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Abstract: This paper is focused on a decentralized ITS with distributed intelligence based on
classification techniques. The rationale behind this architecture is to offer a fully distributed,
flexible and scalable system. The architecture encompasses the entire process of capture and
management of available road data, enabling the generation of services to promote transportation
efficiency. Besides that, thanks to the embedded classification techniques, the system is capable
of predicting and reacting to certain events, facing them in an appropriate way. The aim of this
work is to demonstrate how the system works in two different real-world use cases. To achieve
this objective, how the architecture acts to deal with some incidences is proven. Additionally,
both use cases serve to show the effective communication between the different components of
the system. Besides this, this work demonstrates the fundamental role played by the artificial
intelligence techniques working in the system. The well-known C4.5 algorithm has been used
for the accurate prediction of traffic congestion and pollution level. We explain in this work the
reasons for using this classification technique, and the previous experiments performed.

1. Introduction

The architecture of classical Intelligent Transportation Systems (ITS) [1] is purely hierarchical,
with sensed data flowing from the leaves (i.e. road-side or vehicle-installed sensors) to the root (i.e.
the traffic management centre) [2]. Usually, this kind of approach presents some disadvantages,
showing a lack of flexibility and scalability in supporting an incremental growth of ITS elements
[3]. This traditional approach also exhibits latency and availability issues because all sensor data
has to be communicated back and forth to the central management centre, thereby turning it into a
single point of failure. For these reasons research activities in ITS have changed the vision behind
the definition of new architectures [4], switching from the hierarchical and vertical approach to a
new vision, which is more horizontal and distributed [5].

In Cooperative ITS (C-ITS), vehicles communicate with each other and with the road
infrastructure without the involvement of a central server, thus removing this bottleneck while
maintaining the reliability of information about the vehicles, their location and the road
environment.

Research projects such as CVIS [6] or Compass4D [7] have adopted and developed this strategy
to achieve cooperativeness. In these architectures, all the agents involved (vehicles, roadside
infrastructures, central systems, personal devices, etc.) are seen as nodes belonging to a common
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network. Projects like Coopers, Safespot [8] and COMeSafety2 [9] use this approach to increase
road safety through direct communication between vehicles (C2C).

The DRIVE C2X European project [10] is another example of recent implementations of C-ITS
architectures, establishing a common reference system for C2X communications and performing
successful large-scale field tests. These projects have developed and demonstrated both the
supporting technology and numerous applications for cooperative infrastructures involving two-
way communication of data between vehicles and road networks.

This work is focused on a fully distributed architecture to enable cooperative sensing and
management in ITS environments. The system encompasses the entire process of capture and
management of available road data, enabling the generation of services to promote transportation
efficiency. In addition, thanks to the embedded artificial intelligence, the system is able to predict
and react to certain incidents and events, giving an appropriate solution in a reasonable time.
Specifically, in this work, that artificial intelligence will be composed of classification techniques.
The feasibility of this architecture has been proven within the participation in the ICSI European
project1 developing a reference end-to-end implementation targeted to both urban and highway
scenarios. This participation is described in this paper. The main idea behind the project relies
on a local distributed intelligence, operating on a limited geographical scale, where data is timely
distributed and processed without the need to contact a central subsystem.

In this document, a description of the overall system architecture is provided. Furthermore, the
way how the intelligence and the sensed-data are provided is explained. The main contribution
of this work is the practical application of the recently proposed system to two different real
world scenarios. Both scenarios are related with the prediction of traffic data, the first one with
traffic congestion in a highway and the second one with the pollution level prediction in a city.
Additionally, for the prediction the well-known C4.5 classification has been used [11]. Besides
that, the performed demonstration environment is also detailed in this work. This environment
counts with a web application which is capable of displaying the complete operation of the system
in a real scenario simulated in a laboratory. Thanks to this platform, it can be seen how the
architecture predict and face certain events and incidents.

The remainder of this paper is structured as follows. In the following section (Section 2), a brief
description of the architecture is performed. In Section 3 two of the most important components
of the architecture are described, which are responsible of distributing all the information through
the architecture. In Section 4 the proposed real scenarios are deeply described, followed by the
used technique for the prediction (Section 5). Additionally, the experimentation carried out in
this scenarios using real data is described in Section 6. After that, the developed demonstration
environment is presented in Section 7. Finally, conclusions and future work are explained in
Section 8.

