
DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT1

SoaM: A Web-powered Architecture for Designing
and Deploying Pervasive Semantic Devices

JUAN IGNACIO VAZQUEZ, DIEGO LÓPEZ DE IPIÑA
{ivazquez,dipina}@eside.deusto.es

MoreLab - Mobility Research Lab, University of Deusto, Avda. Universidades 24, 48007 Bilbao, Spain

IÑIGO SEDANO
isedano@tecnologico.deusto.es

MoreLab - Mobility Research Lab, Tecnológico Fundación Deusto, Avda. Universidades 24, 48007 Bilbao, Spain

Received: January XX 2005; revised: November XX 2005

Abstract— Despite several efforts during the last years, the web
model and semantic web technologies have not yet been success-
fully applied to empower Ubiquitous Computing architectures
in order to create knowledge-rich environments populated by
interconnected smart devices. In this paper we point out some
problems of these previous initiatives and introduce SoaM (Smart
Objects Awareness and Adaptation Model), an architecture for
designing and seamlessly deploying web-powered context-aware
semantic gadgets. Implementation and evaluation details of SoaM
are also provided in order to identify future research challenges.

Index Terms— Ubiquitous computing, semantic web, semantic
devices, ubiquitous web

I. INTRODUCTION

Ubiquitous Computing is a major field of research nowadays
as surrounding environments are becoming more and more
populated by small embedded devices and appliances. The
term “Ubiquitous Computing” was coined by Mark Weiser in
his seminal article “The Computer for the 21st Century” [45],
but other terms such as pervasive computing, invisible com-
puting or calm computing have become increasingly popular.
Recently, Ambient Intelligence (AmI) has become a widely
overused term, mostly within Europe, as it has been one of
the main ICT research focuses in the 6th Framework Program
[24] [25].

Ubiquitous computing devices are expected to be au-
tonomous and behave in the appropriate way depending on
particular situations. Therefore, they must be able to collect
relevant data from any available sources in the environment,
analyze this information, decide which reactive behavior is
required and finally they must carry out the required opera-
tions. A device able to fulfill all this process is known to be
context-aware [1].

Lassila et al. also introduced the vision of semantic gadgets
[28]: autonomous devices that intelligently interpret context
information, inferring new knowledge from existing one in
order to understand the situation and react appropriately.

Designing a feasible architecture for implementing semantic
gadgets is certainly a challenging issue in current research
that involves several areas ranging from artificial intelligence
to ubiquitous communication.

Obviously, current devices and appliances do not yet exhibit
the high levels of reactivity and context-awareness described
in the scenarios proposed by Lassila, Weiser [45] or ISTAG
[23] [24] [25], but simpler and more limited forms of behavior:
automatic doors that open in the presence of people, sinks that
provide water as hands are placed nearby, lights that turn on
autonomously when someone gets closer, digital cameras that
detect nearby printers to generate photo printouts or mobile
phones that perceive surrounding partners to play a game.

Their behavior is still very basic, normally bounded in a
mechanical way to particular built-in sensors and actuators,
and cannot be modified easily to make devices aware of other
situations. Moreover, environmental intelligence, as defined by
AmI [23], should be achieved by the resulting synergies from
coordinated smart objects. However, few of current devices
are able to communicate with each other, and even less to
collaborate in an intelligent way.

Specialized non-cooperative artifacts are the common rule
(heating systems, light bulbs, temperature control systems,
iris identification mechanisms, camera-based surveillance sys-
tems). While these individual behaviors are still required,
rich collaboration among devices boosts the environment to
a further degree of intelligence, greater than the sum of single
capabilities. Nonetheless, collaboration requires some kind of
communication framework, and thus, communication capabil-
ities among objects. Presently, only very advanced appliances
have the ability to carry out any sort of communication
processes with fellow objects.

This is the motivation for the great deal of research effort de-
voted during the last years to make pervasive devices smarter,
more reactive and more collaborative. Some devices feature
specific types of perception capabilities while other feature
complementary ones; some of them can perform concrete
operations over a particular set of environmental conditions1744–0084/01 c© 2005 Troubador Publishing Ltd

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT2

while other work and act over a different set of aspects.
Therefore, communication and intelligence are considered

two attributes at the core of the Ubiquitous Computing /
Ambient Intelligence vision. Communication contributes to
information sharing and coordination of activities; intelligence
contributes to analyzing, reasoning and decision taking; both
together contribute to device inter-collaboration for the user’s
sake.

The web architecture and Semantic Web technologies seem
to be one of the most suitable candidates to provide these
communication and intelligent capabilities in Ubiquitous Com-
puting environments.

Regarding the communication area, it is clear that the web
model based on HTTP [15] as transport protocol, and IRIs [14]
or URIs [5] for resource identification and location, is consid-
ered one of the most successful communication technologies
of the last decade.

But on the other hand, how the web model can provide
intelligence to pervasive computing environments is not so
obvious. However, during the last years the whole web model
has undergone an evolution towards a new paradigm called
“the Semantic Web” [4]. The basics of the Semantic Web were
outlined in the Scientific American article by Berners-Lee et
al. [6].

The Semantic Web is a web of knowledge, where concepts
and information are represented in a machine readable and
understandable form and liked via URIs. Every concept (peo-
ple, places, objects, time events, verbs, and so forth) can be
identified via an unique URI, in such a way that a universe of
concepts can be related to each other.

However, deploying mini-webs of knowledge, sustained by
a population of embedded resource-constrained devices, is
undoubtedly a challenging task.

In this paper we analyze previous efforts in trying to
apply the web architecture and semantic web technologies to
Ubiquitous Computing scenarios, emphasizing some features
that prevented them from being truly successful. In section
III and IV we introduce the Pervasive Semantic Web concept
and SoaM, an architecture focused in exclusively using web
technologies for empowering smart devices. Sections V and
VI are devoted to implementation details and evaluation re-
sults. Finally, future research lines along with conclusions are
provided.

II. PREVIOUS WORK

One of the pioneer projects in thoroughly applying web
technologies to mobile and pervasive computing was HP’s
Cooltown [26] [27] [2]. Cooltown tied web resources to
physical resources such as objects and places, introducing
the novel concept of URL sensing as a way for seamlessly
retrieving endpoints URL from the surrounding environment.
It also featured ways not only for collecting data but also
for posting data to existing objects, thus augmenting the
interaction possibilities.

The work of Issarny et al. in WSAMI (Web Services for
Ambient Intelligence) [22] introduced the application of XML
web services into Ambient Intelligence environments. WSAMI

promoted situation-sensitive composition of services aided by
a specialized middleware component hosted in mobile devices.

Undoubtedly, the most deployed web-based architecture for
devices has been Universal Plug and Play (UPnP). UPnP
enables the creation of pervasive peer-to-peer connectivity of
computers, devices and appliances, mainly at home environ-
ments. UPnP is strongly based on web technologies (HTTP
and XML), with open specifications distributed by the UPnP
Forum. The UPnP architecture [40] provides mechanisms
for discovering new devices and disconnections, retrieving
devices’ characteristics, invoking functions and sending no-
tifications about detected events.

Among the main advantages of UPnP are its simplicity to
create an inter-device communication distributed system based
on web technologies, and the evidence that it is probably the
most popular architecture in the market in terms of manu-
factured devices and commercial success, specially Internet
gateways. Among its disadvantages the most important ones
are the lack of security mechanisms and inherent limitations
in terms of scalability as the number of devices increases [17]
[32].

