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Abstract. This paper shows the work done in the definition of a new hybrid 
algorithm that is based on two evolutionary techniques: simulated annealing 
and genetic algorithms. The new algorithm has been used to solve the problem 
of finding the optimal route for a bus in a rural area where people are 
geographically dispersed. The result of the work done is an algorithm that (in a 
reasonable time) is able to obtain good solutions regardless of the number of 
stops along a route. 
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1 Introduction 

Nowadays public transport systems have some drawbacks to meet the demand for all 
passengers. The most obvious one is the limitation of the resources. Although each 
transport system has its own characteristics, there are some limitations shared by all 
of them: the capacity of the vehicles, the frequency and schedules of the services, and 
the geographical area of coverage. As a result of this arises the concept of 
transportation on demand. This concept aims to adapt transportation systems to 
passenger demand in an efficient manner. Many of the techniques used to solve these 
problems do not yield an exact solution. This is because the types of problems to be 
solved are classified as NP-hard [1]. For this reason, heuristics techniques are used for 
obtaining good approximations. 

This paper is divided in 6 sections. Section 2 presents the main types of well 
known problems related to the work done. Section 3 illustrates the most commonly 
used strategies in the field of route optimization. Section 4 presents the approach 
followed to define our hybrid algorithm. Section 5 presents the results of the tests 
done to validate our algorithm and finally conclusions and future work is detailed. 



2  Transportation on demand 

Transportation-On-Demand (TOD) [2] is concerned with the transportation of 
passengers or goods between specific origins and destinations at the request of users. 
Most TOD problems are characterized by the presence of three often conflicting 
objectives: maximizing the number of requests served, minimizing operating costs 
and minimizing user inconvenience. As is common in many combinatorial 
optimization problems, these objectives are conflicting and it is needed to sort them 
by importance. 

2.1 Well know transportation problems 

Most of the problems arisen in transportation on demand topic have similar 
characteristics, which means that they can be framed as instances of other generic and 
well know problems. In this section, we present the most common traditional 
problems in the field of transportation on demand. 

Traveling Salesman Problem (TSP) [4]: The Travelling Salesman Problem 
(TSP) is an NP-hard problem in combinatorial optimization studied in operations 
research and theoretical computer science. Given a list of cities and their pair-wise 
distances, the task is to find a shortest possible tour that visits each city exactly once. 
This type of problem is used as a benchmark for many optimization algorithms. 

Vehicle Routing Problem (VRP) [5]: The vehicle routing problem (VRP) is a 
generalization of the TSP. The aim of the problem is to service a number of customers 
with a fleet of vehicles. Often the context of this type of problem is related to deliver 
goods located at a central depot to customers which have placed orders for such 
goods. Implicit is the goal of minimizing the cost of distributing the goods. Many 
variants of the VRP are described in the literature [6]. These problems include the 
addition of variables and constraints. One of the most popular variants includes time 
windows for deliveries. These time windows represent the time within which the 
deliveries (or visits) must be made. [7] 

Demand Responsive Transport (DRT): Demand Responsive Transport or 
Demand-Responsive Transit (DRT) or Demand Responsive Service is an advanced, 
user-oriented form of public transport. It is characterized by flexible routing and 
scheduling of small/medium vehicles operating in shared-ride mode between pick-up 
and drop-off locations according to passengers needs. DRT systems provide a public 
transport service in rural areas or areas of low passenger demand, where a regular bus 
service may not be economically viable. DRT systems are characterized by the 
flexibility of the planning of vehicle routes. These routes may vary according to the 
passenger’ needs in real time. This is the type of problem that we used to benchmark 
the algorithm proposed in this paper. 



3 Artificial intelligence techniques and algorithms 

In the literature we can find many attempts to find an exact solution to the problems 
explained in the previous section. For most routing problems is not possible to find 
the optimal solution, for that reason, there have been a number of strategies to find an 
acceptable solution, taking care of the basic criteria of the computational complexity: 
time needed to obtain the solution and consumption of computational resources. This 
section details the most commonly used techniques for solving the problems 
explained in the previous section. 

3.1 Local search algorithms 

Most of solution methods begin the resolution process by generating an initial 
solution that does not have to be correct. From this, and iteratively, these algorithms 
"search" for a better/good solution. These techniques use an objective function that 
measures the quality of the solutions obtained during the search process. In this scope 
we can find the local search techniques: 

Simulated Annealing [8]: This is one of the most popular local search techniques. 
It is based on the physical principle of cooling metal. Using that analogy, it generates 
an initial solution and the process proceeds by selecting new solutions randomly. The 
new solutions are not always better than the initial solution, but as time passes and the 
temperature decreases (the metal becomes stronger), each new solution must be better 
than previous solutions.  

Tabu search [9]: This technique is similar to Simulated Annealing, but with a 
different approach when selecting the successive solutions. In this case, several 
memory spaces are used, in which solutions found and discarded during the search 
process are stored. 

Ant Colony [10]: This algorithm simulates a colony of artificial ants working in 
groups and communicating through artificial pheromones trails. Each artificial ant 
builds a solution to the problem and the path to reach that solution. When all ants 
have completed a trip to a solution and all trips are reviewed, the traces are stored. 
The process of paths constructing is repeated until almost all ants follow the same trip 
in each cycle. 