2. Global system architecture

As has been mentioned in the introduction, a fully distributed architecture is used in this work,
which provides an added value to improve transportation efficiency. This architecture has been
recently presented by Moreno et al. in [12], and it is designed with the aim of enabling cooperative
sensing and management in ITS environments. In this cooperative architecture, the intelligence is
distributed over some elements of the infrastructure, which host a software platform for running
ITS applications. Communication with the remote centres happens only for the transmission of

1ICSI: Intelligent cooperative sensing for improved traffic efficiency, http://www.ict-icsi.eu/
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Fig. 1. Global system architecture. TMC: Traffic Management Centre, VS: Vehicular Subsystems,
PS: Personal Subsystems, RS: Road-side Subsystems.

aggregated data for long-term operations (e.g., data mining, software upgrades, and logging).
Moreover, real-time data is processed and stored locally in the system infrastructure, nearby the
source of the events.

The architecture relies on a local distributed storage and artificial intelligence methods (in
this work, classification techniques), which operates on a limited geographical scale. Data are
distributed and processed in real-time without contacting the control centres. Additionally, sensed
data are treated in a cooperative way performing content aggregation and integration since the
earliest stages. Two concepts are defined to achieve distributed intelligence and cooperative
sensing: the gateways (GW) and the Local/Global areas.

On the one hand, GWs are physical entities that implement the reference architecture, the Data
Distribution Platform (DDP) and the Collaborative Learning Unit (CLU). GWs are able to join
Local/Global Areas, and they are connected to different subsystems. Additionally, they analyze the
information gathered and determine the best traffic strategies for dealing with roadway incidents,
enhancing the scalability of the system and overcoming the weakness of centralized approaches.

On the other hand, a Local/Global area is composed by a set of GWs (at least one),
communications among them (when multiple gateways are present), and a criteria to define the
area perimeter (e.g. based on the density of population, traffic, ICT elements, etc.).

Once described these two components, it is interesting to highlight the capacity of the system
to properly scale. Thanks to the decentralized nature of the architecture, the addition of new GWs,
sensors of Local areas only implies their addition to the Traffic Management Centre.

Finally, in order to facilitate understanding of the system, a logical view of the architecture
is shown in Figure 1, which depicts the previously introduced concepts. Furthermore, Figure 2
shows how the different components of the system are connected. For the correct comprehension
of this figure, it should be introduce the concept of connectors, which are used to extend the GW
interoperability via interface integration with external subsystems and technologies. Additionally,
ITS applications are high level services or end-user applications which implement travel and
models to respond to roadway incidents. Lastly, external components are software components
running in the same OS, and which are required by other elements to work properly.
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Fig. 2. Relation of the different components of the system

3. Distributed intelligence through CLUs

The two key elements of the architecture are the DDP and the CLUs. On the one hand, the DDP
is responsible for providing the mechanisms for the communication between the different layers
using a publisher/subscriber events-based architecture. In this way, other software components
would only have to be concerned to inform the DDP about the events in which they are interested,
according to their services. Therefore, the DDP considers these subscriptions to decide who has to
redirect messages to the interested components, inside the Local Area or in other Local Areas.

Furthermore, CLUs are able to learn from each situation in order to provide different actions
plans in real time depending on the events and the state of the infra-structure reported by the
deployed Wireless Sensor Networks and Vehicular Networks. Since CLUs act in real time, they
are constantly waiting to receive data from the available sensors and networks, and they decide
every time they receive new data.

CLUs are responsible for responding to incidents that arise on the road, such as accidents,
delays, CO2 levels, etc. As the situations that may occur are rich and varied, services implemented
by the CLU will have different behaviours. These behaviours are dynamically adjusted based on
the learning capabilities provided by artificial intelligence techniques integrated in the CLUs, such
as metaheuristics, classification or machine learning methods.

One of the main challenges of a CLU is to develop stable and distributed algorithms based
on probabilistic reasoning and not requiring very high computational resources. The CLU has to
implement some techniques to solve the different problems that could appear. These problems and
techniques have been categorized in Table 1 according with the role of the CLU and the kind of
problem. It is noteworthy that these problems are the ones addressed in ICSI project.

Despite the system contemplates contingency plans to solve other problems (Section 4 and
Section 7), this work is focused in problems related with prediction (Section 5 and Section 6).
This category contains all problems and techniques that estimate the probability of some event
to appear, like congestion and high pollution levels. These prediction problems use classification
techniques to solve them. As shown in Table 1, the prediction problems could be faced with the
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Table 1 Different problematic being faced by CLU

Category Problems Faced Techniques

Routing
Alternative routes Genetic Algorithms
Alternative transport Fuzzy Decision Support Systems
Route guidance and emergency support Probabilistic Models

Regulation
Ramp-metering algorithms Fuzzy Control
Access to pollution-monitored area Hybrid Models

Particle Swarm Optimization

Prediction
Level of congestion Probabilistic Models
Travel time for vehicles Bio-inspired optimization
Pollution Time-series predictions

Monitoring
State of traffic Particle filters
Free parking slots I2V Communications
Incidents

use of probabilistic models, bio-inspired optimization and time-series prediction. In this paper,
classification techniques have been used to address two different scenarios related with congestion
and pollution prediction.

