Evaluation of Orchestrated Reactivity of Smart Objects
in Pervasive Semantic Web Scenarios

Juan Ignacio Vazquez and Iiiigo Sedano and Diego Lopez de Ipifa'

Abstract. The Ubiquitous Web concept encourages the applica-
tion of existing well-known and state-of-the-art web technologies in
Ubiquitous Computing scenarios. A particular interpretation of the
Ubiquitous Web is the Pervasive Semantic Web, where the joint syn-
ergies of the Semantic Web model and Ubiquitous Computing tech-
nologies are integrated in order to create intelligent environments
populated by smart objects.

In this paper we present a general vision and preliminary results on
the evaluation of SOAM — Smart Objects Awareness and Adaptation
Model —, a pure 100% Web-based environment reactivity model that
uses orchestration mechanisms to coordinate existing smart objects
in Pervasive Semantic Web scenarios in order to achieve automatic
adaptation to user preferences.

1 INTRODUCTION

Ubiquitous Computing is aimed at creating intelligent spaces to em-
power users in everyday tasks at home, work, street, vehicle and so
forth, aligned with the vision of Ambient Intelligence [11] [12] [13].
In this vision, environments are proactive perceiving users’ surround-
ing information, often referred to as context, and reacting in the ap-
propriate way to facilitate users’ activities. In fact, more and more
smart spaces engineers and designers are starting to think that the
most valuable resource in such environments is not computing power,
communication or storage capabilities, but user interaction [6] [24]
[23].

Environment adaptation can be achieved from two different ap-
proaches::

1. Active influence: any mechanism in which the agent explicitly
commands other agents or objects to change their state or perform
an action. Examples of active mechanisms s are configuration pro-
cesses and operation invocation techniques such as CORBA, RMI
or SOAP.

2. Passive influence: any mechanism in which an agent disseminates
certain information, expecting that other agents change their state
or perform an action at their discretion to create a more adapted
environment [27].

While active influence represents traditional “command and con-
trol” mechanisms, agents applying passive influence do not com-
mand the target agents or objects to do anything concrete; it simply
publishes/broadcasts desired preferences expecting that the others re-
act, changing their state in a positive way [26].

1 MoreLab — Mobility Research Lab. University of Deusto, Avda.
Universidades, 24, 48014 Bilbao, Spain. email: {ivazquez, dip-
ina} @eside.deusto.es, isedano@tecnologico.deusto.es

For instance, by broadcasting a preference stating “my preferred
ambient temperature is 24°C”, a user does not control explicitly any
device, but some of latter could be user-aware and set the environ-
ment’s temperature accordingly .

Passive mechanisms are not intrusive, but probably their effects
are less predictable.

We have experimented with active mechanisms in pervasive com-
puting environments in the past, for example, applying the EMI?lets
middleware [16], with positive results. But as any other active in-
fluence model, it requires explicit user intervention continuously to
control the environment.

Passive mechanisms are complementary to active ones and can
serve to automatically adapt the environment in a initial phase, while
allowing users to customise it later via explicit interaction. For in-
stance, when a user enters a car, the temperature, radio station and
driving settings, could be automatically configured to his prefer-
ences/characteristics without explicit command, being the user free
to change them explicitly afterwards.

Passive mechanisms have not been very much explored in perva-
sive computing scenarios; most of existing systems use several forms
of active mechanisms, such as WebServices/SOAP (UPnP [5], Task
Computing [17] [18] [22], WSAMI [10]), Jini, CORBA, and so forth.

We have designed a passive influence model called SOAM — Smart
Objects Awareness and Adaptation Model — that applies Semantic
Web technologies to create context-aware environments that react au-
tomatically to user preferences, technically called adaptation profiles,
without explicit user intervention.

But there are still some problems that other similar architectures
exhibit and we tried to solve in our model. In this paper we explain
the basics of SOAM and provide initial results on the evaluation of
this approach to create more intelligent and reactive environments.

2 THE PERVASIVE SEMANTIC WEB VISION

The World Wide Web Consortium is currently promoting the Ubig-
uitous Web vision: webs of interconnected services and resources
everywhere in the real world, thus augmenting users’ experiences.

As a particular approach to the Ubiquitous Web, we coined the
term Pervasive Semantic Web to designate the result of applying Se-
mantic Web technologies to Pervasive Computing scenarios in order
to perform reasoning processes. The main representatives of those
technologies are RDF (Resource Description Framework)[30] and
OWL(Ontology Web Language)[29].

These scenarios are populated by different kinds of devices with a
number of capabilities such as temperature sensing, video capturing,
door opening, and so on. Our strategy is based on using ontologies to
represent knowledge about different domains, so that we use appro-



priate ontologies for temperature, physical access control, location
and so on.

