
A new evolutionary hybrid algorithm to solve demand
responsive transportation problems

Roberto Carballedo, Eneko Osaba, Pablo Fernández and Asier Perallos

Deusto Institute of Technology - DeustoTech, University of Deusto, Avda. Universidades 24,
48007 - Bilbao, Spain

{e.osaba, roberto.carballedo, perallos,

pablo.fernandez}@deusto.es

Abstract. This paper shows the work done in the definition of a new hybrid
algorithm that is based on two evolutionary techniques: simulated annealing
and genetic algorithms. The new algorithm has been used to solve the problem
of finding the optimal route for a bus in a rural area where people are
geographically dispersed. The result of the work done is an algorithm that (in a
reasonable time) is able to obtain good solutions regardless of the number of
stops along a route.

Keywords: meta-heuristics, simulated annealing, genetic algorithm, demand
responsive transport.

1 Introduction

Nowadays public transport systems have some drawbacks to meet the demand for all
passengers. The most obvious one is the limitation of the resources. Although each
transport system has its own characteristics, there are some limitations shared by all
of them: the capacity of the vehicles, the frequency and schedules of the services, and
the geographical area of coverage. As a result of this arises the concept of
transportation on demand. This concept aims to adapt transportation systems to
passenger demand in an efficient manner. Many of the techniques used to solve these
problems do not yield an exact solution. This is because the types of problems to be
solved are classified as NP-hard [1]. For this reason, heuristics techniques are used for
obtaining good approximations.

This paper is divided in 6 sections. Section 2 presents the main types of well
known problems related to the work done. Section 3 illustrates the most commonly
used strategies in the field of route optimization. Section 4 presents the approach
followed to define our hybrid algorithm. Section 5 presents the results of the tests
done to validate our algorithm and finally conclusions and future work is detailed.

2 Transportation on demand

Transportation-On-Demand (TOD) [2] is concerned with the transportation of
passengers or goods between specific origins and destinations at the request of users.
Most TOD problems are characterized by the presence of three often conflicting
objectives: maximizing the number of requests served, minimizing operating costs
and minimizing user inconvenience. As is common in many combinatorial
optimization problems, these objectives are conflicting and it is needed to sort them
by importance.

2.1 Well know transportation problems

Most of the problems arisen in transportation on demand topic have similar
characteristics, which means that they can be framed as instances of other generic and
well know problems. In this section, we present the most common traditional
problems in the field of transportation on demand.

Traveling Salesman Problem (TSP) [4]: The Travelling Salesman Problem
(TSP) is an NP-hard problem in combinatorial optimization studied in operations
research and theoretical computer science. Given a list of cities and their pair-wise
distances, the task is to find a shortest possible tour that visits each city exactly once.
This type of problem is used as a benchmark for many optimization algorithms.

Vehicle Routing Problem (VRP) [5]: The vehicle routing problem (VRP) is a
generalization of the TSP. The aim of the problem is to service a number of customers
with a fleet of vehicles. Often the context of this type of problem is related to deliver
goods located at a central depot to customers which have placed orders for such
goods. Implicit is the goal of minimizing the cost of distributing the goods. Many
variants of the VRP are described in the literature [6]. These problems include the
addition of variables and constraints. One of the most popular variants includes time
windows for deliveries. These time windows represent the time within which the
deliveries (or visits) must be made. [7]

Demand Responsive Transport (DRT): Demand Responsive Transport or
Demand-Responsive Transit (DRT) or Demand Responsive Service is an advanced,
user-oriented form of public transport. It is characterized by flexible routing and
scheduling of small/medium vehicles operating in shared-ride mode between pick-up
and drop-off locations according to passengers needs. DRT systems provide a public
transport service in rural areas or areas of low passenger demand, where a regular bus
service may not be economically viable. DRT systems are characterized by the
flexibility of the planning of vehicle routes. These routes may vary according to the
passenger’ needs in real time. This is the type of problem that we used to benchmark
the algorithm proposed in this paper.