4. Description of the test scenarios

This section presents the process followed with the aim of testing the CLU functionality using real
data coming from predefined ICSI scenarios. Two scenarios have been selected, corresponding to
the two field trials scheduled to take place in Lisbon (Portugal) and Pisa (Italy).

The first scenario (Section 4.1) corresponds to a highway mobility environment. Real data about
the vehicles traffic flow in the A5 highway, connecting Lisbon to Cascais, has been incorporated to
the experimentation process in order to test the CLU in a context as close to the real one as possible.
Analogously, real data about the pollution levels in a restricted city area has been incorporated to
the second scenario (Section 4.2), simulating an urban mobility environment.

4.1. Highway Scenario in Lisbon, Portugal

The A5 highway of Lisbon is a 25 km (16 miles) long motorway which connects the capital city of
Portugal to Cascais. The motorway is also known as Estoril Coast Motorway. The first section of
this infrastructure was opened in 1944 (Lisbon - Estadio Nacional), becoming the first motorway
in Portugal and one of the firsts in the world. Nowadays, it is the most travelled motorway of the
country and one of the most congestion prone ones.

In this context, the proposed test scenario includes the implementation of these use cases:

• Alternative paths signaling / route guidance

• Monitoring of anomaly in traffic flows (congestion)

• Traffic jam / accident warning

• Road works warning

The architecture provides an in-route traveler information about traffic and road conditions
according to both static and dynamic rules based on real-time traffic. Warning notifications are
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Fig. 3. Highway scenario map, A5 Portugal, with an alternative route in case of abnormal traffic.

Gateway Data Model Data Source
GW1 Abnormal Traffic GW2
GW1 Congestion level GW1, GW2
GW2 Abnormal Traffic GW3
GW2 Congestion level GW2, GW3
GW3 Congestion level GW3
GW1,2,3 Vehicle Counter Traffic Sensors (GW1, 2, 3)

Table 2 Traffic Model set of rules for the urban scenario.

communicated in case of congestion due to the high flow of vehicles or accidents. The system
warns drivers coming to a traffic jam area and it is able to suggest alternative routes which may
enable the driver to go around congested roads.

The information on recommended routes may be provided via the highway traffic management
centre in order to maintain the overall traffic management in the area, or by the use of floating car
data collected by the system. Figure 3 shows a map of the highway scenario with the location, the
attached sensors and the area of influence of the deployed GWs on the road.

In this scenario, the tree different gateways have the same configuration. Thus, each GW is
configured to get Abnormal Traffic (e.g. accident or roads work warning) events from the next GW
on the road. Additionally, each GW also gets Vehicle Counter events. These events come from the
own GWs attached sensors and they are delivered to the CLU in order to detect congestion using
the implemented AI. If congestion is detected a Congestion Level event is launched. Each GW is
listening for Congestion Level events from itself and from the next GW on the road in order to act
with foresight and warn the drivers about expected traffic jumps. The characteristics of each GW
is represented in Table 2

For the demonstration, two sources of data have been used for this scenario. The first one is
data about incidents on the road, which is artificially generated for this demonstration. The second
source is the data gathered by sensors counting the number of vehicles. For this source, real data
coming from BRISA2 is used.

In this way, and based on the available data, the implemented CLU is able to alert the drivers
and/or the emergency services in case of incidents on the road, and predict the evolution of
congestion based on a big dataset of historical data.

2BRISA is a Portugal-based international transportation company. Its largest business area is highway management.
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4.2. Urban Scenario in Pisa, Italy

Pisa is a city in Tuscany, Central Italy, on the right bank of the mouth of the River Arno on the
Tyrrhenian Sea. It is the capital city of the Province of Pisa. Some city centre areas have a
controlled access through restricted traffic zones (RTZs) and Low Emission Zones (LEZ). These
RTZs are closed to non-residential vehicle traffic. Only city buses, taxis, residents with a valid
permit and other authorized vehicles (i.e. delivery vehicles, couriers, etc.), can drive there. The
boundaries of the zone are well marked. At the access points, special displays indicate if access is
authorized or not at that time. These access points are controlled by cameras and sensors.

Furthermore, LEZs are a way to reduce the pressure of non-residential traffic in highly touristic
destinations. The objective of LEZs is to control the pollution level in high congested and
populated zones.

