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Abstract

Metaheuristics have proven to get a good performance solving difficult opti-
mization problems in practice. Despite its success, metaheuristics still suffers
from several problems that remains open as the variability of their performance
depending on the problem or instance being solved. One of the approaches to
deal with these problems is the hybridization of techniques. This paper presents
a hybrid metaheuristic that combines a Genetic Algorithm (GA) with a Cross
Entropy (CE) method to solve continuous optimization functions. The algo-
rithm divides the population into two sub-populations, in order to apply GA
in one sub-population and CE in the other. The proposed method is tested
on 24 continuous benchmark functions, where each one is used in four different
dimensions. First, a study to find the best parameter configuration is done. The
best configuration found is compared with several algorithms in the literature
in order to demonstrate the competitiveness of the proposal. The results shows
that GACE is the best performing method for instances with high dimensional-
ity. Statistical tests have been applied, to support the conclusions obtained in
the experimentation.

Keywords: Genetic Algorithm, Cross Entropy, Hybrid Algorithm, Continuous
Optimization, Optimization Functions

1. Introduction

In the last decades, metaheuristics have been used extensively to solve com-
plex optimization problems. Many of these algorithms have been inspired by
natural phenomena and have great value in solving high dimensional prob-
lems. In this category are algorithms like Particle Swarm Optimization (PSO)
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(Kennedy, 2010), Genetic Algorithm (GA) (Holland, 1975), Ant Colony Op-
timization (ACO) (Dorigo & Gambardella, 1997), Differential Evolution (DE)
(Neri & Tirronen, 2010), or Simulated Annealing (SA) (Van Laarhoven & Aarts,
1987). Since their formulation, these algorithms have been applied to optimiza-
tion problems in (Wang et al., 2011; Thakur, 2014; Ciornei & Kyriakides, 2012;
Cai & Ma, 2010). Also, probabilistic techniques such as Cross Entropy (CE)
(Rubinstein, 1999) or Covariance Matrix Adaptation (CMA) (Hansen & Oster-
meier, 2001) have been applied to this kind of problem (Kroese et al., 2006; Deb
et al., 2002).

Despite its success in continuous problems and the large number of existing
techniques, metaheuristics still suffers from several problems that remains open.
One of them is the variability of its performance, depending on the character-
istics of the optimization function. Another issue to take into account are the
weaknesses strengths that each technique presents. For example, population-
based metaheuristics like GA and ACO have problems with the exploitation of
the search space (Talbi, 2002). On the other hand, regarding trajectory-based
algorithms, as SA or Tabu Search, they easily become stuck in local optima
because of their bad exploratory behaviour (Wang et al., 2004). In the case
of DE, the specific way in which new individuals are created or the potential
to generate only a limited number of different trial solutions within one gener-
ation are identified as problems to this method (Segura et al., 2015). One of
the approaches to deal with these problems is the association of two or more
algorithms in order to obtain a better one or counteract their drawbacks. In
fact, choosing a satisfactory combination of algorithms can be an essential part
for achieving better performance in many hard optimization problems. This
combination is called Hybridization (Topcuoglu et al., 2007).

The principal aim to hybridize different algorithms is to benefit from the sin-
ergy between their complementary weaknesses and strengths. Hybrid algorithms
have proved to be promising in many fields in general (Purwar & Singh, 2015;
Fujikawa & Takashi, 2005; Olama et al., 2015), and in particular in optimiza-
tion problems such as constrained problems (Hernández et al., 2013), nonlinear
problems (Abd-El-Wahed et al., 2011), or real world problems (Mandal et al.,
2011; Asafuddoula et al., 2011).

In this article, a novel hybridization technique is presented. The proposal is
based on a hybridization between GA and CE for solving continuous optimiza-
tion problems. There are several reasons which have motivated the development
of this study:

• The proposal aims at finding sinergies between the good exploration and
exploitation abilities of GA and CE, respectively.

• Both methods have been successfully applied separately and many papers
have been published focused on them (Wang et al., 2013; Zhao et al.,
2013; Busoniu et al., 2011). However, as far as we know, the hybridization
between these two methods has not been done before. Therefore, it could
be an interesting approach to hybridize both method in order to achieve
better performance than for its own.
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The basic concept of the proposed technique is the following: the algorithm
divides the population into two sub-populations of a given size. Then, GA is
applied to one of these sub-populations and CE is applied to the other. As result,
the new individuals created by the algorithms will form the new population.
The algorithm has been tested over 24 benchmark functions extracted from
Black-Box Optimization Benchmarking (BBOB)1, which is part of the GECCO
and CEC international conferences. Furthermore, it will be compared with
reference algorithms in the literature to demonstrate its performance on this
kind of problem. To conclude, the objectives of this paper can be summarized
as follows.

• Hybridize two well-known algorithms, such as GA and CE, in order to
improve on the performance obtained by those algorithms on their own.

• Apply this hybridization to continuous optimization problems.

• Find a successful combination of parameters to obtain a good performance
in all the functions used.

• Compare the performance of the proposal with that of methods in the
literature to prove its potential.

The work developed in this article is an extension of the research presented
by the authors in Genetic and Evolutionary Computation Conference 2015 as
two-page Late-Breaking Abstract (Lopez-Garcia et al., 2015). The novelties in
this work are listed below:

• The number of functions used have been increased to 24, the double as in
previous work.

• A wide study of the parameters used in the algorithm has been done.
Population sizes and special parameters of each part of the method have
been studied in order to obtain the best configuration possible.

• The number of different dimension values considered have been increased.

• The proposal have been compared with new high-performance methods
from literature.

• Statistical tests have been applied in order to prove the significance of the
results obtained by the presented method.

The proposal has been also used in real-world optimization in Lopez-Garcia
et al.. In this paper, the proposal is focused in continuous optimization, and
extend the parameter study part, which is basic for the good performance of
the algorithm, not only in this kind of problems but for its use in other themes.

1http://coco.gforge.inria.fr/doku.php?id=bbob-2013
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This article is structured as follows. In Section 2 a brief explanation of the
different parts of the proposal and its application in the literature is given. A
brief explanation about types of hybridized methods, and recent state of the
art about them are described in Section 3. Section 4 explains how the proposal
works and what operators are used. The results of the experimentation and an
analysis of the results are presented in Section 5. Finally, some conclusions and
avenues for further research are presented in Section 6.

2. Background

In this section, a brief background of the different parts of the proposal is
given. In Section 2.1, an explanation of GA is given and some of the related
literature is reviewed. On the other hand, Section 2.2 contains the description
of CE and some related research.

2.1. Genetic Algorithm

GAs were introduced by Holland (1975).They were designed to mimic some
of the processes observed in natural evolution. A GA maintains a population
of solutions, called individuals, and iteratively modifies them using different
operators in order to achieve improvements. Its adaptability to hard problems
has led GAss to appear in the literature both on their own (Osaba et al., 2014,
2013), as well as combined with different techniques (Onieva et al., 2011; Qiao
et al., 2011), to solve a wide variety of problems. A GA is formed most of time
by the four operators: selection, crossover, mutation, and replacement.

The state of the art about GA is wide. Interested readers are referred to
Lim (2014), Kumar & Beniwal (2013), and Karakatic & Podgorelec (2015) for
extensive reviews of GAs in the literature.