In the Pervasive Semantic Web, devices are interconnected, host-
ing knowledge about environmental perceived conditions and using
references to link resources inside and outside this space. This vision
determines the creation of a new type of logical environment in ubig-
uitous computing scenarios: a personal area semantic web with infor-
mation flows back and forth among communicating devices, sharing
their knowledge about users inside the environment and coordinating
their tasks via distributed reasoning procedures in order to provide an
ambient intelligence experience.

Appliances

Location-constrained
Web of Knowledge

Pervasive
Semantic Web

Wireless Sensor
Networks

User devices

Sensors &
Effectors

Figure 1. The Pervasive Semantic Web.

2.1 Challenges

As we mentioned before, people need to be released from the bur-
den of interacting with the environment all the time and concentrate
on their goal, not on eliminating the barriers. Surrounding objects
should be able to perceive users’ goal, existing barriers and perform
the required operations to facilitate human activities. This is the final
goal of Ambient Intelligence.

After analysing the scenarios depicted by Weiser et al. in [28] and
the EU ISTAG in [11] [12] [13], as well as proposed ubiquitous com-
puting architectures integrating semantic web technologies such as
CoBrA [3] [1] [2], Gaia [19] [21] [20], Task Computing [17] [18]
[22] or Semantic Spaces/SOCAM [8] [25], we have found several
issues that drew our attention:

1. Our environments are getting more and more populated by elec-
tronic / automatic devices, sometimes with advanced complex in-
terfaces to operate them. Since they are neither context-aware nor
user-aware, they use to require manual operation (e.g.: PDA, home
multimedia devices, mobile phones, MP3 players, light control
systems, access control systems, and so forth).

2. The scenarios depicted in those visionary papers are far from be-
ing reached in real life nowadays: existing devices and environ-
ments are not very intelligent.

3. Existing experimental proposals integrate different unrelated tech-
nologies to solve a problem, making the resulting system heavier
and highly coupled.

4. There is a need of a suitable discovery protocol that can take ad-
vantage of semantic web information models during discovery.

We can only expect a high degree of intelligence in the environ-
ment if such environment is populated by intelligent devices. In this
type of scenario, devices are able to gather existing information,
share this information with others, analyse and reason upon the data,
and determine the best reactive behaviour to perform.

Of course, such environment should not be only composed of indi-
vidual autonomous devices acting by themselves, but a certain level
of coordination should arise, required to perform collaborative tasks
in consistent ways. Some devices feature specific types of perception
capabilities while other feature complementary ones; some can per-
form concrete operations over some set of environmental conditions
while other work and act over a different set of aspects.

Specialised appliances and heterogeneous objects are the com-
mon rule (heating systems, light bulbs, temperature control systems,
iris-based identification mechanisms, camera-based surveillance sys-
tems), but although concrete features are different, coordination and
collaboration can be achieved among them to truly realise the con-
cept of Ambient Intelligence.

While individual behaviours are still required, coordination boosts
devices to a further degree of intelligence, greater than the sum
of single capabilities. Nonetheless, coordination requires some kind
of communication framework, and thus, communication capabilities
among objects. Presently, only very advanced appliances have the
ability to carry out any sort of communication processes with fellow
devices.

Therefore, communication and intelligence have been considered
two attributes at the core of the Ubiquitous Computing / Ambient
Intelligence vision. Communication contributes to information shar-
ing and coordination of activities, while intelligence contributes to
analysing, reasoning and decision taking.

The Web model and Semantic Web technologies feature a series
of characteristics that seem to fulfil these two major attributes.

The joint application of the Web model and the Semantic Web
in pervasive computing scenarios results in a coherent architectural
model, since core technologies such as URI or namespaces constitute
their technological basis.

It is difficult to find a flexible mechanism for representing how
devices must behave under certain situations or contexts. Existing
approaches embody the behaviour in the form of small programs
hosted in the device [1]. This approach exhibits a severe limitation
when these programs need to be updated, as well as the behaviour of
devices is not self-descriptive.

Other approaches embody the behaviour in the form of rules [19]
[8], but they do not provide a way for entities to dynamically influ-
ence each other by injecting rules depending on the existing context.
This ability would allow a device to influence others in its surround-
ings, modifying their behaviour to make them context-aware and im-
plementing the passive influence concept. Of course, security and
authorisation mechanisms should me provided as well.

On the other hand, most of the previous work involving integration
of Semantic Web into Ubiquitous Computing architectures exhibit a
technological inconsistency mixing non-Web mechanisms with Se-
mantic Web technologies:

e The Context Broker Architecture (CoBrA) uses JADE API and
FIPA ACL (Agent Communication Language) for information ex-
change.

e Gaia relies on CORBA for communication and transport of RDF
payload.



e The Service Oriented Context-Aware Middleware uses JavaRMI
as protocol for RDF information exchange.

