counteract modifications with respect to the individual
from whom the fitness has been inherited. The simplest way to achieve this is by multiplying
the received fitness value by a factor ρ > 1 (for minimization problems).

3 Problem Statement

The proposed scenario involves an unregulated intersection being approached by two ve-
hicles at the same time. One vehicle is driven by an human, whereas the other is operating
under autonomous speed management. The human-driven vehicle has no obligation to coop-
erate with the autonomous one and is supposed to not alter its speed or execute any turn. So
the latter must independently adapt its speed to complete its maneuver quickly and without
collision risk.

To adapt its speed, the autonomous vehicle implements a FRBS that indicates an appro-
priate speed. As inputs, the FRBS takes both vehicle speeds (S{A|M}) and their distances to
the exit of the crossing area (D{A|M}). A schematic view of the scenario is shown in Fig-
ure 2, where the crossing area represents the zone in which the vehicles must be prevented
from colliding. The aim of the FRBS is to provide reference speeds that the autonomous
vehicle should follow. The FRBS must ensure that the autonomous vehicle completes its
maneuver without colliding with the human-driven vehicle, and with a minimum change in
speed.

Fig. 2 Proposed scenario: an autonomous vehicle approaches an intersection at the same time as a human-
driven vehicle.

Because the FRBS must be capable of dealing with any plausible situation (represented
as a four element tuple {DA, SA, DM , SM}), assuming the human-driven vehicle does not
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alter its speed or execute any turn during the maneuver, a large initial configuration space
{DA, SA, DM , SM}t=0 should be defined. Using the proposed GABF, individuals from
only a small number of initial configurations need be evaluated in each generation.

3.1 Longitudinal Behavior of the Autonomous Vehicle

Under the management of the FRBS, the speed of the autonomous vehicle evolves according
to Equation 3. This equation models the longitudinal behavior of an autonomous vehicle (for
slowly varying dynamics and on a flat surface) when a proportional-integral controller is in
charge of tracking the given reference speed. Tejado et al. [36] describes this model in detail.
The model has previously been used to simulate the speeds of an autonomous vehicle under
FBRS management [25].

SA(t) = a2SR(t− 1) + a1SR(t− 2)

+a0SR(t− 3)− b2SA(t− 1)

−b1SA(t− 2)− b0SA(t− 3) (3)

Here SR(k) and SA(k) are the reference and actual velocities at instant k, with a0 =
−5.467 · 10−5, a1 = −0.2041, a2 = 0.2495, and b0 = 0, b1 = 0.7421, b2 = −1.697.
Typical changes in speed for two initial speed settings are illustrated in Figure 3.

Fig. 3 Evolution of speed for an autonomous vehicle starting with initial speeds {20, 40} km/h to final
reference speeds {0, 10, 20, 30, 40, 50} km/h.

3.2 FRBS Codification

The proposed FRBS uses trapezoidal membership functions to codify the input variables
and singletons, which are punctual values, to codify the output variable. The FRBS results a
zero-order Takagi-Sugeno-Kang (TSK) fuzzy controller [35]. The use of trapezoids and sin-
gletons for codifying the input and output variables guarantees that execution of the control
stage will be fast, because only basic operations are needed to infer the output value. This
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feature is sufficient for implementing real-time systems such as those involved in managing
vehicles [34,26].

Each of the four input variables (DA, SA, DM , SM ) passed to the FRBS is fuzzified by
means of three Membership Functions (MFs), designated as {Low, Medium, High}. The
representation to be optimized by the GABF is given as three real values (x1, x2, x3), each
of which is within the range [0, 50]. Values are given in m for distance-related quantities
(DA and DM ), and in km/h for speed-related quantities (SA and SM ). The first value
represents the point from which the Low MF is extended; the second value sets the vertex of
the Medium MF, and the third marks the start of the High MF, as illustrated in Figure 4. It
is important to note that the restriction (x1 ≤ x2 ≤ x3) must hold after any modification of
these values.

Fig. 4 Encoding of three membership functions by three real values used.

The FRBS will contain a rule for each of the possible AND-combinations of the an-
tecedents. Thus, the rule base is composed of 81 (3× 3× 3× 3) rules in the form presented
in Equation 4.