Moreover, UPnP does not provide any intelligence at the de-
vice side, since it is based on traditional command and control
mechanisms, where the user has complete control over devices,
driving manually their behavior. There are no elements in the
UPnP architecture hosting any kind of reasoning processes;
UPnP devices and control points are unable to understand
the information they use and, of course, no form of semantic
discovery or processing is performed [33].

Regarding context-awareness, UPnP does not provide any
reactivity mechanism at devices or control points. Reactive
behavior must be programmed ad hoc using the platform
facilities, although UPnP messages can be used both for
retrieving information or invoking remote operations.

CoBrA (Context Broker Architecture) [7] [9] and SOUPA
(Standard Ontology for Ubiquitous and Pervasive Applica-
tions) [8] [10] [11] [12] are part of the same effort to create
a context-aware pervasive system applying Semantic Web
technologies.

While CoBrA is a centralized architecture, based on a
contex-broker that collects all the information from participat-
ing agents using the JADE API [3], SOUPA is a OWL ontol-
ogy for defining reusable basic vocabularies and relationships
for Ubiquitous Computing environments.

However, there are several drawbacks in the CoBrA model
for realizing the Ambient Intelligence vision. Its centralized
architecture unburden limited-devices from the inconveniences
of managing knowledge and information sources, but relies in
a core element, the broker, that is practically the sole respon-
sible for implementing the full architecture. It is necessary
to place a broker in every location that needs to be activated
with CoBrA, increasing the cost, complexity and maintenance
of the deployment process.

Moreover, CoBrA does not provide any implicit reactivity
mechanism; ad hoc behaviors must be explicitly programmed
and configured in the central broker. Devices are again rele-
gated to a second class passive role in the process of taking
decisions. On the other hand, SOUPA is a brilliant effort to

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT3

create a modular set of common ontologies to be applied in
every pervasive computing environment.

The Gaia project [37] also applies Semantic Web technolo-
gies to create a system software infrastructure for supporting
Active Spaces in ubiquitous computing environments. An
active space is a “model that maps the abstract perception of a
physical space as a computing system, into a first class software
entity” [35].

Thus, the active space acts as a mapping between the real
and virtual space, connecting both in such a way that real
world actions affect virtual world objects and vice versa. The
active space hides the complexity of the real world elements
into one unique entity that provides functions for manipulating
the space, discover and locate internal entities, store and
retrieve information from the space and so forth.

In this way, Gaia relieves the burden of manipulating
highly object-populated environments by providing a single
consistent interface instead of a bulk of multiple ones [36],
simplifying application programming and user interaction.

However, as CoBrA, Gaia requires a central architectural
element to be deployed in the environment, thus reducing its
pervasiveness and not being suitable for implementation in
embedded devices. Moreover, Gaia uses CORBA as distributed
computing architecture, instead of HTTP and URIs, which are
more appropriate considering the application of semantic web
technologies such as OWL and RDF.

The initiatives Semantic Space [44] [39] and SOCAM
(Service Oriented Context-Aware Middleware) [18] [19] [20]
are efforts to create a smart environment infrastructure using
semantic web technologies.

They share a number of similarities with CoBrA and Gaia,
also requiring a centralized control component to be deployed
in the environment. SOCAM uses JavaRMI for RDF informa-
tion exchange, instead of HTTP.

Finally, Task Computing [30] promotes semantic Service
Oriented Architectures by providing dynamic service discov-
ery, service publishing and management, task creation and
execution on the fly [38]. It even assists users in discovering
what their goals are by suggesting possible tasks that can be
performed with available facilities.

All these features try to solve the frustration of users in
application-rich environments, where they have to orchestrate
a variety of devices and applications, in order to let them
concentrate only in the final goal and accomplish it with a
reduced number of simple interactions.

Task Computing pioneered the application of Semantic Web
Services in Ubiquitous Computing scenarios, using seman-
tic information to annotate service descriptions and perform
service composition. However, neither reasoning nor domain
ontologies are provided to understand context information.
Moreover, the Task Computing Environment must be always
executed in the user’s computer orchestrating the process;
devices are not first-class actors in this architecture, but just
passive entities without autonomy or intelligence.

A. Common problems
There are several remarkable features in the above referred

architectures that prevent them from successfully combining

all the power of web technologies with Ubiquitous Computing:

• The architectures that are enough simple to be hosted
in devices (e.g. UPnP) lack of the intelligent capabilities
provided by Semantic Web technologies.

• The architectures that intensively apply Semantic Web
technologies for reasoning (e.g. CoBrA, Gaia, SOCAM)
do not involve devices in the process, dismissing them to
a secondary, often passive, role.

• These architectures also rely on a central component that
must be deployed and configured beforehand for each
particular scenario, which greatly reduces the serendip-
itous and spontaneous nature intrinsic to Ubiquitous
Computing / Ambient Intelligence visions.

• Most of these architectures do not use the web commu-
nication model, essentially HTTP, for supporting all the
information exchange among participating entities. Other
mechanisms (e.g. CORBA, JavaRMI) are used instead,
not being as suitable for dealing with RDF and OWL-
based descriptions as HTTP and accompanying technolo-
gies (HTTP authentication, HTTPS, cookies, proxies, and
so forth).

• None of the above architectures focuses on devices
as first-class actors in the environment with autonomy,
contex-awareness and reactiveness.

Basically, all the previous initiatives substitute device col-
laboration for central coordination. However, Ubiquitous Com-
puting is serendipitous in essence and decentralization is a
must. The challenge that researchers are facing when applying
Semantic Web technologies to Ubiquitous Computing is how
to make devices web-powered, more collaborative and still
enough simple.

III. THE PERVASIVE SEMANTIC WEB

As we mentioned earlier, the web model and Semantic Web
technologies feature a series of characteristics that seem to
fulfill two major attributes (communication and intelligence)
identified in the introduction.

The joint application of the web model and the Semantic
Web in pervasive computing scenarios results in a coherent
architectural model, since core technologies such as URI or
namespaces constitute their technological basis.

The web communication model, based on a network of
resources linked via URIs and the HTTP communication
protocol [15], has been widely employed in the past and its
validity has been unquestionably proven.

Moreover, existing HTTP complementary mechanisms such
as cookies [29], Basic or Digest Authentication [16], or
HTTPS [34] can be also reused in the pervasive computing
arena to achieve session information persistence, authentica-
tion or secure communication channels, respectively. In this
way, Ubiquitous Computing architectures can take advantage
of existing HTTP-related technologies to fulfill a great amount
of communication requirements.

The only issue not covered by HTTP is distributed discovery
of devices or services. UPnP [40] proposes SSDP, an HTTP
syntax-based alternative.

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT4

On the other hand, Semantic Web technologies are a suitable
candidate both for context representation and reasoning. Do-
main specific OWL vocabularies can help defining the terms
used in particular situations in order to represent the existing
knowledge in a concrete moment of time.

Not only an endless number of vocabularies can be cre-
ated for representing the context information about multiple
knowledge domains, but reuse of existing vocabularies must be
promoted in order to share same concepts among applications
and devices.

Artifacts with built-in sensors can retrieve raw data from
the environment and annotate those data applying a concrete
vocabulary they have been explicitly configured for when
manufactured.

