SOAM: An Environment Adaptation Model for
the Pervasive Semantic Web

Juan Ignacio Vazquez, Diego Lépez de Ipina, and Inigo Sedano

MoreLab - Mobility Research Lab
University of Deusto
Avda. Universidades 24, 48007 Bilbao, Spain
{ivazquez, dipina}@eside.deusto.es, isedano@tecnologico.deusto.es

Abstract. Nowadays, there is a major interest in applying Web and
Semantic Web techniques for the creation of pervasive computing sce-
narios, where devices and objects communicate using these technologies.
The Web model has largely proved validity both in Internet-wide and in-
tranet scenarios, but it is starting to be applied in personal area networks
as a communication and knowledge reasoning system.

In this paper we present SOAM, an experimental model for the creation
of pervasive smart objects that use Web and Semantic Web technolo-
gies in new ways — resulting in the novel concept of Pervasive Semantic
Web — for enabling personal area semantic communication and reasoning
processes in order to provide environment adaptation to user preferences.

1 Introduction

The ultimate goal of Ambient Intelligence [1] is to create intelligent spaces to
empower users in everyday tasks at home, work, street, vehicle and others. In this
vision, environments are proactive perceiving users’ surrounding information,
often referred as context, and reacting in the appropriate way to facilitate user’s
activities. In fact, more and more designers are starting to think that the most
valuable resource in such environments are not computing power, communication
or storage capabilities, but user interaction [2].

Since intelligent objects are not isolated and should not act in their own, some
kind of infrastructure, communication and reasoning model must be provided to
guarantee that coordination and organisation activities among those objects are
performed to facilitate users’ experience.

Traditional Web technologies, such as HT'TP, HTML and XML, have been
used for providing presentation and control mechanisms in pervasive computing
environments, creating a sort of Personal Area Web for interacting with devices
(e.g. UPnP [8]). We think that these models can be augmented with Seman-
tic Web technologies to provide reasoning processes at the devices and at the
environment itself.

In this way, full intelligent environments can be created where reasoning pro-
cesses are automatically performed, communicated and agreed upon between



intelligent objects, based on users’ context perceptions and other available in-
puts. The goal is to adapt the environment without user intervention [9] [11]
(maximizing intelligence by minimizing explicit user interaction).

In this paper, we present SOAM — Smart Objects Awareness and Adaptation
Model —, a proposal joining the forces of well-known Web-based communication
mechanisms with intelligent capabilities provided by Semantic Web technolo-
gies in a structured manner, so that smart objects, or smobjects the term we
coined, can be easily designed to create user-aware adaptive intelligent spaces
following simple principles. SOAM is a preferences-based environment adapta-
tion model in which part of user’s context is built up by semantic preferences
about environmental conditions. These preferences lead to adaptation on smob-
jects without explicit user intervention, yet allowing automatic reasoning over
those preferences.

There are a number of technologies and initiatives related to this field that
constituted the background for our work, such as Universal Plug and Play
(UPnP) [8], Task Computing [4] and SOUPA (Standard Ontology for Ubiquitous
and Pervasive Applications) [3].

In section 2, the smobject concept is detailed as well as the exchanged infor-
mation structures, while in section 3 the SOAM adaptation model and involved
entities are described. Finally, in section 4 some future research directions are
given.

2 Pervasive Smart Objects

2.1 The Pervasive Semantic Web Vision

We coin the term Pervasive Semantic Web to designate the result of applying
Semantic Web technologies to Pervasive Computing scenarios in order to perform
reasoning processes. The main representatives of those technologies are RDF
(Resource Description Framework) [6] and OWL(Ontology Web Language) [7].

These scenarios are populated by different kinds of devices with a number
of capabilities such as temperature sensing, video capturing, door opening, and
so on. Our strategy is based on using ontologies to represent knowledge about
different domains, so that we use appropriate ontologies for temperature, physical
access control, location and so forth.

In our vision, we pretend to create some kind of Personal Area Web, where
devices are interconnected, hosting knowledge about environmental perceived
conditions and using references to link resources inside and outside this space.
This vision determines the creation of a new type of logical environment in
ubiquitous computing scenarios: a personal area semantic web with information
flows back and forth among communicating devices, sharing their knowledge
about users inside the environment and coordinating their tasks via distributed
reasoning procedures in order to provide an ambient intelligence experience.

This point of view about future living and working environments is shared
with other research groups that provided similar viewpoints [5], but until now
there are no practical results or architectures developed and tested.



SOAM — Smart Object Awareness and Adaptation Model — is intended to
fill this gap by providing a comprehensive architecture, easily replicable, to test
automatic environment adaptation scenarios by applying semantic annotation
techniques.