3 Artificial intelligence techniques and algorithms

In the literature we can find many attempts to find an exact solution to the problems
explained in the previous section. For most routing problems is not possible to find
the optimal solution, for that reason, there have been a number of strategies to find an
acceptable solution, taking care of the basic criteria of the computational complexity:
time needed to obtain the solution and consumption of computational resources. This
section details the most commonly used techniques for solving the problems
explained in the previous section.

3.1 Local search algorithms

Most of solution methods begin the resolution process by generating an initial
solution that does not have to be correct. From this, and iteratively, these algorithms
"search" for a better/good solution. These techniques use an objective function that
measures the quality of the solutions obtained during the search process. In this scope
we can find the local search techniques:

Simulated Annealing [8]: This is one of the most popular local search techniques.
It is based on the physical principle of cooling metal. Using that analogy, it generates
an initial solution and the process proceeds by selecting new solutions randomly. The
new solutions are not always better than the initial solution, but as time passes and the
temperature decreases (the metal becomes stronger), each new solution must be better
than previous solutions.

Tabu search [9]: This technique is similar to Simulated Annealing, but with a
different approach when selecting the successive solutions. In this case, several
memory spaces are used, in which solutions found and discarded during the search
process are stored.

Ant Colony [10]: This algorithm simulates a colony of artificial ants working in
groups and communicating through artificial pheromones trails. Each artificial ant
builds a solution to the problem and the path to reach that solution. When all ants
have completed a trip to a solution and all trips are reviewed, the traces are stored.
The process of paths constructing is repeated until almost all ants follow the same trip
in each cycle.

3.2 Evolutionary algorithms [11]

These methods include algorithms inspired by the laws of natural selection and the
evolution of the animal species. In most cases, an initial population of solutions is
defined. This initial population consists of a number of individuals (solutions of the
problem.) Then, with the combination and evolution of these individuals, the
algorithm tries to get a better solution. The most popular technique in this field is
genetic algorithms, which are inspired by the biological evolution of species.

3.3 Hybrid local search [12]

This is one of the most used strategies. This approach attempts to solve the problems
faced by traditional strategies. To this end, several strategies are combined (usually 2)
in a single process. This allows grouping the advantages of each strategy and solving
its individual problems. As explained below, this is the approach we used for the
design of our algorithm.

4 Proposed algorithms

Having defined the main types of problems related to route optimization, and
techniques used for resolution, we will specify the algorithm that we designed, and
the problem we used to validate it. The algorithm we have designed allows us to
model and solve any combinatorial optimization problem. Nevertheless, we have
defined an instance of a DRT problem, to illustrate the operation and performance of
the algorithm.

4.1 Description of our DRT problem

To verify our new algorithm, we have defined an instance of a DRT problem. Our
problem refers to a bus on demand system. The passengers make requests for travel
from one stop to another. There are 15 stops. Five of the stops are mandatory and the
rest are optional. The position of all stops is fixed and known, but the passage of
buses by an optional stop depends on the passenger demand. The bus will pass the
optional stops, if passenger demand exceeds a certain threshold. If the bus does not go
through any optional stop, the route between the mandatory stops is always the same.
If the bus has to pass more than an optional stop, the route between two mandatory
stops should be calculated dynamically to minimize the distance traveled by the bus.
The optimization problem we have to solve is based on the calculation of the optimal
path between two mandatory stops, through a series of optional stops.

To solve the problem, we designed a hybrid algorithm that combines simulated
annealing methods and genetic algorithms. Then we explain the details of each
technique separately.

4.2 Simulated annealing

As explained above, this is a meta-heuristic algorithm based on the physical principle
of metals cooling. The most important characteristic of this algorithm are:

Concept of state: A state of a problem, define a specific situation of the problem.
This situation is defined by the fundamental elements that make up the problem. In
our problem, a state is defined by the order in which the bus travels through the
optional stops between two mandatory stops. Then the state of our problem is a path
between several stations.

Evaluation function: This function measures the quality of a state. This quality is
usually associated with a numerical value that allows us to compare states and
determine which is better. In our problem, the evaluation function is the sum of the
distances between the stations that make up a state. The evaluation function is the
criterion for determining that a solution is better than another.