Not only these approaches seem somehow artificial, but they re-
quire the use of multiple libraries and process layers, resulting in
larger platform sizes, which is a major concern for limited device
platform deployment. Also, potential integration problems between
semantic web technologies and these communication mechanisms
can arise, since they were not designed to work together.

Despite HTTP is somehow simpler and less powerful than JADE,
CORBA or JavaRMI, it is a natural vehicle for communication in
Ubiquitous Computing scenarios (as demonstrated in projects such
as Cooltown [14] [15]), specially if Semantic Web technologies are
being applied.

One of the main problems in adopting HTTP as a Pervasive Com-
puting protocol is the lack of a suitable ubiquitous discovery mech-
anism. This concern is also present in the previous architectures,
that end up applying other architectures’ discovery protocols such
as SSDP [7] or Bluetooth SDP for this goal.

But, since RDF and OWL are being used for creating rich informa-
tion models, we came up with the possibility of designing a discovery
protocol able to explore these models instead of performing a mere
attribute-value matching.

Therefore, in our research we faced three main challenges:

e To completely embody influence over the environmental and de-
vice behaviour in the form of RDF behavioural profiles: “adapta-
tion profiles” that can be exchanged among existing entities.

e To create a pure 100% Ubiquitous Computing architecture exclu-
sively based on Web technologies to achieve technological con-
sistency, and reduce both platform size and potential integration
problems. HTTP security mechamisms such as basic or digest au-
thentication could provide the security level needed for the profiles
exchange.

e To create a light and suitable discovery protocol able to take ad-
vantage of the RDF representation of devices, services, people and
any other kind of resource.

SOAM - Smart Object Awareness and Adaptation Model — has
been designed in such as way that these requirements are fulfilled,
completely based on the Web model, thus seamlessly integrating se-
mantic web technologies, and featuring a passive influence model
based on “adaptation profiles”.

3 SOAM: SMART OBJECTS AWARENESS AND
ADAPTATION MODEL

SOAM defines different kind of entities or agents that exchange sev-
eral types of informational structures in order to coordinate its be-
haviour. In this section, those information structures and entities are
briefly described in order to better understand the testing and evalu-
ation processes.

3.1 Structures

Four types of information structures are needed in SOAM:

o Context Information: in SOAM, devices or smart objects perceive
and gather environment information via built-in sensors or any
other mechanism. This information is made available to request-
ing parties in a semantic annotated form using RDF/OWL, in or-
der to allow further reasoning. Figure 2 represents an example of

Context Information captured by a light sensor and made available
to any entity in the environment.

e (Capabilities: they inform about the perception capabilities and op-
eration capabilities of a smart object. Perception capabilities indi-
cate which kind of context information this object can capture,
while operation capabilities indicate which kind of context infor-
mation can be altered by this smart object, probably via some kind
of effectors.

e Constraints: smart objects’ behaviour can be influenced by other
agents using some data constructions called constraints, which de-
clare valid ranges on the desired state of the environment, so that
the object is in charge of driving adaptation honouring them.

e Adaptation Profiles: in SOAM, users or other devices do not gen-
erate low-level constraints to obtain environment adaptation, but
in turn they use high-level Adaptation Profiles. An Adaptation
Profile is a preference or environment adaptation requirement that
contains two different sections:

— Preconditions: represent existing requirements about the envi-
ronment’s present state, that must be met for the Adaptation
Profile to activate. It makes the adaptation to have a conditional
nature. Often, adaptation requirements are not fixed, e.g. a user
does not need his preferred temperature to be always 22°C, but
maybe only when he is at the car.

— Postconditions: represent desired patterns in the environment’s
future state that must be met for the adaptation to be considered
as honoured. Adaptation Profiles do not explicitly declare how
the environment (its constituent objects) must adapt, but it just
inform about the desired environment state and let smart ob-
jects decide how to meet the requirements, depending on their
internal logic.

Variable substitution in Adaptation Profiles is possible to allow
postcondition elements to be bounded to precondition elements as
shown in figure 3.

This Adaptation Profile can be read as “whatever the location Al-
ice is in, if that location is a room, then that room should have a tem-
perature of 24°C”, which is a very simple but powerful mechanism
for Alice to force every room to be aware of her preferred tempera-
ture as Alice gets in. Of course, this Adaptation Profile can only be
honoured if a smart object exhibiting operation capabilities over the
room temperature is present.

Adaptation Profiles are resolved against existing Context Informa-
tion in order to generate Constraints that can be sent to appropriate
smart objects in the environment.

3.2 Architecture

SOAM architecture is divided into three different types of entities:
Smobjects, Orchestrators, and Adaptation User-Agents.