In Algorithm 1, a pseudocode of the basic GA is depicted, where pc and pm
denote the crossover and mutation probabilities, respectively.

Data: POPsize, pc, pm, Tmax

Result: Best individual found
1 t← 0
2 POP0 ← Initialize(POPsize)
3 Evaluate POP0

4 while t < Tmax do
5 Parents← Select parents from POPt

6 Offspring ← Crossover(Parents, pc)
7 Offspring ← Mutate(Offspring,pm)
8 Evaluate Offspring
9 POPt+1 ← Replacement process with actual Population POPt and

Offspring
10 t← t+ 1

11 end
Algorithm 1: Pseudocode of workflow followed by GA.
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2.2. Cross Entropy

The CE method was proposed by Rubinstein in 1997 (Rubinstein, 1999).
This adaptive method was created for rare-event probabilities and combinatorial
optimization. CE has three main phases:

1. Generate POPsize random samples from a normal distribution with mean
m and standard deviation s (N(m, s)).

2. Select the nup best samples from Samples.

3. Update m and s according to the nup individuals with better fitness.

CE has been used in estimation or optimization problems and it can be ap-
plied to different fields. For example, in Caballero et al. (2015), the authors
developed a multiobjective optimization CE procedure for combinatorial prob-
lems and tested it with multiobjective knapsack problems and multiobjective
assignment problems. CE is used as an optimization method of basis functions
for control policies in continuous-state discrete-action Markov decision processes
in Busoniu et al. (2011).

In a standard execution of the method, m tends to locate itself over the point
with the best results, while s become smaller, until both values are focused on
the area of the best solutions found in the domain. The variation of these values
is done with a parameter indicating the learning rate (Lr), whose values usually
range within the interval [0.6, 0.9] (Reale & OConnor, 2011). The update of
means and standard deviation is done by combining the actual value of m and s
with the mean and standard deviation of the nup samples selected in an iteration
(the best ones).

Algorithm 2 represents the process described before. The algorithm is pre-
sented for a one-dimensional problem; in the case of more dimensions, m and s
must be vectors and each one of their dimensions should be treated separately.

Data: POPsize, nup, Lr, Tmax

Result: Best individual found
1 m← Initialize Means
2 s← Initialize standard deviations
3 t← 0
4 while t < Tmax do
5 POPt ← Generate POPsize Samples under N (m, s)
6 Evaluate POPt

7 Samples← Select the nup best individuals from POPt

8 m← UpdateMeans(Lr,m, Samples)
9 s← UpdateDeviation(Lr, s, Samples)

10 t← t+ 1

11 end
Algorithm 2: Pseudocode of workflow followed by CE.
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3. Hybridized methods

Hybridization is an important topic in the literature (Purwar & Singh, 2015;
Hernández et al., 2013). In a hybridization, two or more techniques are com-
bined in order to create synergies among them. The combined techniques have
obtained good performance for resolving the specified problem, and the combi-
nation of them can improve the results obtained on their own.

Due to the increasing number of works in this area, not only for metaheuris-
tics during the last two decades (Osman & Laporte, 1996; Talbi, 2009), but
recently with its hybridization (Blum et al., 2011), some interesting articles
about how they can be classified are found in the literature. For example, in
Talbi (2002), a taxonomy about hybrid metaheuristics is presented. This pa-
per also presents a large number of hybrid approaches classified according to
that taxonomy. Another example, which continues with this idea, is presented
in Raidl (2006). In this article, author combines the point of view of Cotta-
Porras (1998) and one of the approaches presented in Alba (2005) by Blum et
al. with the taxonomy named before. The most recent taxonomy can be found
in Jourdan et al. (2009), where Talbi (2002) is extended in order to consider
cooperative schemes between exact methods and metaheuristics. In order to
clarify in which category the proposal is, an analysis of the different types of
possible combination following the taxonomy given by Talbi (2002) is made.
This classification is divided into design issues and implementation issues. For
design issues, the options are:

• Low-level, where a given function of a metaheuristic is replaced by another
metaheuristic, or High-level, where the different metaheuristics are self-
contained.

• Relay, where a set of metaheuristics is applied one after another, or Team-
work, in which there are many parallel cooperating agents.

• Homogeneous, where all the combined algorithms use the same heuristic,
or Heterogeneous, where different heuristics are used.

• Global, where all the algorithms search in the whole research space, or
Partial, where each algorithm has its own search space.

• Specialist, that combines algorithms which solve different problems, or
General, where all the algorithms solve the same target optimization prob-
lem.

While for implementation issues, it can be found:

• Specific, which only solve a small range of problems with much higher
rates and lower cost, or General-purpose.

• Sequential, where algorithms work one by one, and Parallel, where each
algorithm is working at the same time than the rest of them.
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If the heuristics used for the hybridization works in a parallel way, they fall
into one of three categories:

1. Static, if the number of tasks and the location of work are generated at
compilation time.

2. Dynamic, if the number of task is fixed at compilation time, but the
location of work is determined and/or changed at run-time.

3. Adaptive, where tasks can be created or deleted as a function of the load
state of the parallel machine.

Focusing in design issues, the proposed algorithm in this work fall into the
next categories:

• High-level: Both GA and CE are self-contained in the algorithm.

• Teamwork: Both parts of the algorithm work in parallel and cooperate at
the end of its execution.

• Heterogeneous: GA is a population-based technique while CE is a statis-
tical one.

• Partial: as it is mentioned with more detail in future sections, both algo-
rithms are applied in two different sub-populations, which both are created
in a different way.

• General: both parts are applied to the same optimization problem.

In the other hand, metaheuristics and their hybridizations have been widely
used for optimization problems in the literature. In Kıran & Gündüz (2013) a
hybridization of PSO and Artificial Bee Colony (ABC) is presented and applied
to twelve basic numerical benchmark functions and energy demand estimation
problems. PSO is also used in Chen et al. (2009) in combination with DE for
global optimization of multimodal functions. Sierra et al. (2014) have combined
a DE with a K-means algorithm for continuous optimization. The application
of K-means helps to obtain more diversity in the population and skip local op-
timum values while a DE with its original operators is working. The results are
compared with a DE and a PSO. An adaptive memetic technique combining a
GA, DE, and an estimation of the distribution algorithm is developed in Shim
et al. (2015). In Duan et al. (2013), a hybrid PSO with GA is proposed to solve
the multi Unmanned Aerial Vehicle formation reconfiguration problem, which is
processed as a parameter optimization problem. Authors applied a combination
of ACO and GA to different classes of complex global continuous optimization
problems in Ciornei & Kyriakides (2012). In Abadlia et al. (2014), authors
present two different hybridization of PSO. In the first case, the technique is
combined with a Tabu Search method, while in the second case, it is combined
with a global search technique. The proposed hybridizations are used in fifteen
diferent functions from the multi-objective literature. A hybrid Artificial Bee
Colony method is developed in Bolaji et al. (2015). The algorithm is hybridized
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in two parts: first, authors applied a Local Search technique as a refinement pro-
cess within the employed operator of the original technique. The second phase
uses a harmony search algorithm to replace the scout bee operator. The proposal
is evaluated using a benchmark dataset composed by 12 problem instances. In
Elsheikh (2014), continuous-time simulation optimization problems are solved
applying derivate-based hybrid heuristics, with population-based metaheuristics
among them. The proposed approach improves the solution quality in this kind
of problems.