In this context, the proposed test scenario includes the implementation of these use cases:

• Alternative transport services

• Monitoring and reduction of air pollution

• Alternative paths signaling / route guidance

• Cooperative parking slots monitoring

The system constantly monitors the pollution of the roads in the RTZ and LEZs of Pisa. When
it predicts that the level of pollution will exceed the threshold, the system suggests leaving the
car in the parking area and continuing the trip using alternative transport services. In addition, a
portion of the parking lot dedicated to private vehicles is monitored. The plan for the equipment
installation includes the deployment of 12 different sensors on 6 poles for monitoring up to 71
slots. Furthermore, flow monitoring is performed at the entrance of the city, measuring flows in
a location at about 1 km far from the parking lot. Figure 4 illustrates the performed installation
process. It should be born in mind that a photovoltaic panel has been installed in the top of each
pole. These panels provide the sensors with the energy they need to work properly.

(a) Example of installation of two sensors on
a single pole

(b) Mounting the sensor and the photo-
voltaic panel on the top of the pole

Fig. 4. Sensor installation for the urban tests

Besides that, figure 5 shows a map of the urban scenario with the location of the deployed GWs.
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Fig. 5. Urban scenario, location of the GWs.

Gateway Data Model Data Source
GW1,2 Pollution Level GW5
GW1,2 Parking Occupancy GW3
GW1,2 Parking Occupancy GW4
GW3 Parking Monitoring Parking Sensors (GW3)
GW4 Parking Monitoring Parking Sensors (GW4)
GW5 Pollution Pollution Sensors (GW5)

Table 3 Traffic Model set of rules for the urban scenario.

Five different GW are available in this scenario. On the one hand, GW3 and GW4 (receiving the
status of parking slots) and GW5 (receiving data about actual pollution) are configured to listen for
events coming from their own attached sensors. All these GWs calculate the Parking Occupancy
and predict Pollution Levels, and they publish the information to the DDP. On the other hand,
GW1 and GW2, located at the entrance of the city, are listening for these events in order to act
consequently, redirecting the drivers if necessary. Table 3 shows the characteristics of each GW of
this scenario.

For this urban scenario two sources of data have been used. The first one is the number of
free parking slots. In this case, and due to the lack of real data when implementing the scenario,
simulated data are generated. The second source is the data gathered by sensors of pollution in the
LEZ situated in the city centre. Real data coming from INTECS3 about pollution in the city of Pisa
is used here. As has been noted, and based on this data, the implemented CLU is able to know the
percentage of parking occupancy and to predict the evolution of pollution levels.

3INTECS is an Italian ICT Company focused in design and production of SW/HW electronic components, Software engineering and Quality
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5. Classification techniques

As has been said before, in this paper a classification technique has been used to perform two
different kinds of predictions: traffic congestion and pollution level. As can be logical, these
predictions have been conducted with the data obtained in the scenarios described in the previous
section.

The proper prediction of information related to the traffic (traffic congestion, pollution level,
incidents...) is an area which attracts considerable interest from researchers in the field of ITS.
This kind of predictions can lead to traffic managers and drivers to act in consequence, reducing so
the economic and social impact of a possible congestion. Due to the inter-urban traffic information
nature, the task of predicting the future state of the traffic requires, in most cases, search for non-
linear patterns in the input data.

Many different approaches can be used to perform an adequate prediction of traffic information.
As has been mentioned before, this study is focused in classification techniques. Classification
is a data mining trend which consists on mapping data into predefined groups or classes [13].
A classification method is a supervised learning method that requires labelled training data to
generate rules for classifying test data into predetermined groups or classes [14]. The goal of these
methods is to build a concise model of the distribution of class labels in terms of predictor features.
The resulting classifier is then used to assign class labels to the testing instances where the values
of the predictor features are known, but the value of the class label is unknown [15]. Some of
the most well-known classification technique are the artificial neural networks [16], support vector
machines [17], and decision trees [18]. These approaches have been used in many fields along the
history, such as geology [19], medical sciences [20] or computer sciences [21].

In the present work, predictions are performed with the C4.5 classification technique. The C4.5
is a well-known algorithm used to generate decision trees from a set of training data [11]. In this
sense, the decision tree is constructed top-down. In each step a test for the actual node is chosen
(starting with the root node), which best separates the given examples by classes. The objective of
this technique is to determine a decision tree that on the basis of answers to questions about the
input attributes predicts correctly the value of the target attribute. It is noteworthy that the C4.5
is an extension of the ID3 algorithm [22], and that it is used to overcome its disadvantages. The
improvements that the C4.5 offers comparing with the ID3 are the following ones:

• C4.5 accounts for unavailable or missing values in data.

• C4.5 handles continuous attribute value ranges.

• C4.5 chooses an appropriate attribute selection measure (maximizing gain)

• C4.5 prunes the result decision trees

Arguably, C4.5 is among the most popular of inductive inference algorithms, and it has been
successfully applied to a broad range of tasks, from learning to diagnose medical cases [23, 24] to
school performance prediction [25].