We deem feasible to build small “annotation processes”
even in limited devices in order to characterize captured raw
context data in this way and create a more expressive level of
knowledge that can be shared and analyzed with other devices
or entities.

Moreover, the Semantic Web not only provides a mechanism
for context information representation but also for reasoning.
OWL is an example of a Semantic Web technology that can
be used to represent description logics formalisms in such a
way that new information (new context information) can be
automatically generated from existing one by applying OWL
intrinsic reasoning mechanisms.

Emerging Semantic Web rules technologies such as SWRL
(Semantic Web Rules Language) [21] can be also applied to
generate new context information based on Horn-like clauses
instead of description logics.

Using SWRL it is possible to describe a rule such as
if the color of light1 is yellow and the ambient sound’s
volume is low then the environment is suitable for reading,
which generates new information about the suitability of the
environment for certain task based on previously existing
knowledge. Thus, a concrete device (for example, an electronic
ink book) can behave differently depending on whether the
environment is suitable for reading, taking advantage of the
results obtained by the reasoning process.

Our conclusion is that the application of the web model as
communication infrastructure and Semantic Web technologies
for context representation and reasoning seems to provide a
consistent framework for creating context-aware devices and
environments.

We coined the term Pervasive Semantic Web for designating
this ubiquitous information model [42].

The vision of the Pervasive Semantic Web pursues to create
a space of knowledge, where devices are interconnected,
exchanging information about environmental perceived con-
ditions and using URIs to link resources inside and outside
this space [41].

This vision determines the creation of a new type of logical
environment in ubiquitous computing scenarios: a location-
constrained semantic web architecture with information flows
back and forth among communicating devices, sharing their
knowledge about the environment and coordinating their tasks
via distributed reasoning processes in order to provide an
intelligent immersive experience.

6HQVRUV�	�

(IIHFWRUV

:LUHOHVV�6HQVRU�

1HWZRUNV

$SSOLDQFHV

8VHU�GHYLFHV

/RFDWLRQ�FRQVWUDLQHG

:HE�RI�.QRZOHGJH

3HUYDVLYH�
6HPDQWLF�:HE

id416898343 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 1. The Pervasive Semantic Web.

IV. SOAM SMART OBJECTS AWARENESS AND
ADAPTATION MODEL

Our efforts to solve the problems identified in section II
by applying the Pervasive Semantic Web model produced
SoaM (Smart Objects Awareness and Adaptation Model). In
SoaM different kinds of entities or agents were defined in
order to exchange several types of informational structures to
coordinate their context-aware behavior. In this section, these
information structures and entities are briefly described in
order to better understand the testing and evaluation processes.

Four types of information structures were defined:
• Context Information: in SoaM devices or smart objects

perceive and gather environment information via built-in
sensors or similar mechanisms. This information is made
available to requesting parties in a semantic annotated
form using RDF/XML and OWL vocabularies, in order
to promote further reasoning. The following example
represents a piece of Context Information captured by
a light sensor and made available to any entity in the
environment.

1 <rdf:Description rdf:about="urn:uuid:light1">
2 <lit:hasLuminance rdf:datatype="http://www.w3.

org/2001/XMLSchema#int">
3 30
4 </lit:hasLuminance>
5 <lit:hasColor rdf:resource="http://www.awareit

.com/onto/2005/12/colors#Yellow"/>
6 <rdf:type rdf:resource="http://www.awareit.com

/onto/2005/12/light#Light"/>
7 </rdf:Description>

• Capabilities: they inform about the perception and opera-
tion capabilities of a smart object. Perception capabilities
indicate the kinds of context information this object can
capture, while operation capabilities indicate the types
of context information that can be altered by this smart
object, probably via some kind of built-in effectors.

• Constraints: smart objects’ behavior can be influenced
by other agents using some data constructions called
constraints, which declare valid ranges on the desired

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT5

state of the environment, so that the object is in charge
of driving adaptation honoring them.

• Adaptation / Behavioral Profiles: in SoaM users or other
devices do not generate low-level constraints to influence
devices, but they use high-level Behavioral Profiles (also
called Adaptation Profiles). A Behavioral Profile declares
a desired context-aware reactivity in the device using a
rule-like form containing two different sections:

– Preconditions represent existing requirements about
the environment’s present state that must be met for
the Behavioral Profile to be activated. They make
reactivity to have a conditional nature, e.g. “my
preferred temperature is 22oC when I am at home
after 7 pm”.

– Postconditions represent desired patterns in the en-
vironment’s future state that must be accomplished
by the device in order to honor the profile. Be-
havioral Profiles do not explicitly declare how the
environment (its constituent objects) must adapt,
but they just provide information about the desired
environment state and let smart objects decide how
to meet the requirements, depending on their internal
logic and built-in actuators.

Variable substitution in Behavioral Profiles is possible to
allow postcondition elements to be bounded to unknown
precondition elements as in “whatever the location Alice is
in, if that location is a room x, then that room x should have
a temperature of 24oC”, which is a very simple but powerful
mechanism for Alice to force every room to be aware of her
preferred temperature as she gets in.

The XML representation of this Behavioral Profile in SoaM
is:

1 <adaptationProfile id="urn:uuid:prof1" expires="
PT10M">

2 <variable id="x"/>
3 <precondition subject="urn:uuid:alice"
4 predicate="http://www.awareit.com/onto/2005/12/

location#isLocatedIn" >
5 <objectVariable ref="x"/>
6 </precondition>
7 <precondition subject="x"
8 predicate="http://www.w3.org/1999/02/22-rdf-

syntax-ns#type">
9 <objectResource ref="http://www.awareit.com/onto

/2005/12/location#Room"/>
10 </precondition>
11 <postcondition subject="x"
12 predicate="http://www.awareit.com/onto/2005/12/

temperature#hasTemperature">
13 <objectLiteral datatype="http://www.w3.org/2001/

XMLSchema#int">
14 24
15 </objectLiteral>
16 </postcondition>
17 </adaptationProfile>

Of course, this Behavioral Profile can only be honored if
a smart object providing information about Alice’s location is
present, along with other device exhibiting operation capabil-
ities over the room temperature.

Context Information, Constraints and Behavioral Profiles
are tightly interconnected: Behavioral Profiles’ preconditions
are resolved against existing Context Information in order to

generate Constraints (by substituting variables in the post-
conditions) that can be executed by the appropriate smart
objects in the environment, thus implementing the context-
aware reactive behavior.

A. Smobject

A Smobject (a portmanteau for “smart object”) is the agent
we have designed for representing a context-aware reactive
entity in the SoaM architecture. The way a smobject is
connected to the actual physical device, sensors or actuators
is out of the scope of SoaM standardization being highly
platform-dependent so that designers are free to select the best
choice depending on existing requirements.

Smobjects are able to capture a subset of environmental
information, declared in their perception capabilities, and
provide that perceived context information under request to
other smobjects o entities. Smobjects are also able to act upon
the same or other subset of environmental conditions, declared
as operation capabilities, in order to modify them as required
via constraints. Figure 2 depicts the smobject communication
interfaces.

(QYLURQPHQW

'HYLFH

6PREMHFW

3HU
FHS

WLRQ

2SHUDWLRQ

&DSDELOLWLHV

'
LV
F
R
Y
H
U\

&RQWH[W�

,QIRUPDWLRQ

%HKDYLRXUDO�

3URILOHV

&RQVWUDLQWV

id619962296 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 2. Smobject communication interfaces.