Hybridization is not only between metaheuristics. In Rahman et al. (2014),
authors explore the concept of hybridizing metaheuristics with mixed integer
programming solvers, and proposed a hybridization of PSO with a mixed integer
programming solver. The literature about hybrid techniques is very wide. As
can be seen, the most part of the previous techniques use a metaheuristic as
base algorithm, and apply different kinds of search algorithms to improve its
performance in a concrete point, or avoid problems like stagnation in local
optima, loss of diversity, and so on. On the other way, there are also techniques
that combine two techniques in order to alleviate the drawbacks of each other.
The proposed technique in this work is focused on trying to improve the parts
where the other one can obtain worse performance. More details about how the
proposal works and its characteristics are explained in next sections.

Hybridization between GA and CE is not found in the literature, as far
as we know. CE can improve the capacity of exploitation of a GA while GA
can improve the capacity of exploration in a CE. The aim of this paper is to
achieve the good performance of the combination of these techniques, and find
the correct parameters for its application in continuous optimization problems.

4. Genetic Algorithm and Cross Entropy: GACE

The use of the proposed algorithms for this hybridization is justified as
follow. As it has been mentioned in previous sections, one of the problems
of population-based algorithms is their bad exploitation abilities. On the other
side, CE method has a high possibility to become stuck in local optima if it
is applied alone, since it tends to converge quickly to local optima, specially
when learning rate is high. In the proposed technique, CE is used to cover
the lack of exploitation of GA, focusing the search of solutions in the area
where the best individuals have appeared. In this case, GA is responsible of the
exploration of the search. Then, the GACE method is created with the aim of
taking advantage of the exploration ability of a GA and the exploitation ability
of a CE in continuous optimization. The algorithm works in this way: first,
an initial population is created randomly with a given number of individuals
POPsize. At each iteration of the algorithm, the population POPt is divided
into two sub-populations: POPGA with SIZEGA individuals and POPCE with
SIZECE . SIZEGA is calculated using a percentage pga of POPsize, while
SIZECE is calculated as POPsize − SIZEGA. The individuals in POPGA are
chosen by the selection method while the SIZECE best individuals in the actual
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population POPt are selected to form POPCE . Once the sub-populations are
created, each one is used in a different way:

• POPGA: GA operators are applied to this population in order to create
SIZEGA new individuals. Selection, crossover, and mutation operators
used are specified in Section 4.1.

• POPCE : SIZECE new individuals are randomly generated using a normal
distribution with mean M̄ and standard deviation S, N (M̄, S), updated
employing Algorithm 2. Section 4.2 presents in detail the implementation
of this process.

After that, a population POPt+1 is created. It contains the individuals gen-
erated by the last two operations, i.e., POPt+1 will contain SIZEGA individuals
generated by a GA and SIZECE individuals created using a CE method. Then,
the total population size is the sum of the number of individuals in each sub-
population, i.e. POPsize = SIZEGA+SIZECE . In addition, elitism is applied.
In case the best individual found so far is not present in the generation, it is
inserted, replacing the worst one. Algorithm 3 describes the whole process.

Data: POPsize, pga, pc, pm, Lr, pup, Tmax

Result: Best individual found
1 SIZEGA ←‖ POPsize · pga ‖
2 SIZECE ← POPsize − SIZEGA

3 nup ←‖ SIZECE · pup ‖
4 t← 0
5 POP0,← Initialize(POPsize)

6 M ← Initialize Means vector
7 S ← Initialize Standard Deviation vector
8 Evaluate POP0

9 while t < Tmax do
10 POPGA ← SelectionOperator(POPt, SIZEGA)
11 POPCE ← SelectBestSamples(POPt, SIZECE)
12 OffspringGA ← Crossover(POPGA, pc)
13 OffspringGA ← Mutation(OffspringGA,pm)

14 OffspringCE ← Generate(POPCE , SIZECE ,M, S)

15 M ← UpdateMeans(Lr,M,OffspringCE , nup)
16 S ← UpdateDeviation(Lr, S,OffspringCE , nup)
17 POPt+1 ← OffspringGA

⋃
OffspringCE

18 Evaluate POPt+1

19 Add the best individual found to POPt+1 if it is not in the population
20 t← t+ 1

21 end
Algorithm 3: Pseudocode of the workflow followed by the proposed method
GACE
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As it has been explained, the individuals that form POPGA contribute to
help the exploration of the search space, while the individuals of POPCE provide
exploitation. When both sub-populations are joined into a new one (POPt),
individuals can be in both sub-populations in the next generation, helping with
the improvement of the best solutions found.

4.1. Genetic Algorithm Operators

In this section, the operators used in the Genetic Algorithm part are ex-
plained. The selection, crossover and mutation operators are presented below.

As the selection operator, Binary Tournament is used (Goldberg & Deb,
1991). This operator chooses two random individuals and compares them. The
winner of the tournament is the fittest individual. The process can be repeated
as often as desired. In this case, SIZEGA individuals are taken.

BLX-α (Herrera et al., 1998) is adopted as the crossover operator. This
operator takes two parents A = (a1, . . . , ai, . . . , am) and B = (b1, . . . , bi, . . . , bm)
for each element i and creates two offspring. These new individuals are generated
using random values in the interval presented in Equation 1, with α ∈ [0, 1]. In
this work, α takes the value 0.5. With this value, the difference between the
initial individual and the resulted one is not so big, but enough to have a change
between them.

Oi = U(min(ai, bi)− α|ai − bi|, max(ai, bi) + α|ai − bi|) (1)

In this paper, Gaussian mutation (Bäck & Schwefel, 1993) is used as the
mutation operator. Each element ai of an individual is updated according to
Equation 2.

ai = N (ai,
Rmax −Rmin

10
) (2)

Here, N is a normal distribution with mean ai and the second parameter
is standard deviation, which depends on the length Rmax −Rmin, where Rmax

and Rmin are the upper and lower bounds of the individual.

4.2. Cross Entropy Operators

The individuals which are processed in the CE method are chosen in a de-
terministic way. The SIZECE best individuals of POP constitute POPCE .
For the good performance of CE method, two registers must be kept by CE.
One of them stores the average mean M = (m1,m2 . . .mn) and the other stores
the standard deviation S = (s1, s2, . . . sn). For each position i in the vectors, a
random number is generated following a normal distribution N (mi, si). Then,
once the POPCE individuals are chosen, the individuals M and S are updated
and SIZECE new samples are generated.

The update is done by applying Equations 3 and 4. The value of learning
rate Lr will be studied in the next section.

M = (1− Lr) ·M + Lr · Samples (3)
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Functions notation Type
F1, F2, F3, F4, F5 Separable
F6, F7, F8, F9 Low or Moderate conditioning

F10, F11, F12, F13, F14 High conditioning and unimodal
F15, F16, F17, F18, F19 Multi-modal with adequate global structure
F20, F21, F22, F23, F24 Multi-modal with weak global structure

Table 1: Function notation and its type

S = (1− Lr) · S + Lr · σ(Samples) (4)

For their initialization, each component of M is initialized to a random value
in the interval of the corresponding variable ([Rmin, Rmax]). On the other hand,
S is equal to the amplitude of the interval (Rmax −Rmin).