2.2 Smobjects: Smart Objects

In SOAM a major entity of the architecture is what we denominate smobject
as a short for “smart object”. A smobject is an agent in the form of a piece
of software, representing an intelligent device, several devices or event part of
a device. Smobjects capture a subset of environmental conditions, provide that
perceived context information under request, and act upon the same or other
subset of environmental conditions in order to modify them and adapt them
as needed. Smobjects need to access built-in sensors, effectors, communication
ports, maybe storage facilities if available on the device, and so forth.

The real strength of the smobject-based agent architecture in SOAM is that
standardizes the way sensors and effectors information is represented and ac-
cessed. Smobjects manage three different types of information structures that
illustrate the functions a smobject can carry out:

— Context Information: smobjects provide information about perceived state
of the environment via semantically annotated data under request. Context
Information is gathered through built-in sensors in the bounded device and
provided by the smobject to requesting parties.

— Capabilities: a smobject is capable of perceiving only some concrete en-
vironmental conditions depending on the bounded-device built-in sensors,
and it is also capable of operating over some (same or other) conditions de-
pending on the bounded-device built-in effectors. Perception and operation
capabilities are provided by the smobject to requesting parties.

— Constraints: smobjects can be influenced by other entities using some data
constructions called constraints, which declare valid ranges on the desired
state of the environment, so that the smobject is in charge of driving adapta-
tion honouring them. Smobject’s behaviour is defined by active constraints,
which represent existing influences over the smobject, and have a limited
lifespan. Smobjects can provide information about their active constraints
to requesting parties, as well as accept constraints from other entities that
desire to influence the smobject’s behaviour.

In SOAM, these data entities are exchanged through smobject standard com-
munication interfaces as shown in the figure 1. We can also notice how the smob-
ject interacts with the host device, using their built-in sensors and effectors.

Capabilities and Constraints are represented and exchanged in XML using
structures declared in a grammar called SOAM Datatypes XML Schema, while
Context Information is represented using RDF and domain ontologies honouring
the OWL specification. Standard HTTP is used for transport and negotiation
purposes between other entities and the smobjects in order to retrieve and store



i

Capabilities

—

?eme&)"""“/

Environment

N

Device

Context

=0,
; Dera,,bn
Information iy

Constraints

Fig. 1. Smobject communication interfaces.

these information structures in SOAM (HTTPS could be used to facilitate a se-
cure communication channel, providing every smobject has a valid and trustable
X.509 certificate).

2.3 Context Information

Context Information is probably the most important data a smobject can pro-
vide. Context Information is constructed using RDF, serialized in the form of
XML. It conveys perceived information captured through device’s sensors, anno-
tated via RDF and OWL. Captured data semantics is highly knowledge domain
dependent, for example temperature measures, an item location or an elevator’s
present position.

Since devices are specialized in domains (TV, temperature control system,
light), smobjects act as control processes deeply associated to the concrete de-
vice to act upon built-in sensors and effectors and programmed to semantically
annotate the perceived data using the most appropriate and standard ontology
for that purpose. It is up to devices’ and smobjects’ designers to select suitable
ontologies among available ones.

An example of a Context Information message conveying knowledge about
luminance is shown if figure 2. Probably, the smobject is installed in a lighting
device called 1ight1, and it provides information about light1’s state upon
request (luminance, light color, ...).

As we can notice, a smobject normally does not only provide information
about perceptions obtained by sensors, but also the device identification and
type, that is, the full semantic description of available data. This annotation
is particularly useful to automate processes depending on device identification,
type or other device parameters.



<rdf:Description rdf:about="urn:uuid:light1">
<lit:luminance rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
30
</1lit:luminance>
<lit:color rdf:resource="http://www.awareit.com/onto/light#White"/>
<rdf:type rdf:resource="http://wuw.awareit.com/onto/light#Light"/>
</rdf :Description>

Fig. 2. An example Information structure provided by a smobject.

2.4 Capabilities

A smobject can exhibit perception capabilities on some domains and operation
capabilities on the same or different domains. Perception capabilities represent
sensing mechanisms the smobject is able to access on the host device about some
domains (for example, lighting conditions), while operation capabilities represent
control mechanisms the smobject features about some domains.

For example, a light sensor has perception capabilities about the “lighting
domain” in a room, while a switch has operation capabilities about the “lighting
domain” (via a lamp o light bulb). Usually, both devices would be modeled using
the same “lighting control system” smobject, thus featuring at the same time
perception and operation capabilities about the “lighting domain”.

Capabilities are generally not only bounded to a knowledge domain, but also
to concrete elements to which the information is related. For instance, a smobject
can perceive lighting conditions, but only those related to 1ight1. Or maybe, the
electronic thermometer smobject measures the existing temperature, but only
in rooml.

Of course, some smobjects can measure conditions related to undefined ac-
tors, or unbounded at all. The SOAM Datatypes XML Schema defines data
structures to declare perception and operation capabilities, using even wildcards
to denote the “any” concept.