It should be highlighted that the choice of the C4.5 has not been arbitrarily done. For this choice
a preliminary experimentation has been performed with different classification techniques, using
some of the datasets that are explained in the following section [26]. In order not to increase the
extension of the paper too much, a small portion of this study is depicted, showing the performance
of six different classification techniques among 10 different datasets. In addition to the above
mentioned C4.5, five different additional techniques have been used for the experimentation.
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Table 4 Small portion of the preliminar tests. Results shown in terms of % matching over the test datasets.
Dataset C4.5 C-SVM PUBLIC TARGET SGERD DT-GA-C
CL 400 98.89 91.71 95.58 82.87 88.39 96.13
CL 600 92.26 83.97 86.74 74.58 79.55 87.84
CL 3600 93.92 90.05 92.81 79.00 80.66 93.37
CL 7100 96.13 93.37 90.60 82.87 79.00 95.02
CL 20900 91.16 81.21 92.26 80.66 79.00 90.05
LC 400 96.13 92.26 95.02 79.00 88.39 94.47
LC 600 86.74 74.03 89.50 70.71 76.79 85.08
LC 1505 94.47 93.37 94.47 76.24 87.84 94.47
LC 1980 93.90 93.07 92.79 91.68 75.90 93.90
LC 3600 97.23 90.05 94.47 82.32 87.84 96.68

These techniques are a C-Support Vector Machine (C-SVM) [27], PUBLIC decision tree, which
integrated building and pruning [28], TARGET decision tree [29], a Fuzzy Rule Based Steady-
State Genetic Algorithm (SGERD) [30], and a Hybrid Decision Tree-Genetic Algorithm (DT-GA-
C) [31].

It is noteworthy that KEEL4 framework has been used for these tests, using the default
parametrization for each technique. In Table 4 results obtained by all the techniques for the
mentioned 10 datasets are shown in terms of percentage matching over the test datasets. It should
be reminded that the datasets used in this preliminary study are drawn from the complete set
described in the following section (Section 6.1).

Looking at the results displayed in Table 4 can be seen how C4.5 clearly outperforms the other
alternatives. Anyway, two different statistical tests have been conducted with the results obtained
in order to obtain rigorous and fair conclusions. The guidelines given by Derrac et al. in [32] have
been followed to perform this statistical analysis. First of all, the Friedman’s non-parametric test
for multiple comparisons has been used to check if there are any significant differences among
all the techniques. As can be seen Table 5, the resulting Friedman statistic has been 43.028571.
Taking into account that the confidence interval has been stated at the 99% confidence level, the
critical point in a χ2 distribution with 5 degrees of freedom is 15.086. Since 43.028571>15.086,
it can be concluded that there are significant differences among the results reported by the five
compared algorithms, being C4.5 the one with the lowest rank. Finally, regarding this Friedman’s
test, the computed p-value has been 0.0.

To evaluate the statistical significance of the better performance of the C4.5, the Holm’s post-
hoc test has been conducted using C4.5 as control algorithm. The unadjusted and adjusted p-values
obtained through the application of Holm’s post-hoc procedure can be seen in Table 6. Analyzing
this data it can be concluded that C4.5 is significantly better than TARGET, C-SVM and SGERD
at a 95% confidence level, and better than PUBLIC and DT-GA-C.

Table 5 Average rankings returned by the Friedman’s non-parametric test
Algorithm Ranking

C4.5 1.3
C-SVM 3.9
PUBLIC 2.7
TARGET 5.7
SGERD 5.2

DT-GA-C 2.2

4http://www.keel.es/
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Table 6 Unadjusted and adjusted p-values obtained through the application of Holm’s post-hoc procedure using C4.5
as control algorithm.

Algorithm Unadjusted p Adjusted p
TARGET 0 0.000001
SGERD 0.000003 0.000013
C-SVM 0.001886 0.005659
PUBLIC 0.094264 0.188529
DT-GA-C 0.282059 0.282059

Table 7 Existing columns in received data.
Attribute Meaning
NAME Name of the station
PK Identifier
LANE Lane
DATE Date:YYYYMMDD
HOUR Hour of the day (integer)
TOTAL Total number of vehicles
CLASSE A Motorbikes counted
CLASSE B Cars counted
CLASSE C Trucks counted
CLASSE D Buses counted
CLASSE O Other vehicles counted

6. Experimentation

In this section the experimentation performed about the predictions described in the previous
section is shown. To perform these tests an Intel Core i5 2410 laptop, with 2.30 GHz and a
RAM of 4 GB has been used. As has been previously mentioned, the default parametrization
provided be KEEL has been used for the C4.5. This section is divided into two subsections, the
first one (Section 6.1) related with the first scenario, and the second one with the pollution scenario
(Section 6.2).