IF (DA is D̂A) AND (SA is ŜA) AND

(DM is D̂M ) AND (SM is ŜM ) THEN(SR = SiR) (4)

Here [D̂A, ŜA, D̂M , ŜM ] represents the MF used in the i-th rule (Low, Medium, or High),
[SiR] ∈ [0, 50] represents the consequent assigned to the i-th rule, and i ∈ {1, 2, . . . , 81}
denotes the index of the rule. Hence, all possible combinations of input values are covered
by at least one rule. Because the whole rule base is represented in each chromosome, the
codification follows a Pittsburgh approach for the GFS [33].

Thus, the FRBS codification to be optimized by GABF consists of 93 real values. The
first 12 define the distribution of the MF for each of the four inputs (three per input), and the
remaining 81 define the positions of the singletons used as consequents in the rules. These
values are normalized to provide a representation in the interval [0, 1].

3.3 Fitness Function for Evaluating FRBS Behavior

Recall that any case used to evaluate individuals is defined by means of state variables
in the initial configuration of the scenario. This section presents the method of evaluating
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Fig. 5 Situations leading to lateral (left) and frontal (right) collisions.

the performance of a FRBS for a set of cases. Section 4.1 explains how these cases are
generated. Given a certain initial setting {DA, SA, DM , SM}t=0, the crossing scenario is
simulated twice:

1. Without considering output values coming from the FRBS (free execution, or Ef ),
where the autonomous vehicle maintains a constant speed.

2. Considering the indications of the FRBS (controlled execution, orEc), where the vehicle
adapts its speed to the given reference.

In this way, Ef enables the process to determine whether the given scenario leads to a
collision, whereas Ec allows the process to consider whether (and how) the FRBS avoids
that situation. Each execution of the FRBS (Ef , Ec) can report one of three different results,
depending on the circumstances of each vehicle’s entry to the crossing area (defined as 5 m
before the exit line of the intersection):

1. The vehicles do not collide in the crossing area (there is no collision, C0). In this case,
the FRBS is expected to instruct the vehicle to maintain its speed.

2. A lateral collision occurs, that is, the vehicles collide in the crossing area, but the au-
tonomous vehicle has entered before the other (CL). Here, the FRBS is expected to
slightly increase the speed of the autonomous vehicle so as to exit the crossing area
before the human-driven vehicle enters.

3. A frontal collision occurs, that is, the vehicles collide in the crossing area, but the
human-driven vehicle has entered before the other (CF ). The FRBS is expected to
slightly decrease the speed of the autonomous vehicle in this situation, thus entering
the crossing area once the human-driven vehicle has exited.

Scenarios that produce collisions (lateral or frontal) are illustrated in Figure 5. The eval-
uation of each FRBS in a particular scenario yields a partial fitness value for the solution
(F (FRBS,Case)). All partial fitness values are averaged to obtain a final value. In other
words, given Nc cases, the fitness function for a certain FRBS is calculated as presented in
Equation 5.

fitness(FRBS) =
1

Nc

∑
i=1,...Nc

F (FRBS,Casei) (5)

Partial fitness is calculated according to the nine possible combinations derived from the
results of the controlled and uncontrolled simulations ({Ef , Ec} ∈ {C0, CF , CL}2). Cal-
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Fig. 6 Example execution of two FRBSs: the speed is reduced less by FRBS1 than by FRBS2, hence
receiving a better (lower) partial fitness.

culation of the partial fitness is based on the Average Absolute Speed Difference (AASD),
which is calculated as shown in Equation 6.

AASD =
|
∫
ScA −

∫
SfA|

50
(6)

Where ScA and SfA represent the speed of the controlled/uncontrolled autonomous vehicle,
respectively. Given two FRBSs that produce the same result (for example, not to collide),
this formula allows the process to penalize the system that alters the original speed of the
autonomous vehicle more, as illustrated in Figure 6. Because AASD is normalized to the
maximum permitted speed (50 km/h), AASD ∈ [0, 1], which is useful when penalizing
undesired behavior. Therefore, the partial fitness function F (FRBS,Case) is calculated in
accordance with Table 1, where cases can be grouped in the following way:

– Cases 1 to 3 represent situations where the FRBS has avoided a collision by behaving as
desired. Specifically, no collision occurs, or the collision is avoided by increasing (when
lateral) or decreasing (when frontal) the speed of the autonomous vehicle.

– Cases 4 and 5 represent situations in which the FRBS avoids a collision that occurs in the
uncontrolled simulation, but does so through an incorrect response. That is, decreasing
the speed in the case of lateral collision and increasing the speed in the case of a frontal
collision. A penalty is added in this case.