Figure 3 is an example of the capabilities file of the previous lighting smobject
with both perception and operation capabilities on a concrete light.

Basically, this document means that the smobject can perceive the state of
light1 in the “light” domain (with all the predicates included in the ontology)
and it can also adapt 1ight1l dynamically in the same domain.

2.5 Constraints

Smobjects receive requests to perform environment adaptation through effec-
tors. These requests come in the form of Constraints, represented by statement
patterns in the desired behaviour. A smobject can receive a number of this kind
of constraints over the time, so its behaviour is influenced and driven by them.
In fact, a smobject is in charge of managing the active Constraints and trying
to perform in such a way that Constraints are honoured.



<capabilitiesCollection>
<perceptionCapability id="urn:uuid:lightl_pcapi">
<subject resource="urn:uuid:light1"/>
<ontology resource="http://www.awareit.com/onto/light"/>
</perceptionCapability>
<operationCapability id="urmn:uuid:lightl_ocapl">
<subject resource="urn:uuid:lightl"/>
<ontology resource="http://www.awareit.com/onto/light"/>
</operationCapability>
</capabilitiesCollection>

Fig. 3. An example Capabilities structure provided by a smobject.

The SOAM Datatypes XML Schema provides a way to represent and ex-
change constraints. Those Constraints are generated by initial configuration set-
tings and/or adaptation requests sent by other actors.

Figure 4 illustrates an example of active Constraints on light1.

<constraintsCollection>
<constraint expires="PT1M"
subject="urn:uuid:light1"
predicate="http://www.awareit.com/onto/light#luminance">
<objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
10
</objectLiteral>
</constraint>
<constraint expires="PT1M"
subject="urn:uuid:light1"
predicate="http://www.awareit.com/onto/light#color">
<objectResource ref="http://www.awareit.com/onto/light#Yellow"/>
</constraint>
</constraintsCollection>

Fig. 4. An example Constraints information provided by a smobject.

The previous Constraint could be read as “light1 must have a luminance of
10 and yellow color”

Constraints are the unique out of the three data entities (Context Informa-
tion, Capabilities and Constraints) that can be also injected into smobjects and
not only requested from them. As explained previously, in SOAM, any actor can
retrieve Constraints from the smobject to find out how its behaviour is being



driven, but also existing actors can send Constraints to the smobject to constrain
its behaviour and have the environment conveniently adapted.

Since HTTP messages are used in SOAM to negotiate information exchange,
HTTP Basic Authentication [10] or other standard web mechanisms can be used
for identification and authentication purposes if needed.

3 Environment Adaptation

3.1 Adaptation Profiles

The goal of SOAM is to achieve a comprehensive model for automatic adapta-
tion of the environment to user preferences, needs and behavioural patterns. As
shown, smobjects are the entities in charge of performing the final operations to
achieve adaptation.

Adaptation Profiles are the information elements that conveys user’s adapta-
tion requirements that eventually drive smobjects behaviour. Adaptation Profiles
are stored and exchanged with the environment via the user’s personal device,
which contains an Adaptation User-Agent in charge of negotiating Adaptation
Profiles with surrounding entities as explained below.

An Adaptation Profile is a conditional preference or environment adaptation
requirement that contains two different sections:

— Preconditions: represent existing requirements about the environment’s
present state, that must be met for the Adaptation Profile to activate. It
makes the adaptation to have a conditional nature. Often, adaptation re-
quirements are not fixed, e.g. a user does not need his preferred temperature
to be always 22°C, but maybe only when he is at the car.

— Postconditions: represent desired patterns in the environment’s future
state that must be met for the adaptation to be considered as honoured.
Postconditions eventually generate constraints.

Variable substitution in Adaptation Profiles is possible to allow postcondition
elements to be bounded to precondition elements as shown in figure 5.

This Adaptation Profile can be read as “whatever the location Alice is in with
an ambient light, that ambient light should have a luminance of 90”, which is
a very simple but powerful mechanism to force every location’s lights to adjust
automatically as Alice gets in.

3.2 Other SOAM Entities

Despite smobjects play a fundamental role in the SOAM architecture, they just
act as intermediates with the associated device to fulfil adaptation requests.
There are some other entities needed in SOAM in charge of generating those re-
quests on behalf of the user and instructing smobjects to adapt the environment
in a coordinated way:



<adaptationProfile id="urn:uuid:profl" expires="PT2M">
<variable id="x"/>
<variable id="y"/>
<precondition subject="urn:uuid:Alice"
predicate="http://www.awareit.com/onto/location#isLocatedIn">
<objectVariable ref="x"/>
</precondition>
<precondition subject="x"
predicate="http://www.awareit.com/onto/light#hasAmbientLight">
<objectVariable ref="y"/>
</precondition>
<postcondition subject="y"
predicate="http://www.awareit.com/onto/light#luminance">
<objectLiteral datatype="http://www.w3.org/2001/XMLSchema#int">
90
</objectLiteral>
</postcondition>
</adaptationProfile>

Fig. 5. An example Adaptation Profile with bounded variables.