5. Experimentation

In this section, the results of the experimentation employing the proposed al-
gorithm are presented. In Section 5.1, the functions used and a brief explanation
about its characteristics will be made. The study of the different parameters
used in the application of GACE is developed in Section 5.2 while a comparison
among the best possible configurations and techniques in the literature will be
given in Section 5.3.

5.1. Continuous Optimization Functions

A total of 24 optimization functions from Comparing Continuous Optimisers
(COCO) has been used for the present experimentation. The COCO platform
has been used for the Black Box Optimization Benchmarking (BBOB) work-
shops that took place during the GECCO and CEC conferences from 2009 on.
The functions used are noise-free and are of different types. The tables in Ap-
pendix A contain the name of each function, and its formula. Besides, Table 1
shows a summary of the functions that are contained in each type.

The reason to use these functions is to assess the performance of the proposed
method for different kinds of functions, where some of them are known to be
very complex. The constants and values of the functions can be found on the
COCO webpage2. These functions have been optimized between Rmin = −5
and Rmax = 5 as it is indicated in the documentation provided by the BBOB
competition. Besides, the dimensions in which functions used are optimized
take values dim ∈ {5, 10, 20, 40}. To avoid these algorithms’ always converging
to the same value, a total of 15 instances with different optimum values were
created for each of these functions.

2http://coco.gforge.inria.fr/doku.php
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Parameter Values
POPsize {2, 5, 10, 20} · dim

Percentage of GA individuals pga = {0.25, 0.5, 0.75}
GA part parameters pc = 0.9, pm = 1

dim , α = 0.5
CE part parameters Lr = 0.7, pup = 1

Stop Condition Tmax = 25000

Table 2: Values of the different parameters used in experimentation

c = 2 c = 5 c = 10 c = 20
pga 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Rankdim=5 8.38 8.33 6.33 5.25 4.50 5.83 6.13 5.50 5.08 8.29 6.25 5.13
Rankdim=10 5.17 5.58 5.63 4.50 4.75 4.54 7.38 6.29 6.29 11.00 8.79 8.04
Rankdim=20 2.63 3.29 3.92 5.17 4.42 5.46 8.63 6.58 6.88 11.67 9.88 9.50
Rankdim=40 3.25 2.67 2.75 5.25 4.33 5.38 9.00 7.33 7.54 11.25 9.83 9.42
Rankall 5.00 4.75 5.00 3.75 3.00 5.00 8.50 6.50 6.25 11.50 10.25 8.25

Table 3: Ranking of the different algorithms used by dimension and pga

5.2. GACE parameter tuning

In this section, the tuning of the parameters used by the proposed method
is detailed. First, the values of these parameters was specified. In order to
set the population size for future research and experimentation, it modifies its
value depending on the value given to the dimension. The calculation of the
population size POPsize is shown in Equation 5.

POPsize = c · dim, c ∈ {2, 5, 10, 20}, dim ∈ {5, 10, 20, 40} (5)

i.e. POPsize ∈ [10, 800].
For each one of the possible values POPsize can take, different percentages of

the population associated to POPGA (pga) are assumed. These percentages take
25%, 50%, and 75% of the population size, i.e. pga = {0.25, 0.5, 0.75}. Then,
SIZEGA varies in the interval SIZEGA ∈ [3, 600] and SIZECE ∈ [2, 600]. For
example, with dim = 5 and c = 2, SIZEGA ∈ {3, 5, 8} and SIZECE ∈ {7, 5, 2}.
The proposal uses as its stop condition 25000 evaluations. Table 2 summarizes
the default values of each of the parameters used in this experimentation.

First of all, a study to determine the value of c and a first look at pga was
made. In order to show the results obtained in a simpler way, Table 3 provides
the ranks obtained by dimension used. Each value represents the average posi-
tion each combination of values obtains taking into account the error they have
in each dimension and function used. The smaller the value, the better.

In this way, the authors want to find out which population size and which
percentage of SIZEGA is needed to obtain the best results for the most func-
tions. Bold values represent the best two rankings in each of the dimensions
considered.

For dim = 5 functions, the best values were obtained in configurations with
c = {5, 10} and pga = {0.5, 0.75}. For dim = 10, the three best values are in
the c = 5 configurations. For functions with dim = {20, 40}, c = 2 with all their
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possible pga values include all the best rankings so far. Based on the results
obtained, it can be said that for dimensions less than or equal to dim = 10,
c = 5 can be chosen as the constant. In other cases, the constant value taken is
c = 2. In a formal way, the formula for POPsize can be defined as in Equation
6:

POPsize =

{
5 · dim, if dim ≤ 10
2 · dim, otherwise

(6)

Given these values, a precise value for the percentage of SIZEGA is nec-
essary. For this purpose, and following the previous formula, a study of the
values of pga was made. To be exhaustive, the values pga ∈ {0, 0.05, 0.1, . . . 1}
were taken. Besides, an important parameter for the CE part is included in
this study. The percentage pup needs to be defined in order to know how many
individuals in POPCE are used to update the means and standard deviation,
i.e. pup is needed to determine nup. Hence, for this study, this value is defined
as pup ∈ {0.2, 0.4, 0.6, 0.8, 1}. Each pair (pga, pup) has been studied in order to
determine the best performing combination. For this purpose, Figure 1 shows
the different heat maps denoting the ranking obtained by the combination of
parameters in each dimension. The darker the box, the better the ranking.
Table 4 summarizes all the parameters used for (pga, pup) experimentation.

Parameter Values
POPsize Equation 6

Percentage of GA individuals pga = {0, 0.05, 0.1 . . . 1}
Number of individuals for update pup = {0.2, 0.4 . . . 1}

Stop Condition Tmax = 25000

Table 4: Values of the different parameters used in pga − pup experimentation

Along the X -axis, the percentages of SIZEGA are represented, while along
the Y axis, the pup values are shown. The upper figures show the results for
dimensions 5 and 10 while the lower correspond to those with dimensions 20
and 40. A legend with the ranking values obtained in each square is shown in
the right part of each figure. For dim = 5, the best values are found in the
intervals pup ∈ [0.6, 1] and pga ∈ [0.3, 0.7], while the worst values are situated
in the pup = 0.2 row and the pga = 0 column. For the remaining dimensions,
the best results are concentrated in pup ∈ [0.2, 0.6] and pga ∈ [0, 0.3]. When the
dimensions increase, it is easy to see that the best combinations are obtained
with a low value of both parameters. The bigger the dimension, the larger the
difference between the best and worst rankings.