We have designed the internal architecture of the smobject
as a composition of different functional components. These
components can be grouped into two major sets: the Smob-
jectBase components and the SmobjectAware components.

The SmobjectBase components are always active, providing
the basic operation of the smobject: perceiving information
through sensors, annotate it semantically and make it available
to other entities; and receive constraints representing requested
changes acting upon the effectors appropriately.

The SmobjectAware components provide full autonomous
context-aware reactivity and intelligent capabilities to the
smobject. These components are activated when no other
more intelligent external entities exist in the environment
orchestrating the smobjects.

That is, smobjects are intrinsically powered with reasoning
capabilities but, since they are resource-constrained devices,
their reasoning power and performance is severely limited.
If other external entities present in the environment, e.g.

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT6

computers, are able to provide a higher degree of reasoning
power, smobjects transfer the reasoning responsibility to them.

This flexible scheme makes smobjects able to cope and
adapt dynamically to a broad range of variable scenarios,
trying always to get the most from existing facilities in order
to provide an intelligent experience for users.

Figure 3 illustrates the internal structure of a smobject in-
cluding both SmobjectBase and SmobjectAware components.

We have designed four SmobjectBase core components in
SoaM:

• Discovery Module: is the component in charge of re-
ceiving search requests from other entities and replying
to them accordingly. We experimented with two alterna-
tives for discovery: initially UPnP SSDP was extended
with some additional headers, but later we designed a
full semantic discovery protocol called mRDP (Multicast
Resource Discovery Protocol), which is the one we finally
applied [43]. Anyhow, the Discovery Module features a
pluggable architecture where several discovery protocols,
honoring a concrete interface, can be plugged in to use
them simultaneously.

• Perceptor Manager: is the component in charge of man-
aging the perceptor interfaces, gathering all the semantic
information from them, ultimately obtained via built-in
device sensors, in order to make it available to requesting
parties via the HTTP interface. Perceptors are semantic
gateways that annotate data obtained by sensors using
RDF and OWL.

• Effector Manager: is the component in charge of manag-
ing the effector interfaces, which ultimately operate the
built-in device actuators. The Effector Manager receives
the constraints that drive the smobject behavior, resolves
conflicts among them if required using the Conflict Re-
solver, to generate the applied constraints for the effector
interfaces. Effector interfaces are gateways that transform
semantic constraints into low-level operations over built-
in actuators. The Effector Manager also deals with the
constraints life-cycle, removing them periodically upon
expiration.

• Conflict Resolver: is the component that performs conflict
resolution among the set of received active constraints to
generate the final set of applied constraints that will be
effectively applied.

These components, performing the high-level management
functions, are identical for every smobject whatever its pur-
pose. Smobjects can behave very differently and be applied
for a broad range of solutions by creating environment specific
platform interfaces as explained below, however, the Smobject-
Base core components remain immutable, providing platform-
agnostic functionality.

On the other hand, the components that embody specific
device functionality in SoaM are represented through two
types of platform interfaces:

• Perceptors: they act as interfaces between the Perceptor
Manager and the built-in device sensors. Perceptors are
connected to device sensors using platform-specific li-
braries, APIs or system calls. Every perceptor implements

at least one of the declared perception capabilities of the
smobject. They collect the information read by the sensor,
annotate it semantically using the appropriate knowledge
domain ontology depending on the information type, and
make that information available to the Perceptor Manager.

• Effectors: they act as interfaces between the Effector
Manager and the built-in device actuators. Very much
as perceptors, effectors are connected to device actuators
using platform-specific libraries, APIs, system calls or
any other mechanism. Every effector is responsible of at
least one declared operation capability of the smobject.
The Effector Manager provides the effectors with the
constraints they are able to process depending on their
operation capabilities. Afterward, these logical effectors
act upon the built-in device actuators in order to carry
out the desired behavior.

It is noteworthy how the whole set of perception and
operation capabilities of the smobject are functionally imple-
mented by these logical perceptors and effectors, respectively,
which are connected to the actual physical device sensors and
actuators. Therefore, perceptors and effectors act as semantic
gateways to the physical components.

On the other hand, SmobjectAware components provide
the smobject with intelligent capabilities and autonomous
reactive behavior. Trough these components, the smobject is
able to receive behavioral profiles from requesting parties, re-
trieve capabilities and context information from other neighbor
smobjects, and finally perform reactive behavior based on all
this knowledge.

There are four SmobjectAware components:

• Profiles Manager: manages the life cycle of the behavioral
profiles in the smobject, removing them at expiration
and renewing them under request. It receives the profiles
through the HTTP interface, passing them along to the
Awareness Engine for processing.

• Entity Manager: periodically searches for other smobjects
in the environment using installed discovery protocols.
The Entity Manager is the component in charge of
communication with other smobjects, retrieving their
capabilities and context information, as well as the local
smobject context information provided by the Perceptor
Manager, and making the resulting knowledge available
to the Awareness Engine.

• Awareness Engine: whenever a behavioral profile ex-
ists, it retrieves the required context information from
other smobjects (including the local smobject) via the
Entity Manager and resolves the profile generating the
constraints, which are passed along to the Constraints
Manager.

• Constraints Manager: manages the life cycle of the
constraints, dispatching, renewing and finally removing
them when no longer required in the local smobject via
the Effector Manager. Removal of constraints may have
two different causes: either the context information has
changed from the last profile resolution, or the original
profile that generated the constraint has been removed or
not renewed by the requester.

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT7

(QYLURQPHQW

6PREMHFW

+773�

LQWHUIDFH

3HUFHSWRU
3HUFHSWRU�

0DQDJHU

(IIHFWRU�

0DQDJHU

(IIHFWRU

6HPDQWLF

WULSOHV

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

&RQVWUDLQWV

6PREMHFW�

&RQILJXUDWLRQ

3HUFHSWRU
3HUFHSWRU

(IIHFWRU
(IIHFWRU

6HPDQWLF

WULSOHV

&DSDELOLWLHV

&DSDELOLWLHV

'LVFRYHU\�

0RGXOH

'LVFRYHU\

&RQIOLFW�

5HVROYHU

3�6HQVRU3�6HQVRU6HQVRU

3�6HQVRU3�6HQVRU$FWXDWRU

3URILOHV�

0DQDJHU

&RQVWUDLQWV�

0DQDJHU

(QWLW\�

0DQDJHU

$ZDUHQHVV�

(QJLQH

&RQWH[W

,QIRUPDWLRQ

3URILOHV

&RQWH[W

,QIRUPDWLRQ

&RQVWUDLQWV

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

%HKDYLRXUDO

3URILOHV

6PREMHFW$ZDUH�

FRPSRQHQWV

6PREMHFW%DVH�

FRPSRQHQWV

&RQVWUDLQWV

%HKDYLRXUDO�3URILOHV

&RQIOLFW�

5HVROXWLRQ�

6WUDWHJLHV

$SSOLHG�

&RQVWUDLQWV

$FWLYH�

&RQVWUDLQWV

&DSDELOLWLHV

id870130453 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 3. Smobject internal structure.

Designed in such a way, the smobject is a full context-aware
reactive entity pursuing a major goal: to adapt its behavior
accordingly to changes in the environment, that is, to changes
in perceived context information.