– Case 6 penalizes the FRBS more than before, because the FRBS is not able to avoid a
collision that occurred in the uncontrolled simulation.

– Case 7 gives the maximum penalty, as the collision was caused by the FRBS man-
agement. That is, there was no collision in the uncontrolled simulation, but a collision
occurred in the controlled situation.

4 Experiments and Results

This section presents the results obtained by applying some of the concepts already pre-
sented in Section 2 and the decision problem stated in Section 3. The results are compared
with those obtained by two implementations of a classical GA and one co-evolutionary GA
[28,16]. For both GA and GABF, similar operators and parameters were used, so the only
difference between them is the addition of the proposed base fitness. This highlights the
advantages in using such techniques in GABF. This section is organized as follows: Section
4.1 describes the experimental setup, and Section 4.2 presents the results obtained by the
different methods.
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Table 1 Partial fitness calculated according to results from both controlled and uncontrolled simulations.

Case Description Conditions F (FRBS,Case)

1 FRBS neither avoids nor pro-
duces a collision (Ef = C0) & (Ec = C0) AASD

2 FRBS avoids a lateral collision
by increasing speed

(Ef = CL) & (Ec = C0)

& (Sf
A < Sc

A)
AASD

3 FRBS avoids a frontal collision
by decreasing speed

(Ef = CF ) & (Ec = C0)

& (Sf
A > Sc

A)
AASD

4 FRBS avoids a lateral collision
by decreasing the speed

(Ef = CL) & (Ec = C0)

& (Sf
A > Sc

A)
1 +AASD

5 FRBS avoids a frontal collision
by increasing speed

(Ef = CF ) & (Ec = C0)

& (Sf
A < Sc

A)
1 +AASD

6 FRBS is not able to avoid a col-
lision

(Ef = C{F |L}) & (Ec =
C{F |L})

2 +AASD

7 FRBS produces a collision
(Ef = C0) & (Ec =
C{F |L})

3 +AASD

4.1 Experimental Setup

All the methods considered in this experiment have the following common properties:

– As explained in Section 3.2, each chromosome is codified as a string of 93 real values
in the interval [0, 1], where the first 12 define the MF distribution and the remaining
81 define the consequences of the rules. The fitness functions used were explained in
Section 3.3.

– Selection is performed using a binary tournament [2,15], whereby two individuals are
randomly chosen, their fitness values are compared, and the individual with the best
value is selected as the parent.

– Crossover is carried out using the BLX − α operator [8] that, given two genes from
parents p1 and p2, randomly generates new offspring in the interval [min(p1, p2)− α ·
|p1 − p2|, max(p1, p2) + α · |p1 − p2|]. In this work, a value of α = 0.5 is used.

– Mutation is performed using the random resetting method: for each gene, the current
value is changed by a random value in the permissible interval with probability Pm =
2/93.

Both the GA and the GABF follow a generational scheme [19] whereby, at each genera-
tion, an entire new population is generated to replace the previous generation. Three versions
of the GA are implemented. The first, called GAstatic, generates cases used to evaluate in-
dividuals at the beginning of the process, and these cases do not change during the process.
In the second (GAdynamic), new random cases are generated in each iteration of the pro-
cess. The third follows a competitive co-evolutionary approach (GAcoevol) in which two
populations are maintained. One population is composed according to the FRBS, and the
other depends on a series of cases. Cases are selected, crossed and mutated with the same
operators used by the FRBS, but with the objective of maximizing the penalties received by
the FRBS. This can be expressed as presented in Equation 7.

fitness(Case) =
1

NFRBS

∑
i=1,...NFRBS

F (FRBSi, Case) (7)

Apart from the common operators, GABF uses its own methods, which are implemented
as follows:
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– Cases Selection (Section 2.1): In this work, the scenarios used to evaluate individuals are
randomly selected. However, given it is far more probable (about 75%) that a generated
scenario does not lead to a collision in the uncontrolled simulation (Ef = C0), the
selection of cases is restricted to scenarios that evolve to the three possible results (Ef ∈
{C0, CL, CF }) with the same probability.

– Fitness Aggregation (Section 2.2): For this problem, Equation 1 with ω = 0.25 is used.
This value was chosen after testing different configurations, as it was observed to lead
to more regular results because the dependence on the current generation is smaller than
that on the previous base fitness.