One of the combinations that obtains good performance in higher dimensions
is pup = 0.4 and pga = 0.1. These values are used in the comparison with the
existing techniques in the literature in the next section.
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Figure 1: Ranking of each configuration used in different dimensions

5.3. Comparison with existing techniques from the literature

This section shows the comparison of the proposal employing the parameters
chosen in previous section, with standard existing techniques in the literature.
Standard techniques belonging to BBOB 2013 have been taken in order to pro-
vide a qualitative comparison with the proposal. These techniques include a
real-coded genetic algorithm, two types of cellular genetic algorithm, a gen-
erational GA, a Differential Evolution algorithm, and a hill climber. Other
techniques such as different variations of CMA algorithm Auger et al. (2013);
Hutter et al. (2013), memetic algorithms Voglis (2013) or variations of NSGA-II
Tran et al. (2013) have been also applied to this benchmark in 2013 edition.

The reason to make a comparison with these techniques is that they have
been achieved a good performance on the same optimization functions. Besides,
the comparison with several types of techniques in the literature such as a re-
ally powerful GA (the case of the real-coded one), a technique with the same
approach as it (in the case of the cellular GA) in all its variations, a well-known
technique as DE, or a simple technique, such as hill-climber, could provide a
good and rich comparison with the proposal, in order to show the competitive-
ness of its performance.

The configurations used in the application of these techniques was that in-
dicated by their authors in their original papers. The characteristics of the
techniques are presented in what follows.
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• Real-coded genetic algorithm based on enhanced projection (PRCGA).
This algorithm uses five operators: tournament selection, blend-α crossover,
non-uniform mutation, projection, and a stagnation alleviation mecha-
nism. The crossover probability has been set to 0.8, the mutation proba-
bility to 0.15, and the tournament size to 3. The experimental procedure,
conclusions, and more details can be consulted in (Sawyerr et al., 2013).

• Differential Evolution (DE) applied in Poš́ık & Klemš (2012) in its stan-
dard form, with ’best/1’ mutation operator.

• Cellular Genetic algorithms are the most fine-grained of the Parallel Ge-
netic algorithms. CGAs are one sort of GAs, in which the population is
divided into semi-isolated subpopulations. In this case, each individual is
its own subpopulation. Two of these algorithms are used for comparison.
One of them, called Grid, is implemented in its standard form as described
in (Alba & Dorronsoro (2009)). Also used is a one-directional ring CGA,
Ring, developed in (Holtschulte & Moses, 2013).

• A generational, single-population genetic algorithm (GGA) using rank
selection is used for comparison.

• A hill climber algorithm (Hill) (Jacobson, 2004) is an iterative optimiza-
tion technique which belongs to the family of local search techniques. In
this comparison, the technique developed in Holtschulte & Moses (2013)
is used.

Tables 5–8 show the average error, where error = Fbest − Fopt, for each
dimension and function, where Fbest is the best value obtained by the algorithm
and Fopt is the optimal value of the instance used. As stop conditions, the
same number of evaluations used in the proposed technique are employed in the
baseline techniques. Bold values represent the two best values obtained for each
function. Results with ∗ indicate the best error value reached in each function.

For dim = 5 functions, the proposal obtains one of the best two values in
11 of 24 functions, and the best so far in 3 of them. The best result is obtained
by DE with 16 of 24 best values, and the best so far in 14 of them. PRCGA,
Ring, GGA and show a similar performance with 5, 7 and 7 results out of
24, respectively. The techniques with fewer best values are Grid, which only
obtains the best value in two cases, and Hill, which obtains the best results
in four functions. The best results obtained by the proposed technique in this
dimension are obtained mostly in Separable and Multi-modal with adequate
global structure functions, and two of the most difficult high conditioning and
unimodal functions. On the other hand, DE obtains its best values in Low or
moderate conditioning and High conditioning and unimodal functions.

In the case of the experimentation with dim = 10, Ring and Grid have
fewer good results: only one and four respectively, being the worst techniques
in this dimension. For DE, it obtains one of the two best values in 13 out
of 24, while the best value so far is obtained in 8 of these cases. However,
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GACE DE GGA Grid Hill Ring PRCGA
F1 0.00e+00* 7.08e-09 1.19e-04 1.03e-04 1.58e-05 2.28e-04 2.70e-05
F2 6.62e-06 6.13e-09* 1.70e+00 3.35e+00 2.09e+00 1.35e+00 1.81e-03
F3 2.72e-03 2.00e-01 5.44e-02 7.20e-02 1.49e-02* 1.24e-01 4.15e-01
F4 1.93e+00 1.89e+00 9.50e-02 2.15e-01 3.99e-02* 2.46e-01 8.67e-01
F5 -1.02e-14* -1.02e-14* -1.02e-14* -1.02e-14* -1.02e-14* -1.02e-14* 2.24e+00
F6 2.48e-01 7.58e-09* 1.53e-01 4.44e-01 9.16e-02 2.80e-01 1.60e+00
F7 6.12e-01 4.49e-09* 1.38e-01 6.98e-01 9.74e-01 2.04e-01 2.26e-01
F8 3.54e+00 5.29e-01* 1.47e+00 1.69e+00 1.40e+00 8.25e-01 1.50e+00
F9 3.85e+00 5.30e-01* 2.39e+00 3.78e+00 3.47e+00 1.76e+00 1.73e+00
F10 5.04e+02 2.61e-02* 2.88e+02 9.87e+02 8.43e+02 2.09e+02 2.06e+03
F11 2.37e+01 1.38e-03* 6.42e+00 3.54e+01 1.38e+01 8.07e+00 1.99e+01
F12 7.05e+00 1.71e+00* 7.48e+01 6.38e+01 5.73e+01 3.82e+02 5.78e+00
F13 3.76e+00 1.34e-03* 1.34e+01 1.15e+01 3.12e+01 8.34e+00 4.59e+00
F14 5.05e-04 9.94e-08* 3.14e-03 1.00e-02 9.80e-03 5.81e-03 2.90e-03
F15 3.11e+00 2.03e+00* 3.61e+00 1.12e+01 1.41e+01 5.78e+00 6.96e+00
F16 3.14e-01* 9.87e-01 4.66e-01 1.01e+00 1.59e+00 6.51e-01 5.98e-01
F17 6.24e-03 1.38e-04* 6.15e-02 4.27e-01 1.01e+00 1.40e-01 8.71e-02
F18 1.18e-01 2.24e-02* 3.31e-01 2.44e+00 2.43e+00 6.10e-01 2.72e-01
F19 1.77e-01 4.01e-01 3.83e-01 6.96e-01 6.36e-01 6.14e-01 3.04e-02*
F20 5.63e-01 2.48e-01 1.94e-01 4.80e-01 5.04e-01 1.68e-01* 8.66e-01
F21 2.35e+00 8.38e-01 6.50e-01 1.99e+00 2.80e+00 6.06e-04* 4.73e-01
F22 1.62e+00 1.09e+00 1.04e+00 2.78e+00 1.59e+00 1.49e-01* 2.32e+00
F23 9.93e-01 1.19e+00 1.00e+00 8.84e-01* 9.60e-01 9.06e-01 9.33e-01
F24 9.81e+00 9.76e+00 1.11e+01 1.21e+01 1.08e+01 1.21e+01 7.71e+00*