Smobjects are sensitive to environmental changes via both
its direct perception capabilities, represented by platform
interfaces to built-in sensors; and its indirect perception capa-
bilities, represented by fellow smobjects in the neighborhood
whose information is collected. Smobjects implement the
desired behavior through direct operation capabilities over the
effectors. That is, smobjects can perceive all the surrounding
context information, even that provided by other smobjects,
but they can only operate their own built-in actuators (perceive
globally, act locally).

This model represents, from our point of view, the au-
tonomous context-aware decentralized reactivity desired for
semantic devices: driven by the expressive behavioral profiles,
the smobject collects context information from the environ-
ment both directly and from other existent smobjects via
HTTP requests, it resolves the profiles against this context
information, and generates the constraints that ultimately affect
its behavior.

B. Orchestrator

We have designed an optional entity in the SoaM archi-
tecture called Orchestrator, generally hosted in an advanced
computing platform, that extends the functionality of the

SmobjectAware components to take advantage of more intel-
ligent and powerful reasoning mechanisms.

This entity strongly resembles others present in centralized
architectures such as the context broker of CoBrA, providing
similar functions. The main difference is that SoaM can
operate without this central component, in a full decentralized
way.

Basically, orchestrators are formed by the same individual
components as the SmobjectAware, behaving the same way
except that the “AwarenessEngine” is renamed as “Orchestra-
tor Module” and features an attached high-level Reasoner.

Orchestrators are named this way, because they perceive
and coordinate existing smobjects in the environment in order
to implement a more refined and centrally directed context-
awareness process. The orchestrator is the agent where the
reasoning can be fully exploited and pushed to its limits, thus
is the entity that may exhibit more intelligence in the SoaM
architecture, as well as more computing capabilities.

Another important difference between smobjects and or-
chestrators is that while the Constraints Manager at the Smob-
jectAware discards constraints not suitable for the local smob-
ject, the Constraints Manager at the Orchestrator processes
all the constraints, finding the appropriate smobjects to inject
them into.

Therefore, the main role of the orchestrator is to process
behavioral profiles for the environment, applying advanced
reasoning mechanisms, resolve the profiles into constraints and
send those constraints to the appropriate smobjects.

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT8

An orchestrator exposes several services through its com-
munication interfaces:
• Discovery: replies to discovery requests issued by other

entities.
• Context information retrieval: provides requesting entities

with the context information collected by the orchestrator
from all the managed smobjects, augmented after reason-
ing.

• Behavioral profiles management: provides management
operations over the profiles that represent the required
environmental behavior the orchestrator is in charge of.

Orchestrators do not only provide these services, but also
they request some from other entities:
• Discovery: orchestrators search the network continuously

for smobjects and retrieve their capabilities.
• Context Information retrieval: orchestrators request con-

text information from smobjects in order to build a
comprehensive knowledge base of the environment over
which reasoning can be performed.

• Constraints management: orchestrators inject constraints
into smobjects to drive their behavior, managing them as
needed.

Figure 4 depicts the communication interfaces of the or-
chestrator.

id458239171 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 4. Orchestrator communication interfaces.

The orchestrator implements a more sophisticated context-
awareness process by managing and orchestrating the smob-
jects. The steps carried out by the orchestrator are:

1) Listen for behavioral profiles: the reception of a profile
is the event that triggers the context-awareness process.

2) Discover existing smobjects.
3) Retrieve context information from the smobjects.
4) Apply description logics based on available ontologies

and domain rules to augment the context information.
5) Resolve existing behavioral profiles against the aug-

mented context information obtaining the constraints.
6) Identify the smobjects whose operation capabilities can

honor the generated constraints and inject those con-
straints into them.

7) Manage and renew the constraints’ influence on the
smobjects as needed.

These activities are carried out continuously by the orches-
trator, whenever at least one behavioral profile exists.

2UFKHVWUDWRU

+773�

LQWHUIDFH

3URILOHV�

0DQDJHU

&RQVWUDLQWV�

0DQDJHU

&RQWH[W�,QIRUPDWLRQ

�5')�2:/�

&RQVWUDLQWV

2UFKHVWUDWRU�

&RQILJXUDWLRQ

'LVFRYHU\�

0RGXOH

'LVFRYHU\

(QWLW\�

0DQDJHU

2UFKHVWUDWRU�

0RGXOH

%HKDYLRXUDO�3URILOHV

5HDVRQHU

&RQWH[W

,QIRUPDWLRQ

3URILOHV

&RQVWUDLQWV

&RQVWUDLQWV

&RQVWUDLQWV

'RPDLQ�UXOHV

%HKDYLRXUDO�

3URILOHV

2QWRORJLHV

id448711328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 5. Orchestrator internal structure.

The orchestrator functional components are depicted in Fig-
ure 5. The internal architecture resembles the SmobjectAware
except for two new modules:
• Orchestrator Module: whenever a behavioral profile is

stored, it retrieves the context information from the
smobjects via the Entity Manager, resolves the profile
applying description logics embodied in ontologies as
well as knowledge domain rules if available, generating
the constraints, which are passed along to the Constraints
Manager.

• Reasoner: implements one or several reasoning mecha-
nisms, such as description logics or inference rules. It
receives context information directly obtained from envi-
ronmental entities and returns that information augmented
via reasoning.

Moreover, the communication flow that linked the Con-
straints Manager to the Effector Manager in the smobject
architecture is substituted by a link between the former and
the Entity Manager, since the constraints are injected through
HTTP communication into external smobjects (as opposite to
internal communication between SmobjectAware and Smob-
jectBase components within a smobject).

The mission of the orchestrator is both to augment and
enrich context information through reasoning as well as to co-
ordinate smobjects behavior to implement the required goals.
The orchestrator, if present, is devoted to reasoning for the
sake of other smobjects and to creating apparent high-level
intelligence in the environment.

C. SoaM client

We have designed a SoaM entity called SoaM client that
acts on behalf of a user or other entity (e.g. an smobject),
disseminating behavioral profiles through the environment in

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT9

order to obtain personalized behavior and reactivity from
existing smobjects.

The SoaM client does not expose any service to other
entities, acting solely as a client. Its internal architecture
is very simple, easily embeddable in resource-constrained
platforms, since it is only composed of three components:
• Discovery Module: periodically searches the environment

for orchestrators or smobjects, using the provided discov-
ery protocols.

• Entity Manager: manages the information related to the
entities found in the network, orchestrators and smob-
jects, retrieving their capabilities in the latter case.

• Profiles Manager: injects the client’s behavioral profiles
into the appropriate entities, renewing them as needed.

The SoaM client is the entity that triggers the whole process
of behavioral change and adaptation in the environment by
injecting the profiles into the orchestrator if present, or into
the smobjects if no orchestrator exists.

D. Topologies

There are some remarkable differences to be aware of
when deciding whether to use or not an orchestrator in the
environment.

From our point of view, the following are the major advan-
tages of the orchestrator-powered topology:
• More intelligence: the orchestrator provides reasoning

mechanisms over context information that augment the
knowledge base about the environment.