6.1. Experimentation with the first scenario

Data collected by sensors located in the A5 highway, connecting Lisbon and Cascais (Portugal)
were provided by BRISA. Data was referred to November 1st, 2014 to November 30th, 2014. In
order to make data suitable for its use by the learning algorithms, and with the aim of incorporating
them to the CLU, data was saved as a text file. Data contained the attributes explained in Table 7.

Is important to note that PK value codes both the position of the sensor measuring the pass
of vehicles, and the direction. PK can obtain the 12 different values listed in Table 8. Values
code the kilometric point, starting from Lisbon, in which the sensor station is located, as well
as the direction: C means Crescente, i.e. PK ascending direction (Lisbon to Cascais), D means
Decrescente (Cascais to Lisbon).

Moreover, since data is received lane by lane, aggregated data is needed to be extracted. For
this, the maximum LANE value for each one of the PK represents the total number of lanes. Here,
it is important to note that sensor stations count vehicles in both senses, so the process of separating
lanes from one direction from the other one was implemented.

In Figure 6 a visual example of this situation is represented. In this case, two possible sensor
station located at PK=X and PK=Y are represented. Both sensors monitor all the 4 lanes in the
road, but each one of them is in a side of the road (denoted by the DIRECTION). In this case, it
would be erroneous to use the sum of the four values measured by the station, since not all the
sensors are located in the same part of the highway. Instead of that, single sensors are separated in
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Table 8 Different values that the PK attribute can take.
ID Distance from Lisbon Direction
’A5 PK 0+400 C’ 400 m Lisbon-Cascais
’A5 PK 0+600 D’ 600 m Cascais-Lisbon
’A5 PK 1+505 D’ 1505 m Cascais-Lisbon
’A5 PK 1+980 C’ 1980 m Lisbon-Cascais
’A5 PK 3+600 D’ 3600 m Cascais-Lisbon
’A5 PK 4+000 D’ 4000 m Cascais-Lisbon
’A5 PK 6+800 C’ 6800 m Lisbon-Cascais
’A5 PK 7+100 D’ 7100 m Cascais-Lisbon
’A5 PK 8+050 C’ 8050 m Lisbon-Cascais
’A5 PK 9+400 D’ 9400 m Cascais-Lisbon
’PK20+900’ 20900 m Lisbon-Cascais
’PK22+600’ 22600 m Lisbon-Cascais

Fig. 6. Example scenario for lane conversion.

function of the real direction of the road in which they are located (not the one of the station), and
aggregated accordingly.

In this way, aggregated values are added to the dataset under the notation sum C{A,B,C,D,O}
(denoting CLASSE {A,B,C,D,O} respectively), and non-useful any more information is deleted.
Since each one of the sensors presented in Table 8 has been spliced depending on the direction of
the lanes, and then aggregated, 24 measure points are available.

With the aim of training (in a supervised way) the used C4.5, for each one of the measure points
a value of congestion predicted for the next hour is calculated as follows:

• LOW: the total number of vehicles counted is below the percentile 25 measured by the sensor.

• MEDIUM (MED): the number of vehicles is above percentile 25 but below percentile 50.

• HIGH: the total number of vehicles counted is above the percentile 50.

This criterion has been taken so that the congestion level is variable depending on the position
of the sensor. This approach allows the system to predict the congestion without the need of any
additional attribute, such as the speed limit. In this way, prediction can be made faster, and the
system can have a more efficient performance. Additionally, and thanks to this approach, we do
not need any initial configuration of the system. Furthermore, a manual setup can be made whether
it is necessary.

Once calculated that, the level of congestion reached in the following hour is added to the data,
resulting in the format presented in Figure 7.

Where values in the different columns represent:

• Day of the week [1,7]: Monday to Sunday.
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Fig. 7. Data format for its use by C4.5 technique.

• Hour [0,23]: Hour of the day.

• Sum CA [0,254]: Number of motorbikes counted during the last hour.

• Sum CB [43,3198]: Number of cars counted during the last hour.

• Sum CC [0,61]: Number of trucks counted during the last hour.

• Sum CD [0,27]: Number of buses counted during the last hour.

• Sum CO [0,554]: Number of other types of vehicles counted during the last hour.

• Total [49,3444]: Total number of vehicles counted during the last hour.

• Next level ({LOW,MED,HIGH}): Level of congestion achieved during next hour.

With all this, 23 datasets have been generated in overall to feed the C4.5 algorithm implemented
under the KEEL framework. Training and test partitions were done by using the 3 first weeks of the
month for building the models, as well as the last week to validate it (test partition). C4.5 returns
a tree formed by concatenated ifs that reach to the final state of congestion predicted. In Table 9 it
can be seen the percentages of success obtained by the trees generated for each one of the different
datasets. As can be seen in this table, in most of the cases, the accuracy in the prediction of the
level of congestion is above 95%.