Table 5: Average Fbest − Fopt of techniques for dim = 5

GACE DE GGA Grid Hill Ring PRCGA
F1 0.00e+00* 8.36e-09 1.82e-03 1.42e-03 1.68e-04 1.05e-02 4.21e-06
F2 1.53e-05 8.27e-09* 1.36e+01 1.65e+01 1.30e+01 4.27e+01 1.07e-01
F3 3.02e+00 1.12e+00 6.38e-01 1.09e+00 8.14e-02* 2.54e+00 1.54e+00
F4 7.88e+00 3.08e+00 1.27e+00 1.74e+00 2.65e-01* 4.08e+00 2.47e+00
F5 5.95e-13 5.86e-15* 5.86e-15* 5.86e-15* 5.86e-15* 5.86e-15* 9.52e+00
F6 3.10e+00 1.06e-02* 1.36e+00 5.17e+00 2.49e+00 4.48e+00 1.76e+00
F7 2.18e+00 1.82e-01* 2.33e+00 7.08e+00 6.11e+00 3.23e+00 4.08e+00
F8 9.58e+00 2.38e+00 1.48e+01 2.23e+01 2.13e+00* 1.02e+01 1.12e+01
F9 2.52e+01 5.53e+00 1.15e+01 7.33e+01 5.55e+01 1.27e+01 4.76e+00*
F10 3.55e+03* 1.31e+04 4.47e+03 1.81e+04 1.84e+04 6.61e+03 6.40e+03
F11 4.64e+01 8.39e+01 3.15e+01* 9.79e+01 6.87e+01 4.26e+01 4.00e+01
F12 3.13e+00* 1.91e+02 1.28e+03 2.17e+03 1.33e+03 1.17e+04 1.71e+01
F13 6.17e+00 2.38e+00* 1.73e+01 3.65e+01 1.80e+01 3.93e+01 1.15e+01
F14 3.60e-03 7.49e-04* 1.61e-02 2.70e-02 1.44e-02 3.24e-02 4.54e-03
F15 6.79e+00* 3.85e+01 2.27e+01 5.93e+01 7.61e+01 3.87e+01 1.28e+01
F16 1.44e+00* 1.01e+01 2.40e+00 6.39e+00 6.28e+00 3.41e+00 2.43e+00
F17 1.50e-02 2.98e-03* 2.89e-01 3.11e+00 3.25e+00 9.11e-01 2.75e-01
F18 1.82e-01* 4.22e-01 1.32e+00 1.06e+01 1.61e+01 3.11e+00 1.09e+00
F19 1.27e+00 2.81e+00 2.37e+00 3.46e+00 3.21e+00 3.00e+00 3.30e-02*
F20 1.29e+00 3.55e-01* 5.16e-01 7.17e-01 6.65e-01 7.13e-01 1.30e+00
F21 3.74e+00 2.77e+00 1.92e+00 6.03e+00 1.48e+01 4.36e-01* 4.01e+00
F22 7.80e+00 2.21e+00 4.22e+00 1.47e+01 6.59e+00 7.51e-01* 4.79e+00
F23 1.66e+00 1.90e+00 1.41e+00 1.47e+00 1.32e+00* 1.38e+00 1.45e+00
F24 3.56e+01 5.03e+01 4.67e+01 6.39e+01 5.59e+01 5.56e+01 2.93e+01*

Table 6: Average error of techniques for dim = 10

PRCGA improves its performance to 6 out of 24 best values. The proposal
in this case improves as well, obtaining one of the best results in 14 out of 24
functions, and the best so far in 6, being the second best technique for this
value of the dimension. Focusing in the best techniques in this dimension, DE
and the proposal, the first one obtains the most of its best values in Low and
moderate type functions, while the proposal gets again the best results in Multi-
modal with adequate global structure functions as well as in 4 of the 5 High
conditioning and unimodal functions.

For experimentation with functions with dim = 20, the best techniques are
GACE and PRCGA, with, respectively, 18 and 9 out of 24. In this case, GACE
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GACE DE GGA Grid Hill Ring PRCGA
F1 5.13e-05 8.62e-06* 2.65e-02 2.12e-02 1.33e-03 2.56e-01 1.82e-04
F2 1.13e-02* 3.94e-02 1.10e+02 2.23e+02 6.54e+01 8.76e+02 3.16e+01
F3 9.87e+00 9.45e+01 5.71e+00 7.61e+00 8.55e-01* 2.33e+01 6.20e+00
F4 2.63e+01 9.07e+01 9.90e+00 1.09e+01 1.53e+00* 3.34e+01 1.20e+01
F5 2.85e-09 -3.61e-15* 6.46e-14 6.46e-14 6.46e-14 6.46e-14 1.19e+01
F6 1.47e+01* 1.80e+02 1.49e+01 4.60e+01 2.66e+01 6.66e+01 2.57e+01
F7 1.32e+01 2.13e+01 1.22e+01* 4.14e+01 3.38e+01 2.79e+01 1.72e+01
F8 2.64e+01 2.59e+01* 7.72e+01 9.49e+01 4.80e+01 8.26e+01 6.46e+01
F9 3.66e+01 2.81e+01* 5.29e+01 9.44e+01 7.62e+01 1.01e+02 4.03e+01
F10 3.54e+04 3.27e+05 4.26e+04 8.23e+04 4.28e+04 4.68e+04 3.11e+04*
F11 8.86e+01* 2.46e+02 9.76e+01 2.04e+02 2.21e+02 1.51e+02 9.04e+01
F12 3.13e+02 3.89e+02 2.46e+04 1.90e+04 1.42e+03 2.60e+05 1.10e+02*
F13 2.16e+01 1.27e+01* 6.67e+01 6.10e+01 2.46e+01 1.49e+02 2.19e+01
F14 1.31e-02* 2.33e-02 5.25e-02 6.40e-02 2.65e-02 3.05e-01 1.88e-02
F15 2.11e+01* 1.47e+02 9.16e+01 2.29e+02 2.61e+02 1.48e+02 4.26e+01
F16 2.53e+00* 2.88e+01 7.73e+00 1.36e+01 1.35e+01 1.09e+01 5.45e+00
F17 1.75e-01* 5.70e-01 6.69e-01 8.13e+00 1.12e+01 3.29e+00 7.40e-01
F18 8.47e-01* 5.39e+00 4.76e+00 2.91e+01 4.24e+01 1.20e+01 2.70e+00
F19 2.90e+00 6.21e+00 5.24e+00 7.78e+00 7.35e+00 6.74e+00 2.06e-01*
F20 2.29e+00 2.66e+00 9.07e-01 1.17e+00 8.82e-01* 1.44e+00 1.63e+00
F21 4.61e+00 5.73e+00 5.01e+00 1.20e+01 1.86e+01 1.54e+00* 1.12e+01
F22 9.15e+00 8.80e+00 7.55e+00 2.38e+01 1.31e+01 3.33e+00* 7.93e+00
F23 2.43e+00 3.45e+00 2.66e+00 2.42e+00 2.10e+00* 2.51e+00 2.42e+00
F24 1.45e+02 1.60e+02 1.51e+02 2.38e+02 2.51e+02 2.07e+02 1.11e+02*

Table 7: Average error of techniques for dim = 20

obtains 14 out of 18 of its best values in Low or moderate conditioning, High
conditioning and unimodal, and Multi-modal with adequate global structure
type functions, while PRCGA obtains 8 of its 9 best values in High conditioning
and unimodal, and Multi-modal with adequate global structure type functions.
The difference between GACE and DE in terms of the number of their good
results has increased over the previous dimension. For this value of dimension,
DE obtains only 7 out of 24 best values, where 5 of them are the best so far.
In the case of Grid and Ring, they still obtain the worst results. Also, the
proposal reaches the best value so far in 8 functions, and one of the two best
values in at least one function of each type.