• Reduced network traffic: the orchestrator acts as an
“information attractor”, a central point where context
information converges. This greatly reduces the traffic
compared to the smobjects-only scenario (see below).
In the worst case where each smobject needs context
information from all the other smobjects, the amount of
connections to collect the data is n×(n−1), being n the
number of smobjects in the environment. In a medium
case, where any smobject must collect information from
50% of the available smobjects, the number of connec-
tions is n×(n−1)

2 .
In the presence of an orchestrator, the amount of con-
nections to collect context information is just n: one
connection per smobject from the orchestrator.
Figure 6 compares the amount of connections required
as the number of smobjects increases. While the network
traffic increases exponentially with the amount of smob-
jects in the smobjects-only architecture, this increase is
lineal in the orchestrator-powered architecture .

On the other hand, among the major advantages of
smobjects-only topology of SoaM are:
• Seamless deployment: the cooperation among smobjects

emerges naturally anywhere as they discover each other,
there is no need for deploying or providing a central point
of control. This feature supports the requirement about
the serendipitous and spontaneous nature of Ubiquitous
Computing.

• Fault tolerance: smobjects-only networks do not rely on
a single central point of control, but the responsibilities

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19

Smobjects

C
on

ne
ct

io
ns

W/o orchestrator - Worst case

W/o orchestrator - Medium
case
With orchestrator

id462398015 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 6. Number of connections for retrieving context information with and
without orchestrator.

are distributed among all the nodes. Any node is equally
important and a single failure does not interrupt the pro-
cess. Orchestrator-powered topologies are out of service
if the orchestrator fails.

• Distributed reasoning: autonomous intelligent and collab-
orative entities represent much better from our point of
view the vision of semantic gadgets and smart devices
presented in the introduction.

The obvious conclusion is that both topologies are useful
and must be selected depending on the circumstances: if an
orchestrator is available, it must be used to coordinate environ-
mental behavior with more intelligent and traffic-optimization
features; in the absence of such orchestrator, smobjects are
still able to autonomously form a context-awareness network
and provide the required behavior.

V. IMPLEMENTATION AND PROTOTYPES

The initial hardware and software platforms selected for
hosting the first prototypes of smobjects were Digi Con-
nectCore 7U (also known as FS Forth UNC20) and Digi
ConnectCore 9U (FS Forth UNC 90).

The ConnectCore 7U is an embedded platform powered
with an ARM7 microprocessor running at 55 MHz, a µClinux
kernel and a stripped-down Java Virtual Machine called mi|k|a.
The ConnectCore 7U also featured 8 Mb Flash and 16 Mb
RAM, 2 serial interfaces and Ethernet connectivity, easily
convertible into Wi-Fi connectivity, in a relatively small form
factor of 6.28 cm × 1.85 cm × 1.04 cm (12.08 cm3, see Figure
7).

The ConnectCore 9U is an pin-to-pint compatible upgrade
of ConnectCore 7U, featuring a much more powerful 180 MHz
ARM9 processor, 16 MB Flash and a Linux (not µClinux)
kernel in the same form factor.

All the components of the SmobjectBase and Smob-
jectAware sets were implemented in Java, along with some
helper classes and functions. Reusability of existing Java code
from desktop computers was difficult because of the limited
processing power and memory of ConnectCore platforms, as

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT10

Fig. 7. Image of the ConnectCore 7U platform that hosted the smobject.

well as mi|k|a limitations in terms of core Java libraries (mi|k|a
implements a subset of Java 1.3).

There were two especially challenging issues we faced when
trying to implement semantic web technologies in this limited
platform: RDF parsing and description logics reasoning.

RDF parsing involved a previous phase of XML parsing
since we used RDF/XML serialization of context information.
After testing several alternatives, MinML [46] was chosen as
underlying XML parser and a customized version of RDF
Filter [31] for RDF parsing. As described in the next section,
RDF parsing (including XML parsing) is one of the most
costly activities in terms of computing time in the smobject
platform.

However, implementing a limited semantic reasoner in the
smobject was even more challenging. Available RDF or OWL
APIs could not be used here due to the constraints mentioned
above. A simple library and reasoning engine, especially
designed for dealing with RDF triples in limited platforms,
was implemented, tested and improved until acceptable results
were obtained.

Optimizations in terms of performance can be achieved in
many algorithms by creating memory structures that speed
up the process. Nevertheless, memory is a scarce resource in
embedded platforms, so our design sacrificed performance in
order to increase implementation feasibility.

On the other hand, since the orchestrator was intended to
run on non resource-constrained devices, all the problems
derived of using limited platforms and constrained Java virtual
machines were avoided, as well as existing APIs could be
applied.

We implemented the four main modules (Profiles Manager,
Constraints Manager, Entity Manager and Orchestrator Mod-
ule) in such a way that they could be run in two different
modes: as different concurrent subprocesses or sequentially
within the same subprocess.

As concurrent subprocesses the overall performance im-
proved due to parallel activities; for example, the Entity
Manager could update the list of smobjects, while the Con-
straints Manager renewed constraints on existing ones. Our
design dealt with possible concurrency problems derived from
simultaneous accesses from different execution threads.

We designed a pluggable architecture for reasoners, very
similar to the one we used for the discovery protocols, so that
any kind of reasoner could be applied without affecting other
modules.

We used Jena 2 Semantic Web Framework for developing
all the semantic web related activities in the orchestrator,

such as serializing and deserializing RDF/XML, performing
description logics reasoning or even rule reasoning, since Jena
provides several built-in reasoners.

Finally, prototype SoaM clients were implemented to test
the whole architecture.

VI. EVALUATION

Several performance aspects of the prototype implementa-
tion were evaluated both for the smobjects-only and for the
orchestration-powered topologies.

A testing scenario resembling a home environment was
deployed including smobjects for representing a simulated
location system, a TV set, a temperature control system, an
“alerter” in a laptop and a Hi-Fi system. A number of behav-
ioral profiles were designed to obtain automatic environmental
reactivity depending on certain situations, for example “turn
off the TV if I leave the TV room” or “alert me if I am leaving
home and the weather forecast informs it is going to rain”
(this information was obtained by a perceptor in the laptop
smobject that retrieved the forecast from Weather.com, anno-
tated it semantically and made it available to other surrounding
smobjects).

Several ontologies were reused, mainly from SOUPA [13],
and others were designed from scratch to embody the knowl-
edge of some involved domains such as the TV domain, the
weather domain and the location domain, the latter including
concepts such as room, building or town.

A particularly interesting issue about the ontology we cre-
ated for the location domain is the application of the transitive
property islocatedIn and its inverse contains as well as
the symmetric property nearby to infer the location relation-
ships among the deployed elements. In fact, the majority of
behavioral profiles we designed demanded certain reactivity of
smobjects depending on their location; for example, to turn on
an Hi-Fi system in a certain room nearby the user’s location.

These situations promoted the application of ontologies and
description logics reasoning in order to successfully obtain the
required reactivity. In the concrete scenarios described above
an average of 30-50 triples were selectively collected from sur-
rounding smobjects, and augmented around 50% once OWL
reasoning was applied (mainly due to inferences obtained
through the location ontology). This “augmented” context
information was then matched against the previously injected
behavioral profiles in order to determine the constraints that
finally embodied the desired environmental reactions.

The results of the tests using the completely decentralized
smobjects-only architecture are depicted in Figure 8, illustrat-
ing the amounts of time required by the smobject to perform
every activity.

As already mentioned two activities take most of the
operating time: context information retrieval, which includes
HTTP communication to poll surrounding smobjects and RDF
parsing of the received data; and description logics reasoning.