– Fitness Inheritance (Section 2.3): After crossover and mutation, two versions of fitness
inheritance are tested. In the first, individuals inherit a fitness value directly from their
parents (GABFdirect), whereas in the second, they inherit fitness from the parent with
the more similar fitness (GABFsimilar). Fitness is degraded according to the factor
ρ = 1.1.

Each method has a population size of 50 individuals, and evolves until the maximum
number of 10000 evaluations. An evaluation is considered to be the simulation of one inter-
section scenario, rather than the evaluation of an individual (which implies more than one
case). To obtain statistically comparable results, each test was repeated 20 times. The results
are compared in terms of their average and standard deviation over the 20 repetitions.

The number of cases used by each method to evaluate individuals (Nc) was set to one of
{3, 6, 12, 24, 48}. Thus, considering that GABF must re-evaluate the best individual in each
generation, the total number of generations to be run by each method is 67, 34, 17, 9 and
5, respectively. To ensure comparable results, the cases used by the GAs were also selected
such that Ef ∈ {C0, CL, CF } had the same probability.

4.2 Experimental Results

Because different scenarios were used for each generation carried out by the GABF tech-
nique (and GA{dynamic|coevol}), each technique used the same 2000 intersection scenarios
as the test set. These were randomly generated by ensuring Ef ∈ {C0, CL, CF } had the
same probability. In this way, all the obtained FRBSs were tested under the same scenarios,
ensuring that their performances could be compared.

Table 2 shows the average proportion of maneuvers finished without collision for each
of the executed tests. In addition, the standard deviation and best value are shown. For em-
phasis, average values above 0.80 and best values above 0.95 are boldfaced. From Table 2,
it can be seen that the average GABF values are higher than those obtained by classic GAs.
In particular, the difference is more evident for lower values of Nc. The results obtained by
GA are around 0.60, whereas those from the GABF are closer to 0.75. Note also that GA
obtains better results in the static case, with the exception ofNc = {24, 48}. With respect to
the GABF methods, direct fitness inheritance gives slightly better results than similar fitness
inheritance.

To determine whether the proposed method achieves significantly better results than the
GAs, a Student’s t-test is performed. The t-statistic was calculated according to Equation 8.
A confidence interval of 95% is used, hence t0.05 = 2.021. Table 3 shows the results of
the Student’s t-test for all of the comparable techniques, where each cell (row, column) can
contain three different values:

– Positive + when techniquerow is significantly better than techniquecolumn.



Enhanced GA for Obtaining Generality from Partial Results 13

Table 2 Average proportion of collision free maneuvers over 2000 cases.

Nc 3 6 12 24 48
GAstatic 0.577 0.678 0.767 0.812 0.844
σ 0.081 0.113 0.111 0.120 0.083
Best 0.754 0.907 0.911 0.991 0.966
GAdynamic 0.538 0.667 0.745 0.793 0.872
σ 0.121 0.122 0.094 0.108 0.080
Best 0.905 0.893 0.922 0.981 0.999
GAcoevol 0.623 0.619 0.678 0.836 0.868
σ 0.102 0.095 0.096 0.104 0.103
Best 0.844 0.781 0.937 0.987 0.999
GABFdirect 0.737 0.802 0.835 0.880 0.895
σ 0.082 0.100 0.099 0.091 0.086
Best 0.894 0.981 0.999 1.000 0.985
GABFsimilar 0.751 0.783 0.805 0.833 0.895
σ 0.121 0.084 0.090 0.119 0.070
Best 0.939 0.907 0.977 0.997 0.998

– Negative - when techniquerow is significantly worse than techniquecolumn.
– Empty when techniquerow is not significantly different to techniquecolumn.
– In addition, items inside parentheses indicate that techniquerow and techniquecolumn

share the same Nc value.

t =
X1 −X2√

(n1−1)σ2
1+(n2−1)σ2

2
n1+n2−2 · n1+n2

n1n2

(8)

Table 3 is divided into smaller tables to enhance its readability. These are referred to as
sub-table(row,column), with row and column being the numbers written before the name
of the technique. For instance, sub-table(1,4) compares GAstatic with GABFdirect.

In addition, in Table 4, techniques are ranked according to the number of positive and
empty symbols appearing in Table 3. In the table,RT represents the total ranking, calculated
according to the number of positive values, and using the number of empty values to break
deadlocks. RP is a partial ranking that is calculated in the same manner, but considering
only techniques with similar Nc.