GACE DE GGA Grid Hill Ring PRCGA
F1 3.98e-08* 7.33e+00 4.25e-01 2.62e-01 1.17e-02 3.93e+00 7.27e-03
F2 8.52e+00* 3.12e+04 2.26e+03 2.71e+03 6.74e+02 2.35e+04 8.04e+01
F3 4.31e+01 3.98e+02 4.21e+01 3.99e+01 7.13e+00* 1.43e+02 4.51e+01
F4 6.65e+01 6.83e+02 5.77e+01 6.27e+01 1.12e+01* 2.05e+02 7.83e+01
F5 2.46e-01 1.34e-14* 1.34e-14* 1.34e-14* 1.34e-14* 1.34e-14* 3.99e+01
F6 6.77e+01* 3.44e+03 1.35e+02 4.42e+02 1.56e+02 3.95e+02 1.06e+02
F7 3.97e+01* 4.92e+02 9.57e+01 1.70e+02 1.57e+02 1.56e+02 6.61e+01
F8 5.44e+01* 3.39e+03 2.59e+02 2.45e+02 1.06e+02 8.31e+02 1.82e+02
F9 4.28e+01* 2.88e+03 2.48e+02 4.33e+02 9.38e+01 1.04e+03 1.89e+02
F10 1.12e+05* 2.94e+06 1.76e+05 3.73e+05 1.54e+05 4.18e+05 1.24e+05
F11 1.90e+02* 7.06e+02 2.91e+02 4.86e+02 4.56e+02 3.51e+02 1.99e+02
F12 5.44e+02* 2.44e+07 4.22e+05 3.36e+05 3.29e+04 5.40e+06 8.63e+03
F13 7.06e+01 9.69e+02 2.25e+02 1.90e+02 5.79e+01* 5.89e+02 9.96e+01
F14 2.65e-02* 1.91e+01 3.40e-01 2.54e-01 5.57e-02 4.02e+00 8.27e-02
F15 8.99e+01* 6.04e+02 2.96e+02 7.58e+02 8.44e+02 5.81e+02 1.47e+02
F16 1.05e+01 4.48e+01 1.52e+01 2.67e+01 2.40e+01 2.29e+01 9.34e+00*
F17 1.99e-01 7.75e+00 1.79e+00 1.34e+01 2.11e+01 7.84e+00 1.49e+00*
F18 1.01e+00* 3.01e+01 8.69e+00 5.14e+01 7.92e+01 2.73e+01 5.98e+00
F19 5.90e+00 9.50e+00 8.02e+00 1.29e+01 1.16e+01 9.68e+00 2.50e-01*
F20 3.14e+00 8.55e+01 1.57e+00 1.52e+00 8.77e-01* 2.89e+00 1.81e+00
F21 5.98e+00 4.82e+01 6.35e+00 7.15e+00 1.69e+01 5.27e+00 4.95e+00*
F22 7.83e+00 3.91e+01 9.00e+00 2.30e+01 1.74e+01 5.43e+00* 9.49e+00
F23 4.06e+00 5.97e+00 4.24e+00 3.33e+00 2.99e+00* 3.66e+00 4.39e+00
F24 3.87e+02 6.36e+02 3.80e+02* 7.68e+02 8.19e+02 6.18e+02 4.42e+02

Table 8: Average error of techniques for dim = 40
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GACE DE GGA Grid Hill Ring PRCGA
Rankdim=5 3.69 2.44 3.60 5.5 4.81 3.83 4.12
Rankdim=10 3.19 3.02 3.23 5.85 4.60 4.69 3.42
Rankdim=20 2.46 4.21 3.5 5.35 4.46 5.12 2.89
Rankdim=40 2.08 6.33 3.54 4.71 3.75 4.71 2.87
Rankall 2.85 4 3.47 5.35 4.41 4.59 3.33

Table 9: Friedman test results for each dimension

Finally, for dim = 40 functions, the techniques that obtain the worse values
are Ring and GGA, each with 3 out of 24, and DE, with only one best value.
Grid obtains four best values while Hill obtains better results than it did for
dim = 20, with 9 of 24 functions. This time, GACE is the best technique,
with one of the two best values in 19 out of 24 functions (12 best values so far),
followed by PRCGA with 13 bold values. The most part of these values are
obtained, in the case of the proposal, in the same type functions than in the
previous dimension. The same occurs for PRCGA technique.

To sum up, in a total of 96 studied cases, GACE obtains one of the two best
values in 62 cases, while it reaches the best value so far in 29. The second best
technique is DE with one result between the best ones in 37 of 96 cases, and
with the best so far in 28.

To assess whether the differences in performance observed in the previous
tables are significant or not, the use of statistical tests is necessary. Two sta-
tistical tests have been performed, following the guidelines proposed in Derrac
et al. (2011).

First of all, the Friedman test (Derrac et al., 2011) has been applied to check
whether there are significant differences between the seven methods compared.
Table 9 shows the mean ranking provided by this non-parametric test for each
algorithm in each dimension, and globally over all dimensions. The smaller the
rank is, the better.

The proposal obtains the best ranking in dim = 20 and dim = 40, and
in terms of Rankall, where all dimensions are taking into account. The differ-
ence between the proposal’s ranking and the different algorithms is bigger when
the dimensions value is high, and, therefore, the complexity of the problem, is
increased.

Holm’s (Holm, 1979) and Finner’s (Finner, 1993) post-hoc tests have also
been applied to the results obtained by the Friedman procedure using DE as
control method in dim = {5, 10}, and the proposal in the rest of dimensions.
Table 10 shows the adjusted p-values returned by the tests of Holm and Finner
for each dimension and technique. These values are rounded to three decimals.
In order to highlight the significant differences, those p-values lower than 0.05
are in bold.

Globally, GACE is significantly better than all the methods except one,
PRCGA. In this case, although the difference are not significant, the confidence
level is still high, concretely, 88%. Looking at the results in each dimension,
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dim = 5 dim = 10 dim = 20 dim = 40 Global
Holm Finner Holm Finner Holm Finner Holm Finner Holm Finner

GACE 0.09 0.054 1.577 0.799 DE 0.015 0.007 0 0 0.001 0
GGA 0.09 0.061 1.577 0.799 GGA 0.189 0.113 0.039 0.023 0.097 0.058
Grid 0 0 0 0 Grid 0 0 0 0 0 0
Hill 0.001 0.001 0.062 0.022 Hill 0.005 0.003 0.022 0.011 0 0
Ring 0.076 0.037 0.038 0.022 Ring 0 0 0 0 0 0

PRCGA 0.027 0.013 1.577 0.673 PRCGA 0.483 0.483 0.204 0.204 0.128 0.128

Table 10: Holm and Finner statistics for each dimension and technique

when dim = 5, DE improves significantly to Grid, Hill and PRCGA. For
dim = 10, Finner’s test indicates that DE improves significantly Grid, Hill
and Ring methods, while, according to Holm, the proposal only improves Grid
and Ring. Finally, for dim = {20, 40}, both tests indicate that GACE improves
significantly all the methods in dim = 20, except PRCGA, where, for dim = 40,
the values of GACE and PRCGA are closer to each other, being that the only
method the proposal does not improve.