Our tests also pointed out that the performance of the smob-
ject may be severely affected by external or platform issues
such as the garbage collection process, or being intensively
polled by other entities during a short period of time. This

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT11

0

500

1000

1500

2000

2500

3000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e
(m

s)

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id258511312 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 8. Performance measures of the smobjects-powered CC9U topology.

kind of situations arises in limited devices, very sensitive to
additional work load, and must be taken into account when a
constant reactivity response time is required.

While the smobject implementation in the ConnectCore
7U (CC7U) platform exhibited the above mentioned limi-
tations, the ConnectCore 9U (CC9U) prototype performed
exceptionally well. Therefore, we deployed the smobject-only
topology with ConnectCore 9U devices hosting SmobjectBase
and SmobjectAware components (thus featuring autonomous
semantic capabilities), while the orchestrator-powered topol-
ogy was deployed in an scenario populated by more limited
ConnectCore 7U devices hosting SmobjectBase components
coordinated by the central orchestrator.

In the smobjects-only topology, the average time required
by a CC9U smobject to complete a full cycle including
retrieving context information from other smobjects, gener-
ating new triples through reasoning, resolving the behavioral
profiles against the context information and executing these
constraints, was around 2.28 seconds for the above described
scenario.

The orchestrator-powered topology performed similarly,
around 2.59 seconds, being remarkably slowed by the limited
CC7U smobjects, where XML processing and HTTP commu-
nication at the context information retrieval phase are costly
in terms of time (see Figure 9).

The orchestrator ran in a Pentium-M 1.86 GHz with 1
GB RAM and enjoyed all the advantages of full computing
resources. It is especially noteworthy how the use of the
Jena API for OWL reasoning reduced the reasoning time
to an almost imperceptible amount, due to the extensive
optimizations for representing the RDF graph in memory used
by Jena. However, profile resolution performed relatively bad
compared to the other activities. The approach applied here
was to convert the profile into a rule to feed the general rule
engine provided by Jena, but this mechanism can probably be
optimized in the future.

Since constraints operation is an activity carried out in the
CC7U smobject, thus being slowed again by this resource-
constrained platform, the performance of this phase is not

0

500

1000

1500

2000

2500

3000

3500

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e
(m

s)

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id259050468 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 9. Performance measures of the orchestrator-powered CC7U topology.

remarkably improved.
Figure 10 compares the performance of both topologies

for the described scenario in absolute terms, while Figure 11
compares them in terms of relative time required for each
activity to be carried out.

0

500

1000

1500

2000

2500

3000

3500

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Test

T
im

e
(m

s) Orchestrator-powered
CC7U
Smobjects-only CC9U

id259271437 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 10. Comparison of performance measures for the smobjects-only CC9U
and orchestrator-powered CC7U topologies.

VII. CONCLUSION

The web model and Semantic Web technologies can provide
the infrastructure over which intelligent Ubiquitous Computing
architectures can be successfully designed. After analyzing
past efforts in this direction, we created SoaM, a pure web-
based architecture that relies on Semantic Web technologies
for providing the required intelligent capabilities, thus creating
synergies with the web communication model.

Smobjects provide semantically annotated perceptions via
HTTP interfaces while they are able to operate the environ-
ment using concepts declared in OWL vocabularies about
different knowledge domains. Moreover, the SmobjectAware
components make smobjects full context-aware semantic enti-
ties, able to autonomously gather required context information

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Smobjects-only
CC9U

Orchestrator-
powered CC7U

Constraints operation

Profile resolution

Reasoning

Context information
retrieval

id258168000 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Fig. 11. Comparison of relative effort for the activities in the smobjects-only
CC9U and orchestrator-powered CC7U topologies.

from fellow smobjects, reasoning upon that information and
carrying out the appropriate behavior.

There are two ways of deploying SoaM in a concrete
environment: a distributed smobjects-only topology and a
centralized orchestrator-powered topology.

Tests demonstrated how the smobjects-only topology, hosted
in powerful embedded platforms such as the ConnectCore 9U,
is able to rival the centralized orchestrator-powered topology,
at least in scenarios with a limited amount of exchanged
semantic information among entities.

Moreover, the smobjects-only topology features a more
serendipitous and spontaneous collaboration model among
devices, better representing the scenarios envisioned originally
by Ubiquitous Computing and Ambient Intelligence. Emerging
natural collaboration among smobjects promote the vision
of a Pervasive Semantic Web everywhere in order to make
environments smarter and more reactive.

We consider that a decentralized web-powered infrastruc-
ture, such as the smobjects-only topology of SoaM, is the most
suitable alternative to design collaborative semantic devices.

There are still some work and future research in this
direction involving using and extending SoaM, for example:
migrating the smobject components to a wireless sensor net-
work platform such as Intel Mote2 (featuring 13 MHz up to
416 MHz of computing power); deciding in which scenarios
the orchestrator-powered or the smobjects-only topology is
more suitable; how behavioral profiles can be generated auto-
matically by analyzing past user behaviors, or how they can
be augmented with additional constructions to represent more
complex situations; how applying other logics models, such as
fuzzy logic, can complement description logics in Ubiquitous
Computing; and finally, more research involving users has to
be carried out to discover all the possibilities of intelligent
semantic devices in real-world scenarios.

ACKNOWLEDGMENT

This work has been partially supported by the Department of
Industry, Commerce and Tourism of the Basque Government

under the SAIOTEK research program, and the Cathedra of
Telefonica Moviles at the University of Deusto, Bilbao, Spain.

REFERENCES

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In HUC ’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, pages 304–307,
London, UK, 1999. Springer-Verlag.

[2] John Barton and Tim Kindberg. The cooltown user experience. Hewlett-
Packard, 2001. Technical Report HPL-2001-22.

[3] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE -
a FIPA-compliant agent framework. In Proceedings of the Practical
Applications of Intelligent Agents, 1999.

[4] Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web by Its Inventor. Harper San Francisco,
1999.

[5] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform
Resource Identifiers (URI): Generic Syntax, 1998. IETF RFC 2396.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: A
new form of web content that is meaningful to computers will unleash a
revolution of new possibilities. Scientific American, 284(5):28–37, May
2001.

[7] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-
aware pervasive computing environments. In Workshop on Ontologies
and Distributed Systems. IJCAI-2003, August 2003.

[8] Harry Chen, Tim Finin, and Anupam Joshi. Using owl in a pervasive
computing broker. In Workshop on Ontologies in Agent Systems,
AAMAS-2003, Melbourne, Australia, July 2003.

[9] Harry Chen, Tim Finin, and Anupam Joshi. A context broker for
building smart meeting rooms. In Craig Schlenoff and Michael Uschold,
editors, Proceedings of the Knowledge Representation and Ontology for
Autonomous Systems Symposium, 2004 AAAI Spring Symposium, pages
53–60, Stanford, California, March 2004. AAAI, AAAI Press, Menlo
Park, CA.

[10] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-
aware pervasive computing environments. Special Issue on Ontologies
for Distributed Systems, Knowledge Engineering Review, 18(3):197–
207, May 2004.

[11] Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in in the
context broker architecture. In Proceedings of the Second Annual IEEE
International Conference on Pervasive Computer and Communications.
IEEE Computer Society, March 2004.

[12] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin, and Anupam
Joshi. Intelligent agents meet semantic web in a smart meeting room. In
Proceedings of the Third International Joint Conference on Autonomous
Agents & Multi Agent Systems (AAMAS 2004), New York City, NY, July
2004.