Successor function: The objective of this function is to obtain a new state based
on the current state and the temperature. For this, it takes a random exchange in the
order of the stations of the current state, changing the path also. The successor
function is designed to create a new state from another. In our problem, the successor
function performs a random change of the position of two stops. With this change, a
new state is created. This new state represents a new route and it has a new value of
evaluation function, usually different from the previous state’s value.

As explained previously, the process of simulated annealing algorithm is based on
the generation of successor states iteratively. In each iteration, if the value of the
evaluation function of the new state is better than the current state value, the successor
state becomes the new current state. Otherwise, the successor state will be the new
current state with a certain probability that decreases as temperature decreases.
Therefore, the temperature is used to select the successor states that do not have a
better evaluation function as the new current state.

The temperature function is a mathematical function, which is updated each
iteration, and allows controlling the selection of "bad" successor states. In the first
iteration, the value of the temperature function will be high and the probability of
choosing "bad" successor states will be great, but as the temperature value decreases,
the probability of choosing "bad" states, will also decrease.

4.3 Genetic algorithm

Genetic algorithms are based on the principles of natural selection of species. For this
reason, these algorithms work with concepts of chromosomes, genes, genetic
combination and mutation.

One of the most important tasks when working with genetic algorithms is the
definition of the concept of state. The states of a genetic algorithm (also known as
chromosome) are composed by genes. Each gene is a property or a characteristic of
the problem. In our problem, a gene represents a stop, and a chromosome is defined
by a sequence of stops.

The operation of a genetic algorithm is based on the evolution of an initial
population of chromosomes through a series of iterations. The chromosomes evolve
through the crossover and the mutation of genes. The basic operation of a genetic
algorithm can be defined as follows:
1. Creation of the initial population. In our problem, we create a series of random

routes, which represent the initial population.
2. Evaluation of each of the individuals (chromosomes) using an evaluation function.

In our problem, this evaluation function is based on the sum of the distance
between the stops that define a chromosome.

3. Start an iterative process until it reaches the threshold of generations

4. Selection of the best chromosomes to be parents. The selection process was
carried out based on a fitness function.
4.1. Generation of new chromosomes from the cross between parental

chromosomes. The creation of new chromosomes is done using a crossover
function.

4.2. Once new chromosomes are generated, a process of mutation of some genes
of the new chromosomes is performed.

4.3. Selection of chromosomes that form part of the new population. After
performing the process of crossover and mutation, the resulting
chromosomes are evaluated by fitness function, and the best ones are
selected to be part of the new population.

5. Once the process of generating new populations, the solution is the best
chromosome of the current population.
Fitness function: This is the function used to measure the quality of the

chromosomes. The quality depends on the order of genes, since the value is the sum
of the distances between the genes (stops) of a chromosome.

Crossover function: This is the function used to perform the reproduction
process. Usually each crossover generates two children. Each child is formed from
fragments of each of their parents. In our problem this process is complex, since
stations cannot be repeated. This is the simplest reproduction process but there are
other ways to make the crossover process. [13].

Selection criteria: The selection criterion is used twice in the process of the
algorithm: the selection of the parents of the new population and the selection of the
best individuals after a full iteration. There are multiple criteria, from which selected
all individuals, even those who selected only the best individuals (according to fitness
function). In our algorithm Stochastic Remainder Criteria was used. This selection
criterion selects all individuals whose probability of selection is above the average
probability of selection of the entire population (according to the value of the fitness
function). If this criterion is not reached the target number of individuals to choose,
other individuals were selected randomly.

5 Test and solution proposed

As indicated above, for the design of our hybrid algorithm, separate versions of
simulated annealing and a genetic algorithm have been implemented. In addition, we
have implemented a "brute force" algorithm, to find out the optimal solution for small
instances of the problem (with few intermediate stops).

With these 3 algorithms, there have been a series of tests to measure the
performance of each algorithm and the ability of each one to solve the problem. As a
result of these tests, we have obtained several conclusions:
1. The “brute force” algorithm is optimal because it always finds the best solution.

Even so, it has the disadvantage that the execution time is unacceptable when the
number of stations increases to more than 9 (for a large number of stations cannot
even get a solution). This algorithm cannot be used in a real scenario.

2. The simulated annealing algorithm only finds the optimal solution when the first
and last station does not vary during the resolution process. Running time is
always the same regardless of the number of stops.