3.2 Evolutionary algorithms [11] 

These methods include algorithms inspired by the laws of natural selection and the 
evolution of the animal species. In most cases, an initial population of solutions is 
defined. This initial population consists of a number of individuals (solutions of the 
problem.) Then, with the combination and evolution of these individuals, the 
algorithm tries to get a better solution. The most popular technique in this field is 
genetic algorithms, which are inspired by the biological evolution of species. 



3.3 Hybrid local search [12] 

This is one of the most used strategies. This approach attempts to solve the problems 
faced by traditional strategies. To this end, several strategies are combined (usually 2) 
in a single process. This allows grouping the advantages of each strategy and solving 
its individual problems. As explained below, this is the approach we used for the 
design of our algorithm. 

4 Proposed algorithms 

Having defined the main types of problems related to route optimization, and 
techniques used for resolution, we will specify the algorithm that we designed, and 
the problem we used to validate it. The algorithm we have designed allows us to 
model and solve any combinatorial optimization problem. Nevertheless, we have 
defined an instance of a DRT problem, to illustrate the operation and performance of 
the algorithm. 

4.1 Description of our DRT problem 

To verify our new algorithm, we have defined an instance of a DRT problem. Our 
problem refers to a bus on demand system. The passengers make requests for travel 
from one stop to another. There are 15 stops. Five of the stops are mandatory and the 
rest are optional. The position of all stops is fixed and known, but the passage of 
buses by an optional stop depends on the passenger demand. The bus will pass the 
optional stops, if passenger demand exceeds a certain threshold. If the bus does not go 
through any optional stop, the route between the mandatory stops is always the same. 
If the bus has to pass more than an optional stop, the route between two mandatory 
stops should be calculated dynamically to minimize the distance traveled by the bus. 
The optimization problem we have to solve is based on the calculation of the optimal 
path between two mandatory stops, through a series of optional stops. 

To solve the problem, we designed a hybrid algorithm that combines simulated 
annealing methods and genetic algorithms. Then we explain the details of each 
technique separately. 

4.2 Simulated annealing 

As explained above, this is a meta-heuristic algorithm based on the physical principle 
of metals cooling. The most important characteristic of this algorithm are: 

Concept of state: A state of a problem, define a specific situation of the problem. 
This situation is defined by the fundamental elements that make up the problem. In 
our problem, a state is defined by the order in which the bus travels through the 
optional stops between two mandatory stops. Then the state of our problem is a path 
between several stations. 



Evaluation function: This function measures the quality of a state. This quality is 
usually associated with a numerical value that allows us to compare states and 
determine which is better. In our problem, the evaluation function is the sum of the 
distances between the stations that make up a state. The evaluation function is the 
criterion for determining that a solution is better than another. 

Successor function: The objective of this function is to obtain a new state based 
on the current state and the temperature. For this, it takes a random exchange in the 
order of the stations of the current state, changing the path also. The successor 
function is designed to create a new state from another. In our problem, the successor 
function performs a random change of the position of two stops. With this change, a 
new state is created. This new state represents a new route and it has a new value of 
evaluation function, usually different from the previous state’s value. 

As explained previously, the process of simulated annealing algorithm is based on 
the generation of successor states iteratively. In each iteration, if the value of the 
evaluation function of the new state is better than the current state value, the successor 
state becomes the new current state. Otherwise, the successor state will be the new 
current state with a certain probability that decreases as temperature decreases. 
Therefore, the temperature is used to select the successor states that do not have a 
better evaluation function as the new current state. 

The temperature function is a mathematical function, which is updated each 
iteration, and allows controlling the selection of "bad" successor states. In the first 
iteration, the value of the temperature function will be high and the probability of 
choosing "bad" successor states will be great, but as the temperature value decreases, 
the probability of choosing "bad" states, will also decrease. 

4.3 Genetic algorithm 

Genetic algorithms are based on the principles of natural selection of species. For this 
reason, these algorithms work with concepts of chromosomes, genes, genetic 
combination and mutation. 

One of the most important tasks when working with genetic algorithms is the 
definition of the concept of state. The states of a genetic algorithm (also known as 
chromosome) are composed by genes. Each gene is a property or a characteristic of 
the problem. In our problem, a gene represents a stop, and a chromosome is defined 
by a sequence of stops. 

The operation of a genetic algorithm is based on the evolution of an initial 
population of chromosomes through a series of iterations. The chromosomes evolve 
through the crossover and the mutation of genes. The basic operation of a genetic 
algorithm can be defined as follows: 
1. Creation of the initial population. In our problem, we create a series of random 

routes, which represent the initial population. 
2. Evaluation of each of the individuals (chromosomes) using an evaluation function. 

In our problem, this evaluation function is based on the sum of the distance 
between the stops that define a chromosome. 

3. Start an iterative process until it reaches the threshold of generations  



4. Selection of the best chromosomes to be parents. The selection process was 
carried out based on a fitness function. 
4.1. Generation of new chromosomes from the cross between parental 

chromosomes. The creation of new chromosomes is done using a crossover 
function. 