Analyzing the results shown in Tables 3 and 4 in more depth yields the following prin-
cipal conclusions:

– Each of the implemented techniques improves (or does not degrade) their results as the
number of cases (Nc) increases. This can be elicited from the cells under the diagonal
in Table 3, sub-tables (1, 1), (2, 2), (3, 3), (4, 4) and (5, 5), being filled with positive or
empty values. This is logical, because the more cases are used to evaluate the individuals
in the population, the more general will be the results. The resulting FRBS will then be
able to deal satisfactorily with more situations. In addition, in Table 4, RT can be seen
to always decrease as Nc increases, for all techniques.

– GABF-based techniques are ranked higher than the GA-based methods (see Table 4).
Three GABF-based methods are among the top five, whereas the lowest-ranked five
are GA-based methods. In addition, GABF techniques attain RP = {1, 2}, with the
exception of GAcoevol for Nc = 24.

– No significant differences can be seen when comparing GA-related techniques (Table 3,
sub-tables (2, 1), (3, 1) and (3, 2)); there are no significant differences for equal Nc and,
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Table 3 Results of the Student’s t-test comparing performance between each technique. + when
techniquerow is significantly better than techniquecolumn, - when techniquerow is significantly worse
than techniquecolumn, and empty for no significant difference.

M
eth

od

1)
G
A st

at
ic

2)
G
A dy

n
am

ic

3)
G
A co

ev
ol

4)
G
A
B
F d

ir
ec
t

5)
G
A
B
F s

im
il
ar

Nc 3 6 12 24 48 3 6 12 24 48 3 6 12 24 48 3 6 12 24 48 3 6 12 24 48

1)
G
A st

at
ic

3 ( ) - - - - ( ) - - - - ( ) - - - (-) - - - - (-) - - - -
6 + ( ) - - - + ( ) - - - ( ) - - (-) - - - - (-) - - -
12 + + ( ) - + + ( ) - + + (+) - - (-) - - ( ) -
24 + + ( ) + + + ( ) + + + ( ) + (-) - ( ) -
48 + + + ( ) + + + ( ) + + + ( ) + ( ) + + (-)

2)
G
A dy

n
am

ic
3 ( ) - - - - ( ) - - - - (-) - - - - (-) - - - - (-) - - - -
6 + ( ) - - - + ( ) - - - ( ) - - - (-) - - - - (-) - - -
12 + + ( ) - - + + ( ) - + + (+) - - (-) - - (-) - -
24 + + ( ) + + ( ) - + + + ( ) - (-) - ( ) -
48 + + + ( ) + + + + ( ) + + + ( ) + + ( ) + + + ( )

3)
G
A co

ev
ol

3 ( ) - - - (+) - - - ( ) - - (-) - - - - (-) - - - -
6 ( ) - - - + ( ) - - - ( ) - - - (-) - - - - (-) - - -
12 + (-) - - + (-) - - ( ) - - - - (-) - - - - (-) - -
24 + + + ( ) + + + ( ) + + + ( ) + ( ) + ( ) -
48 + + + ( ) + + + + ( ) + + + ( ) + + ( ) + + + ( )

4)
G
A
B
F d

ir
ec
t 3 (+) - - (+) + - (+) + + - - ( ) - - - - ( ) - - -

6 + (+) + (+) - + (+) + - + ( ) - - ( ) -
12 + + (+) + + (+) + + (+) + ( ) - + ( ) -
24 + + + (+) + + + (+) + + + ( ) + + ( ) + + + ( )
48 + + + + ( ) + + + + ( ) + + + ( ) + + + ( ) + + + ( )

5)
G
A
B
F s

im
il
ar

3 (+) + - (+) + - (+) + + - - ( ) - - - ( ) - -
6 + (+) - + (+) - + (+) + - ( ) - - ( ) -
12 + + ( ) + + (+) - + + (+) - + ( ) - - ( ) -
24 + + ( ) + + + ( ) + + + ( ) + ( ) + ( ) -
48 + + + + (+) + + + + ( ) + + + + ( ) + + + ( ) + + + + ( )

when unequal, the technique with higher Nc usually produces better results. Studying
Table 4, it can be seen that GAstatic has a higher partial ranking than GAdynamic in
most instances, with the exception of Nc = 48. In contrast, GAcoevol obtains a better
ranking than both GAstatic and GAdynamic when Nc = {3, 24, 48}.