— Adaptation User-Agent: a piece of software acting on behalf of a user that
is aware of the user’s Adaptation Profiles and negotiates with surrounding
Orchestrators the adaptation process to exchange those profiles.

— Orchestrator: an entity that perceives and orchestrates existing smobjects
in the environment to perform the adaptation process following Adapta-
tion Profiles. Orchestrators feature semantic information reasoning and a
rule engine in order to generate Constraints from Context Information and
Adaptation Profiles.

Adaptation User-Agents act generally on behalf of a user, silently starting
the process of adapting the environment by finding an available Orchestrator to
which they send user’s Adaptation Profiles.

4 Conclusions and Future Work

SOAM is an effort to create a comprehensive model for automatic environment
adaptation to user’s preferences, based on existing well-proven technologies such
as SSDP, HTTP and XML, as well as the Semantic Web (RDF, OWL) for
knowledge representation and reasoning. SOAM is based in a special kind of
pervasive agents called smobjects that interface with real devices via a standard
interface for exchanging information.

Our current prototype implementation is based in a single board computer
in the role of Orchestrator, using Jena libraries for semantic information pro-
cessing, and ARM9 embedded processors (UNC20) for smobjects. Adaptation



Smobject

Environment

b o
AP—p4 Orchestrator sg——I Smobject
\5 -oe -- " C

Messages

AP: Adaptation Profile
Ca: Capabilities Smobject
I: Context Information
Co: Constraints
' Smobject '

Fig. 6. Diagram illustrating SOAM architecture.

User-Agents can be implemented in PocketPC o cellular phones. Some exper-
imental scenarios, related to home and intelligent workplace environments are
being created to test SOAM feasibility and capabilities. SOAM can take ad-
vantage of standard ontologies, such as SOUPA, for concrete domain knowledge
representation.

SOAM illustrates the possibilities of the new paradigm emerging from the
joint forces of the Web and Semantic Web technologies applied to Pervasive Com-
puting scenarios, creating Pervasive Semantic Webs everywhere and augmenting
intelligence in environments.

There are some open research issues related to SOAM architecture that still
need to be studied such as conflict resolution with multiple users’ disjoint re-
quirements, usage of standard orchestration languages, or the possibility of re-
moving the Orchestrator element of the architecture to create true decentralized
choreography among smobjects.

5 Acknowledgements

This work has been partially supported by the Department of Industry, Com-
merce and Tourism of the Basque Government under the SAIOTEK grant S-
OD04UDO02, and the Cathedra of Telefonica Moviles at Deusto University, Bil-
bao, Spain.



References

1.

2.
3.

10.

11.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten and J-C. Burgelman. Scenarios
for Ambient Intelligence in 2010. Final Report. IST Advisory Group. EC (2001).
Project Aura. http://www.cs.cmu.edu/ aura/

H. Chen et al. SOUPA: Standard Ontology for Ubiquitous and Pervasive Applica-
tions. Proceedings of Mobiquitous 2004: International Conference on Mobile and
Ubiquitous Systems: Networking and Services, Boston, USA (2004).

. R. Masuoka and Y. Labrou. Task Computing - Semantic-web enabled, user-driven,

interactive environments. WWW Based Communities For Knowledge Presentation,
Sharing, Mining and Protection (The PSMP workshop) within CIC 2003, Las
Vegas, USA (2003)

. Ora Lassila. Using the Semantic Web in Mobile and Ubiquitous Computing. Pro-

ceedings of the 1st IFIP WG12.5 Working Conference on Industrial Applications
of Semantic Web, pp. 19-25. Springer (2005).

. World Wide Web Consortium. RDF Primer. W3C Recommendation. World Wide

Web Consortium (2004).

. World Wide Web Consortium. OWL Web Ontology Language Semantics and Ab-

stract Syntax. W3C Recommendation. World Wide Web Consortium (2004).

. UPnP Forum. UPnP Device Architecturel.0. UPnP Forum (2003).
. J. I. Vazquez and D. Lopez de Ipifia. An Interaction Model for Passively Influenc-

ing the Environment. Adjunct Proceedings of the 2nd European Symposium on
Ambient Intelligence, Eindhoven, The Netherlands (2004).

J. Franks et al. RFC 2617: HTTP Authentication: Basic and Digest Access Au-
thentication. IETF RFC (1999).

J. I. Vazquez and D. Lopez de Ipina. A language for expressing user-context pref-
erences in the web. WWW 2005: Special interest Tracks and Posters of the 14th
international Conference on World Wide Web (Chiba, Japan) pp. 904-905. ACM
Press (2005).