6. Conclusions

In this paper, a combination of a Genetic Algorithm (GA) and a Cross
Entropy (CE) method for continuous optimization was presented.

The development of this algorithm have been motivated by the aim of com-
bine the exploration ability of a GA with the exploitation ability of the CE in
order to solve the lacks both algorithms have. Besides, it is the first time GA
is combined with CE for this kind of problems.

The method divides the population into two sub-populations. In one of
them, a GA is applied while in the other one, the CE method is executed. After
that, both resulting sub-populations are joined, and they replace the current
population. A total of 24 functions have been obtained from Black-Box Opti-
mization Benchmarking (BBOB), of different types: from separable functions
to multi-modal ones.

First, a study to determine the population size was made. With the conclu-
sions obtained, an experiment to determine the value of GA percentage in order
to determine the amount of GA and CE individuals in each sub-population was
made. In addition, for the CE part, the amount of individuals necessary to up-
date the means and standard deviations had to be defined. After studying the
different combinations of these parameters, it resulted that good performance
was obtained for low values of these parameters. These values were then em-
ployed in a comparison with several standard algorithms in the literature. The
proposal obtained at least one of the two best values in 62 of 96 cases of study.

These conclusions were supported by statistical tests such as Friedman’s,
where the proposal reaches the best ranking in larger dimensions. Also, the
tests of Holm and Finner have been used in order to see if the results of the
experimentation are significantly different from those obtained by the literature
algorithms.
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As experimentation shows, the number of best values increased with larger
dimensions. One of the limitations found during the experiments was the poor
performance in low dimensions when the proposal is compared with algorithms
asDE in the same dimensions. Since the proposal is a population-based method,
when number of individuals is low, diversity can be affected along the genera-
tions.

In future research, real-world functions can be used in order to determine
whether the proposal provides good results in these cases with the parameters
obtained in this study. In addition, the use of more dimensions, up to 40, or
down to 5, can be studied. Another suggestion can be the adaptation of the pro-
posal to multi-objective functions, using each sub-population for one objective.
Improve the performance in low dimensions, and a study about the diversity in
both sub-populations can be taken into account for future works. Additionally,
the adaptive selection of the parameters for each part of the algorithm by means
of co-evolution, that is, evolving the parameters together as a part of the chro-
mosome, can be interesting research line to explore. Finally, the comparative
with other methods such as CMA, NSGA-II or memetic algorithms can be taken
into account for future works.

Appendix A. Benchmark Function Formulas

Each table shows each function type, the functions of that type, and its
mathematical form in order to help with its understanding. About variables
zi, si, z and others which appear in the most of the functions, they have its
value in the documentation that the reader can find in the link below 3.

Name Formula
Sphere F1(x) = x− xopt + Fopt

Ellipsoidal F2(x) =
∑D

i=1 106
i−1
D−1 z2i + Fopt

Rastrigin F3(x) = 10
(
D −

∑D
i=1 cos(2πzi)

)
+ ||z||2 + Fopt

Bche-Rastrigin F4(x) = 10
(
D −

∑
i = 1Dcos 2πzi

)
+
∑
i = 1D + 100fpenx+ Fopt

Linear Slope F5(x) =
∑
i = 1D5|si| − sizi + Fopt

Table A.11: Separable functions: Names and formulas.

3http://coco.gforge.inria.fr/lib/exe/fetch.php?media=download3.6:bbobdocfunctions.pdf
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Name Formula

Attractive Sector F6(x) = Tosz
(∑

i = 1D(sizi)
2
)0.9

+ Fopt

Step Ellipsoidal F7(x) = 0.1max
(
|z1 |
104 ,

∑
i = 1D102

i−1
D−1 z2i

)
+ fpen(x) + Fopt

Rosenbrock , original F8(x) =
∑D−1

i=1

(
100(z2i − zi+1)2 + (zi − 1)2

)
+ Fopt

Rosenbrock , rotated F9(x) =
∑D−1

i=1

(
100(z2i − zi+1)2 + (zi − 1)2

)
+ Fopt

Table A.12: Low or Moderate conditioning functions: Names and formulas.

Name Formula

Ellipsoidal F10(x) =
∑D

i=1 106
i−1
D?1 z2i + Fopt

Discus F11(x) = 106z21 +
∑D

i=2 z
2
i + Fopt

Bent Cigar F12(x) = z21 + 106
∑D

i=2 z
2
i + Fopt

Sharp Ridge F13(x) = z21 + 100
√∑D

i=2 z
2
i + Fopt

Different Powers F14(x) =

√∑D
i=1 |zi|

2+4 i−1
D−1 + Fopt

Table A.13: High conditioning and unimodal functions: Names and formulas.

Name Formula

Rastrigin F15(x) = 10
(
D −

∑D
i=1 cos(2πzi)

)
+ ||z||2 + Fopt

Weirstrass F16(x) = 10
(

1
D

∑D
i=1

∑11
k=0

1
2

k
cos(2π3k(zi + 1

2 ))− f0
)3

+
10
D fpen(x) + Fopt

Schaffers F7 F17(x) =
(

1
D−1

∑D−1
i=1

√
si +

√
si sin2(50s

1/5
i )

)2
+ 10fpen(x) + Fopt

Schaffers F7,
moderately ill-
conditioned

F18(x) =
(

1
D−1

∑D−1
i=1

√
si +

√
si sin2(50s

1/5
i )

)2
+ 10fpen(x) + Fopt

Composite
Griewank-
Rosenbrock

F19(x) = 10
D−1

∑D−1
i=1

(
si

4000 − cos si
)

+ 10 + Fopt

Table A.14: Multi-modal with adequate global structure functions: Names and formulas.
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Name Formula

Schwefel F20(x) = − 1
D

∑D
i=1 zi sin(

√
|zi|) + 4.189828872724339 +

100fpen( z
100 ) + Fopt

Gallagher’s Gaus-
sian 101-me Peaks

F21(x) = Tosz
(
10−max101

i=1 wi exp
(
− 1

2D (x− yi)TRTCiR(x− yi)
))2

+
fpen(x) + Fopt

Gallagher’s Gaus-
sian 21-hi Peaks

F22(x) = Tosz
(
10−max21

i=1 wi exp
(
− 1

2D (x− yi)TRTCiR(x− yi)
))2

+
fpen(x) + Fopt

Katsuura F23(x) = 10
D2

∏D
i=1

(
1 + i

∑32
j=1

|2jzi−[2jzi]|
2j

) 10
D1.2

− 10
D2 + fpen(x)

Lunacek bi-
Rastrigin

F24(x) = min
(∑D

i=1 (x̂i − µ0)2, dD + s
∑D

i=1 (x̂i − µ1)2
)

+

10
(
D −

∑D
i=1 cos (2πzi)

)
+ 104 + fpen(x)

Table A.15: Multi-modal with weak global structure functions: Names and formulas.
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