4.2. Once new chromosomes are generated, a process of mutation of some genes 
of the new chromosomes is performed. 

4.3. Selection of chromosomes that form part of the new population. After 
performing the process of crossover and mutation, the resulting 
chromosomes are evaluated by fitness function, and the best ones are 
selected to be part of the new population. 

5. Once the process of generating new populations, the solution is the best 
chromosome of the current population. 
Fitness function: This is the function used to measure the quality of the 

chromosomes. The quality depends on the order of genes, since the value is the sum 
of the distances between the genes (stops) of a chromosome. 

Crossover function: This is the function used to perform the reproduction 
process. Usually each crossover generates two children. Each child is formed from 
fragments of each of their parents. In our problem this process is complex, since 
stations cannot be repeated. This is the simplest reproduction process but there are 
other ways to make the crossover process. [13]. 

Selection criteria: The selection criterion is used twice in the process of the 
algorithm: the selection of the parents of the new population and the selection of the 
best individuals after a full iteration. There are multiple criteria, from which selected 
all individuals, even those who selected only the best individuals (according to fitness 
function). In our algorithm Stochastic Remainder Criteria was used. This selection 
criterion selects all individuals whose probability of selection is above the average 
probability of selection of the entire population (according to the value of the fitness 
function). If this criterion is not reached the target number of individuals to choose, 
other individuals were selected randomly. 

5 Test and solution proposed 

As indicated above, for the design of our hybrid algorithm, separate versions of 
simulated annealing and a genetic algorithm have been implemented. In addition, we 
have implemented a "brute force" algorithm, to find out the optimal solution for small 
instances of the problem (with few intermediate stops). 

With these 3 algorithms, there have been a series of tests to measure the 
performance of each algorithm and the ability of each one to solve the problem. As a 
result of these tests, we have obtained several conclusions:  
1. The “brute force” algorithm is optimal because it always finds the best solution. 

Even so, it has the disadvantage that the execution time is unacceptable when the 
number of stations increases to more than 9 (for a large number of stations cannot 
even get a solution). This algorithm cannot be used in a real scenario. 



2. The simulated annealing algorithm only finds the optimal solution when the first 
and last station does not vary during the resolution process. Running time is 
always the same regardless of the number of stops. 

3. In the case of genetic algorithm, the execution time is constant if the number of 
generations is also constant. An advantage of this algorithm is that the probability 
of finding a good solution is independent of the number of stops. 
After preliminary analysis of algorithms separately, we came to the conclusion 

that the results of runtime and solution quality were not good. For this reason we 
decided to combine the two heuristics. 

5.1 Our hybrid algorithm 

Our hybrid algorithm came up with the aim to combine the advantages of genetic 
algorithms and simulated annealing: 

• Rapid and constant execution time (simulated annealing). 
• Probability of finding a good solution for the problem instances with many 

stops (genetic algorithm). 
The solution would avoid the main drawback of the two algorithms: 
• The solution should be optimal or very close to it. 
With all these goals, it thought about making the hybrid. By nature of the two 

algorithms, it is appropriate to insert the execution of simulated annealing algorithm 
in the execution of genetic algorithm. That is because the first algorithm is focused on 
only one solution and the second works simultaneously with different solutions. 

Having decided the model of integration, there were two options to do the 
integration: 

• Integrate the simulated annealing in the process of creating the initial 
population. 

• Integrate the simulated annealing in the process of reproduction, right after 
generating the new population. 

After several tests, we concluded that the most effective solution was to apply the 
simulated annealing algorithm just after the reproduction process. Below is a table 
showing the results of the tests. The table shows the number of stops, the number of 
generations used in the genetic algorithm, runtime, and the percentage of times the 
algorithm finds the optimal solution. 

Table 1 Results of the tests. 

N. of stations N. of generations T. of execution % of optimal solution 
9 5 3 seconds 80% 
9 10 5 seconds 100% 
10 5 3 seconds 80% 
10 10 5 seconds 100% 
11 5 3 seconds 80% 
11 10 5 seconds 100% 

 



Comparing the proposed alternative with each of the separate algorithms, we can 
ensure that the execution time is right, regardless of the number of stops. Moreover, in 
situations where the optimal solution is not found, the average deviation for the 
optimal solution does not exceed 3% of the value of the optimal solution. 

6 Conclusions and further work 

The work presented is the result of a research project funded by the Basque 
government. The aim of the project was the optimization of on-demand bus transport 
systems. Our algorithm is integrated into a Web application that allows passengers to 
make requests via a mobile device. With these requests, using the algorithm 
described, we construct the bus route dynamically. In addition, if a request will not be 
met, the system notifies the passenger the nearest station in which he can take the bus. 

During the implementation of the algorithm different software design patterns 
have been used. This has allowed the generation of a library for modeling and solving 
problems of route optimization, which may be used in future developments. 

At present, we are working on the design of a methodology that facilitates the 
modeling of route optimization problems to take into account constraints associated 
with vehicles (capacity and cost of travel) and passenger preferences (time 
restrictions). 
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