Regarding runtimes, despite it is not a critical issue in this experimentation, it is interesting
to mention that every execution of the C4.5 needs less than a second to build a model. This
runtime is more than enough to permit the system work in a proper way. Additionally, every
dataset is composed by data obtained in one month. Although being sufficient for these scenarios,
a promising scalability of the technique could be expected.

It is important to highlight that the decision trees built by the C4.5 can be read by the CLU, in
order to execute its codified logic using the actual state of the road as input. Thus, it can to provide
predictions about the traffic density during the next hour.

6.2. Experimentation with the second scenario

In this scenario, data regarding pollution measurements in the city centre of Pisa were received
from INTECS. Files contained data regarding hourly measures for years 2012 and 2013. As in the
previous case, data was saved in a text format, in order to make it easier to automatically process.
For each measurement, 6 different values are used to feed the classification technique: day of the
week, hour, and one value for each kind of pollution measured (NO2, NO, NOX and O3). These
pollutions are measured in µg/m3 at 20◦C. Figure 8 shows the final data format used.

For this study, the levels of pollution are considered high in case three out of the four levels
overpass the percentile 66 of the measures. Additionally, levels are assumed medium when more
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Table 9 Results obtained by designed decision trees in prediction of the next level of traffic.

Dataset Number of leaf nodes in
the tree

Average deep of the
nodes

% of matching over the
training dataset

% of matching over the
test dataset

CL 400 17 5.58 97.59 98.89
CL 20900 28 5.89 97.22 91.16
CL 22600 9 4.44 97.03 95.02
LC 400 14 4.21 99.44 96.13
LC 600 22 6.22 94.44 86.74
LC 1505 8 3.25 97.59 94.47
LC 1980 3 1.66 93.24 93.90
LC 3600 16 4.50 98.14 97.23
LC 4000 3 1.66 92.96 92.79
LC 6800 14 4.50 99.44 97.23
LC 7100 18 6.16 94.81 90.60
CL 600 24 7.00 94.44 92.26
LC 8050 5 2.40 92.59 91.96
LC 20900 17 5.00 96.66 88.39
LC 22600 11 3.90 98.88 95.58
CL 1505 14 4.64 98.70 95.02
CL 1980 3 1.66 91.66 92.24
CL 3600 20 5.80 97.59 93.92
CL 4000 3 1.66 91.66 93.07
CL 6800 25 5.96 96.66 87.29
CL 7100 19 5.00 98.33 96.13
CL 8050 5 2.80 91.48 91.68
CL 9400 9 3.77 99.81 87.84

Fig. 8. Data format for its use by C4.5 technique.

than two levels overpass the percentile 33 of the registered measures. In any other case, the
pollution is considered low.

As has been pointed before, C4.5 has been used to build decision trees able to determine the
next value of pollution, given the current measures of data. For this case, 5 partitions were built
following the cross validation process: split the data in 5 pieces and use each one for testing the
solution, after training with the remaining 80%. Experimental results are presented in Table 10.
As can be seen in this table, in most of the cases, the accuracy in the prediction of the level of
congestion is about 75%. Regarding runtimes and scalability of the technique, same results and
conclusions explained in the previous scenario can be drawn.

As has been previously said, the decision trees generated by the C4.5 can be read by the CLU,

Table 10 Results obtained by designed decision trees in prediction of the next level of pollution.

Dataset Number of leaf nodes in
the tree

Average deep of the
nodes

% of matching over the
training dataset

% of matching over the
test dataset

Partition1 305 11.01 80.99 77.32
Partition2 353 11.44 83.58 72.22
Partition3 291 10.88 80.87 78.89
Partition4 323 11.22 82.91 73.88
Partition5 286 11.69 81.52 75.94
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Fig. 9. ICSI Demo Web application.

in order to execute its codified logic using the actual state of the road as input. In this way, it can
provide predictions about the level of pollution during the next hour. These predictions can be
useful for taking premature actions on the access to the restricted area.

7. Demostration

A working platform has been created for the demonstration, which is integrated into the software
architecture described in Section 2. This demonstration environment is composed of two main
elements: a web service, to manage the communication between the ICSI architecture and the
demo environment, and the ICSI Demo Web application. This web application (Figure 9) is able
to display the complete operation of the CLUs in a real scenario simulated in laboratory: from the
configuration of the CLUs and the generation and loading of the topology files, to the real-time
visualization of ICSI events that the application receives from the ICSI Demo Web Service. It
should be pointed that for the simulations performed, the data described in Section 4 have been
used.