– When comparing GABFdirect with GAstatic (Table 3, sub-table (4, 1)), the proposed
technique improves results from the classic one in most cases, providedNc of the GABF
is not greater than that of the GA. One exception is for Nc = 48, where there is
no significant difference. In cases when the Nc used by GAstatic is greater than that
for GABFdirect, the latter results are not significantly different, with the exception of
GABFdirect with Nc = 3, for which the results are worse than for GAstatic with
Nc = {24, 48}.

– A very similar analysis can be found when comparing GABFdirect with GAdynamic
(Table 3, sub-table (4, 2)), with some particularities. In this case, GABFdirect with
Nc = 3 gets better results thanGAdynamic withNc = {3, 6}, and is only out-performed
by GAdynamic with Nc = {48}.

– IfGABFdirect is compared withGAcoevol (Table 3, sub-table (4, 3)), all theGABFdirect
techniques out-perform GAcoevol with Nc = {3, 6, 12}. GAcoevol with Nc = 24 only
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Table 4 Number of positive and empty values obtained from the t-test for each technique. The table presents
the method used, the number of positive or empty symbols (from Table 3), and two rankings: a total ranking
(RT ) and the partial ranking (RP ) based on methods with equal Nc.

Method Nc
′+′ ′ =′ RT RP

GABFsimilar 48 20 5 1 1
GABFdirect 48 17 8 2 2
GABFdirect 24 16 9 3 1
GAcoevol 48 15 10 4 3
GAdynamic 48 15 10 4 4
GAstatic 48 12 12 5 5
GAcoevol 24 11 13 6 2
GABFdirect 12 11 12 7 1
GABFsimilar 24 10 14 8 3
GAstatic 24 9 13 9 4
GABFsimilar 12 9 11 10 2
GABFdirect 6 8 12 11 1
GAdynamic 24 7 13 12 5
GABFsimilar 6 7 12 13 2
GAstatic 12 7 10 14 3
GABFsimilar 3 7 9 15 1
GAdynamic 12 7 7 16 4
GABFdirect 3 6 7 17 2
GAstatic 6 2 6 18 3
GAcoevol 12 2 5 19 5
GAdynamic 6 2 5 19 4
GAcoevol 6 1 6 20 5
GAcoevol 3 1 6 21 3
GAstatic 3 0 4 22 4
GAdynamic 3 0 2 23 5

improves results of GABFdirect with Nc = 3, and GAcoevol with Nc = 48 gets better
results than GABFdirect with Nc = {3, 6}.

– When comparing GABFsimilar with GAstatic, GAdynamic and GAcoevol (Table 3,
sub-tables (5, 1), (5, 2) and (5, 3)), very similar results are found: the proposed method
yields better or similar results in most cases, except for Nc = 48, where GA-based
techniques obtain better results than GABF for low Nc.

– Finally, comparisons among the GABF-based techniques (Table 3, sub-table (5, 4)) show
that slightly better results are obtained by GABFdirect. Indeed, this technique occupies
three of the five top rankings in Table 4.

In general, results show that GABF-related techniques produce remarkable improve-
ments over GA-based techniques. Even for small Nc, they obtain, in most cases, equal or
better results than GA-based techniques using high Nc.

5 Conclusions and Future Work

In the present study, both exogenous and endogenous fitness estimations are combined in
a single algorithm to solve a decision problem involving two vehicles at an intersection.
The method presented is based on the well-known genetic algorithm. It adds three specific
operators to allow the GA to estimate the fitness of an individual based on a small subset of
problem cases. In addition, the proposed method allows the calculated fitness to be inherited
and aggregated in subsequent generations.



16 E. Onieva, E. Osaba, X. Zhang, A. Perallos

To test the performance of the proposed method, the generation of FRBSs that guide
an autonomous vehicle through an intersection being approached by a vehicle driven by an
inattentive human is considered. In this case, the FRBS must determine and calculate the
proper speed to navigate through the intersection without causing risk or delay.

Ultimately, the problem was stated as a real 93-dimensional optimization problem. Sub-
sets of cases were used to evaluate individuals, as it is computationally impractical to test
each FRBS for all possible situations. Two different approaches of the proposed technique
were compared with two GA implementations, and results demonstrated that the proposed
method out-performs the GAs.

Future work will consider the use of different methods to inherit and aggregate fitness,
and use different strategies to select which cases are used by the algorithm. In addition, the
operators presented here will be implemented in different optimization techniques, such as
ant colony systems and particle swarm optimization.
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