[13] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. Soupa:
Standard ontology for ubiquitous and pervasive applications. In First
Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous’04), Boston, MA, August 2004.

[14] Martin Duerst and Michel Suignard. Internationalized Resource Identi-
fiers (IRIs), 2005. IETF RFC 3987.

[15] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1, 1999. IETF RFC 2616.

[16] John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott D.
Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart. HTTP
Authentication: Basic and Digest Access Authentication, June 1999.
IETF RFC 2617.

[17] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catterall, and
Stephen Pink. Supporting service discovery, querying and interaction
in ubiquitous computing environments. Wireless Networks, 10(6):631 –
641, November 2004.

[18] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A middleware
for building context-aware mobile services. In Proceedings of IEEE
Vehicular Technology Conference, 2004.

[19] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an osgi-
based infrastructure for context-aware applications. IEEE Pervasive
Computing, 3(4):66–74, 2004.

[20] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented
middleware for building context-aware services. Journal of Network
and Computer Applications, 28(1):1–18, 2005.

DRAFT - DRAFT J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005DRAFT - DRAFT13

[21] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. World Wide Web Consortium, May 2004.
W3C Member Submission.

[22] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan,
Rafik Chibout, Nicole Levy, and Angel Talamona. Developing ambient
intelligence systems: A solution based on web services. Automated
Software Engineering, 12(1):101–137, 2005.

[23] European Commission IST Advisory Group (ISTAG). Scenarios for
ambient intelligence in 2010. Technical report, EU Commission, 2001.

[24] European Commission IST Advisory Group (ISTAG). Ambient intelli-
gence: from vision to reality. Technical report, EU Commission, 2003.

[25] European Commission IST Advisory Group (ISTAG). IST research
content. Technical report, EU Commission, 2003.

[26] Tim Kindberg and John Barton. A web-based nomadic computing
system. Computer Networks: The International Journal of Computer
and Telecommunications Networking, 35(4):443–456, 2001.

[27] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell,
Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard
Morris, John Schettino, Bill Serra, and Mirjana Spasojevic. People,
places, things: web presence for the real world. Mobile Networks and
Applications, 7(5):365–376, 2002.

[28] Ora Lassila and Mark Adler. Semantic gadgets: Ubiquitous computing
meets the semantic web. In Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential, pages 363–376, 2003.

[29] Simon St Laurent. Cookies. McGraw-Hill, Inc., New York, NY, USA,
1998.

[30] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin.
Ontology-enabled pervasive computing applications. IEEE Intelligent
Systems, 18(5):68–72, September-October 2003.

[31] Meggison Technologies. RDF Filter, 2001. http://rdf-
filter.sourceforge.net/. Accessed on 27 May 2006.

[32] Martin Modahl, Bikash Agarwalla, Gregory Abowd, Umakishore Ra-
machandran, and T. Scott Saponas. Toward a standard ubiquitous com-
puting framework. In Proceedings of the 2nd workshop on Middleware
for pervasive and ad-hoc computing, pages 135–139, New York, NY,
USA, 2004. ACM Press.

[33] Davy Preuveneers and Yolande Berbers. Suitability of existing service
discovery protocols for mobile users in an ambient intelligence envi-
ronent. In Proceedings of the International Conference on Pervasive
Computing and Communications, pages 760–764. CSREA Press, June
2004.

[34] Eric Rescorla. HTTP Over TLS, May 2000. IETF RFC 2818.
[35] Manuel Román and Roy H. Campbell. Gaia: enabling active spaces. In

Proceedings of the 9th workshop on ACM SIGOPS European workshop,
pages 229–234, New York, NY, USA, 2000. ACM Press.

[36] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware
platform for active spaces. SIGMOBILE Mob. Comput. Commun. Rev.,
6(4):65–67, 2002.

[37] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. A middleware
infrastructure for active spaces. IEEE Pervasive Computing, 1(4):74–
83, 2002.

[38] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic compo-
sition of web services using semantic descriptions. In Web Services:
Modeling, Architecture and Infrastructure workshop in ICEIS 2003,
Angers, France, April 2003.

[39] Joo Geok Tan, Daqing Zhang, Xiaohang Wang, and Heng Seng Cheng.
Enhancing semantic spaces with event-driven context interpretation.
In Proceedings of Pervasive 2005: Third International Conference on
Pervasive Computing, volume 3468 of Lecture Notes in Computer
Science, pages 80–97. Springer, 2005.

[40] UPnP Forum. UPnP Device Architecture v.1.0.1 Draft, 2003.
[41] Juan Ignacio Vazquez, Joseba Abaitua, and Diego López de Ipiña.

The ubiquitous web as a model to lead our environments to their full
potential. In Proceedings of the W3C Workshop on the Ubiquitous Web.
World Wide Web Consortium, 2006. Position paper.

[42] Juan Ignacio Vazquez, Diego López de Ipiña, and Iñigo Sedano. SoaM:
An environment adaptation model for the pervasive semantic web. In The
2nd Ubiquitous Web Systems and Intelligence Workshop (UWSI 2006),
colocated with ICCSA 2006. Lecture Notes in Computer Science - LNCS,
volume 3983, pages 108–117, May 2006.

[43] Juan Ignacio Vazquez, Iñigo Sedano, and Diego López de Ipiña. Eval-
uation of orchestrated reactivity of smart objects in pervasive semantic
web scenarios. In Proceedings of The Second International Workshop
on Semantic Web Technology For Ubiquitous and Mobile Applications

(SWUMA’06) at the 17th European Conference of Artificial Inteligence
(ECAI 2006), August 2006.

[44] Xiaohang Wang, Jin Song Dong, ChungYau Chin, SankaRavipriya
Hettiarachchi, and Daqing Zhang. Semantic space: An infrastructure
for smart spaces. IEEE Pervasive Computing, 3(3):32–39, 2004.

[45] Mark Weiser. The computer for the 21st century. SIGMOBILE Mobile
Computing and Communications Review, 3(3):3–11, 1999.

[46] John Wilson. MinML: a minimal XML parser, November 2001.
http://www.wilson.co.uk/xml/minml.htm. Accessed on 27 May 2006.

Juan Ignacio Vazquez Juan Ignacio Vazquez completed the degree of
Computer Science Engineering at the University of Deusto. Since 1997 he
works as a lecturer of telematics and mobile computing at the University of
Deusto, and since 2003 he also works as a researcher of MoreLab - Mobility
Research Lab at Tecnológico Fundación Deusto. His main research interests
are web-based communications, the application of semantic web technologies
to Ubiquitous Computing, and mobile computing.

Diego López de Ipiña Dr. Diego López de Ipiña completed a PhD at the
University of Cambridge, UK on Sentient Computing in 2002. After that,
he took part on the Trigenix start-up, specialized on providing personalized
interfaces to mobile devices. Since September 2003 he is a lecturer at
the University of Deusto, Spain, and researcher of MoreLab - Mobility
Research Lab. His main research interests are middleware architectures for
AmI, context-aware mobile computing and the synergy between Web 2.0 and
Pervasive Computing.

Iñigo Sedano Iñigo Sedano completed the degree of Telecommunications
Engineering at the University of Deusto. He currently works as a researcher
of MoreLab - Mobility Research Lab at Tecnológico Fundación Deusto, with
an special emphasis on wireless communication technologies and wireless
sensor networks.