The web manager is a Single Page Application developed in C# with a map-based interface
based on Google Maps API. The application is a RIA (Rich Internet Application) [33] and follows
MVC architecture. For the presentation layer design HTML5, CSS3 and client programming
languages like JavaScript, JQuery and Ajax have been used. A GUI has been also developed for the
topology management. Starting with an OSM (Open Street Maps) map data file, the user can set
the different elements of the topology and its position in a map enabling the easy replication of the
simulated scenario. After setting the scenario, the application starts listening via the provided Web
Service for ICSI event updates. Each time an event is received it is displayed in the corresponding
GW event list. An information box is also displayed with the actual value of the event data (i.e.
the received pollution value or an action message alerting the drivers about imminent congestion).

It is important to understand the contingency plans developed for both scenarios. These
contingency plans store information about the set of actions needed to implement the most accurate
solution to recover from a specific traffic condition. It establishes the actions to perform in the
reception of an event classifying it according to its severity.

Table 11 shows the set of rules that produce the contingency plan configuration file for the
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Table 11 Contingency Plan set of rules for the Highway scenario.
Gateway Received information Action
GW1,2,3 AbnormalTraffic = ACCIDENT Emergency Call. Alert drivers to drive carefully.
GW1,2,3 Vehicle counter + Historical info Set (predicted) Congestion Level
GW1,2,3 CongestionLevel = HIGH Alert drivers. Suggest alternative routes to avoid the traffic jam.

Table 12 Contingency Plan set of rules for the Urban scenario.
Gateway Received information Action
GW1,2 PollutionLevel == HIGH Reroute to parking. Extra info about public transport routes.
GW1,2 ParkingOccupancy == HIGH Reroute to the other parking area. Recommend the use of public transport.
GW3,4 Free parking slots Set Parking Occupancy.
GW5 Pollution data + Historical info Set (predicted) Pollution Level.

analysed highway scenario (Section 4.1). Each GW will continuously monitor Abnormal Traffic
events. In case of an accident, the GW makes an immediate emergency call to the medical services
indicating the position of the vehicle.

Regarding the Vehicle Counter event, the CLU receives the information from its attached
sensors and delegate to the C4.5, that uses historical information about congestion levels (described
in Section 6.1), to produce an event indicating the expected Congestion Level. These Congestion
Level events will be also received by the GWs coming from the next GWs on the road, so that the
GWs can inform drivers in advance in case of an expected traffic jam and provide alternative routes
accordingly.

Furthermore, Table 12 shows the set of rules that produce the contingency plan for the urban
scenario (Section 4.2). GW3 and GW4 continuously monitor the parking lots status, setting
the Parking Occupancy according to the total number of free parking slots. When the parking
occupancy is high (more than 90% of occupancy) the GWs send an event to the DDP. This Parking
Occupancy event is received by the GWs 1 and 2 so that the GWs can inform drivers providing
them alternative parking slots near their position and/or recommending commuting with public
transport.

Regarding the Pollution event, GW5 receives the information from its attached sensors
and delegate to the implemented C4.5, which use historical information about pollution levels
(described in Section 6.2) to produce an event indicating the expected Pollution Level. This
Pollution Level event is also received by the GWs 1 and 2 so that the GWs can inform drivers
in advance in case of an expected close of the LEZ providing alternative parking lots near their
position and/or recommending commuting with public transport.

8. Conclusions

In this paper, based on the ICSI European project, a decentralized ITS with intelligence based
on classification techniques has been presented. This architecture, with the participation of the
sensors, the DDPs, the CLUs and, finally, the ITS applications, encompasses the entire process
of capture and management of available road data, enabling the generation of services to promote
transportation efficiency.

In this research, how the architecture works in two different scenarios related with the prediction
of the traffic congestion and pollution is shown. These scenarios are based in real world situations,
the first one in Lisbon (Portugal), and the second one in Pisa (Italy). Additionally, the well-known
C4.5 algorithm has been used for the accurate prediction of the traffic congestion and the pollution
level.

16



Besides that, the developed demonstration environment has been presented. This environment
counts with a web application which is able to display the complete operation of the CLUs in a
real scenario simulated in a laboratory.

As future work, we have planned to perform a more complete simulation environment, which
will be able not only to offer services of prediction, but to provide services related with vehicle
routing optimization and regulation services. Additionally, it is planned to continue the work
described in this paper with the real trials which will be conducted in Lisbon and Pisa.

In this paper, prediction problems have been faced. In the near future, we have planned to
deal with vehicle routing optimization, where the authors of this study have a wide experience
[34, 35]. Currently, this field is one of the most studied ones in the scientific community. The
problems arisen in this field have a great scientific interest, since such NP-Hard problems present
a tough challenge to solve for the scientists. Furthermore, their social interest is also high, as their
applicability to real-world situations is great. Though some appropriate methods can be found in
the literature to address such complex problems, arguably the most successful techniques to solve
vehicle routing problems are the heuristics and metaheuristics. For this reason, as future work,
we will solve real-world routing problems, providing the existing CLUs with approaches such as
Genetic Algorithms [36] or Particle Swarm methods [37].
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