3. In the case of genetic algorithm, the execution time is constant if the number of
generations is also constant. An advantage of this algorithm is that the probability
of finding a good solution is independent of the number of stops.
After preliminary analysis of algorithms separately, we came to the conclusion

that the results of runtime and solution quality were not good. For this reason we
decided to combine the two heuristics.

5.1 Our hybrid algorithm

Our hybrid algorithm came up with the aim to combine the advantages of genetic
algorithms and simulated annealing:

• Rapid and constant execution time (simulated annealing).
• Probability of finding a good solution for the problem instances with many

stops (genetic algorithm).
The solution would avoid the main drawback of the two algorithms:
• The solution should be optimal or very close to it.
With all these goals, it thought about making the hybrid. By nature of the two

algorithms, it is appropriate to insert the execution of simulated annealing algorithm
in the execution of genetic algorithm. That is because the first algorithm is focused on
only one solution and the second works simultaneously with different solutions.

Having decided the model of integration, there were two options to do the
integration:

• Integrate the simulated annealing in the process of creating the initial
population.

• Integrate the simulated annealing in the process of reproduction, right after
generating the new population.

After several tests, we concluded that the most effective solution was to apply the
simulated annealing algorithm just after the reproduction process. Below is a table
showing the results of the tests. The table shows the number of stops, the number of
generations used in the genetic algorithm, runtime, and the percentage of times the
algorithm finds the optimal solution.

Table 1 Results of the tests.

N. of stations N. of generations T. of execution % of optimal solution
9 5 3 seconds 80%
9 10 5 seconds 100%
10 5 3 seconds 80%
10 10 5 seconds 100%
11 5 3 seconds 80%
11 10 5 seconds 100%

Comparing the proposed alternative with each of the separate algorithms, we can
ensure that the execution time is right, regardless of the number of stops. Moreover, in
situations where the optimal solution is not found, the average deviation for the
optimal solution does not exceed 3% of the value of the optimal solution.

6 Conclusions and further work

The work presented is the result of a research project funded by the Basque
government. The aim of the project was the optimization of on-demand bus transport
systems. Our algorithm is integrated into a Web application that allows passengers to
make requests via a mobile device. With these requests, using the algorithm
described, we construct the bus route dynamically. In addition, if a request will not be
met, the system notifies the passenger the nearest station in which he can take the bus.

During the implementation of the algorithm different software design patterns
have been used. This has allowed the generation of a library for modeling and solving
problems of route optimization, which may be used in future developments.

At present, we are working on the design of a methodology that facilitates the
modeling of route optimization problems to take into account constraints associated
with vehicles (capacity and cost of travel) and passenger preferences (time
restrictions).

References

1. Garey, M. R. and Johnson, D. S: Computers and Intractability; a Guide to the Theory of
Np-Completeness. W. H. Freeman & Co. (1990).

2. R M Jorgensen, J Larsen and K B Bergvinsdottir: Solving the Dial-a-Ride problem using
genetic algorithms. (2004)

3. Applegate, D. L.; Bixby, R. M.; Chvátal, V.; Cook, W. J. The Traveling Salesman Problem.
ISBN 0691129932. (2006)

4. Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Management Science Vol. 6,
No. 1, October 1959, pp. 80-91.

5. D Pisinger, S Ropke: A general heuristic for vehicle routing problems. (2005)
6. Repoussis, P.P.; Tarantilis, C.D.; Ioannou, G.: Arc-guided evolutionary algorithm for the

vehicle routing problem with time windows. (2009)
7. Rutenbar, R.A.: Simulated Annealing algorithms: an overview. (2002)
8. M Gendreau, A Hertz, G Laporte: A tabu search heuristic for the vehicle routing problem.

(1994)
9. Marco Dorigo, Luca Maria Gambardella: Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem. (1997)
10. Panagiotis P. Repoussis, Christos D. Tarantilis, George Ioannou: An Evolutionary

Algorithm for the Open Vehicle Routing Problem with Time Windows. (2009)
11. L Zhang, M Yao, N Zheng: Optimization and improvement of Genetic Algorithms solving

Traveling Salesman Problem (2009)