A Smobject (a short for “smart object”) is an agent representing
an intelligent device, several devices or event part of a device. Smob-
jects capture a subset of environmental conditions, provide that per-
ceived Context Information under request, and act upon the same or
other subset of environmental conditions in order to modify them as
needed via Constraints.

The way a smobject is connected to the actual device, sensors or
effectors is out of the scope of SOAM standardization, being highly
platform-dependent so that designers are free to select the best choice
depending on solution requirements.



<rdf:Description rdf:about="urn:uuid:lightl">

30
</lit:hasLuminance>

</rdf:Description>

<lit:hasLuminance rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">

<rdf:type rdf:resource="http://www.awareit.com/onto/lighting#Light"/>

Figure 2. An example Context Information.

<variable id="x"/>
<precondition subject="urn:uuid:alice"

<objectVariable ref="x"/>
</precondition>
<precondition subject="x"

</precondition>
<postcondition subject="x"

24
</objectLiteral>
</postcondition>
</adaptationProfile>

<adaptationProfile id="urn:uuid:profl" expires="PT10M">

predicate="http://www.awareit.com/onto/locationf#isLocatedIn" >

predicate="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type">
<objectResource ref="http://www.awareit.com/onto/location#Room" />

predicate="http://www.awareit.com/onto/temperaturefhasTemperature">
<objectLiteral datatype="http://www.w3.0rg/2001/XMLSchema#int">

Figure 3. An example Adaptation Profile with one bounded variable.

Smobjects also act as control agents for the device or devices.
They need to access built-in sensors, effectors, communication ports,
maybe storage facilities if available on the device, and so forth.

An Orchestrator is an agent that perceives and coordinates exist-
ing smobjects in the environment to perform the adaptation process
following an Adaptation Profile. Orchestrators transform Adaptation
Profiles into concrete Constraints that are sent to appropriate smob-
jects to drive their behavior as explained below.

An Adaptation User-Agent is a piece of software, acting on behalf
of a user or other client device, that stores the owner’s Adaptation
Profiles and negotiates with surrounding Orchestrators the adaptation
process by exchanging those profiles.

Adaptation User-Agents silently start the process of adapting the
environment by finding an available Orchestrator to which they send
the Adaptation Profiles.

The process of environment adaptation is described in several
phases with communication flows illustrated in Figure 4.

1. Smobjects discovery and Capabilities retrieval: the environment
Orchestrator periodically scans the environment for smobjects
(via SSDP [7] multicast protocol or mRDP in the future as ex-
plained below) and retrieving their Capabilities using HTTP. The
overall sum of individual Capabilities of the existing smobjects
form somehow the Capabilities of the environment.

2. Orchestrator discovery: a user shows up in the environment pow-
ered with an Adaptation User-Agent that, on behalf of the user,
looks up for an existing Orchestrator using SSDP.

3. Environment capabilities retrieval: the Adaptation User-Agent
communicates with the Orchestrator and retrieves the Capabilities
of the environment (the overall set of existing smobjects’ Capabil-

ities).

4. Adaptation Profiles injection: the Adaptation User-Agent selects
the suitable Adaptation Profiles that can be processed by the envi-
ronment and sends them to the Orchestrator.

5. Reasoning: periodically, the Orchestrator retrieves Context Infor-
mation from existing smobjects, augmenting it by performing rea-
soning with description logics and stored inference rules. After
that, the Orchestrator checks if Adaptation Profiles’ preconditions
are matched against the augmented Context Information. When
this happens, postconditions are resolved and concrete Constraints
are finally generated.

6. Constraints processing: the Orchestrator sends the obtained Con-
straints to suitable smobjects, based on declared Capabilities. A
smobject processes the Constraints message and establishes the
internal mechanisms for the desired behaviour.

7. Smobject adaptation: eventually, the smobject expresses the new
behaviour, e.g. increasing the temperature, changing the TV chan-
nel, and so on, via effectors or connected devices.

8. Environment adaptation: from a higher viewpoint, individual
adaptation of smobjects creates an emerging coordinated environ-
ment adaptation honouring user’s Adaptation Profiles.

The overall result of applying SOAM is a context-aware reactive
environment, where smart objects are orchestrated to meet user’s
adaptation requirements.

4 IMPLEMENTATION AND EVALUATION

For testing purposes, we have implemented a prototype of SOAM
with the following characteristics:



Smobject

Environment

emelaal
3 &—Ca
AP—py Orchestrator sg——I Smobject
Secepee " C
Messages
Smobject

AP: Adaptation Profile
Ca: Capabilities
I: Context Information
Co: Constraints

' Smobject '

Figure 4. Diagram illustrating SOAM architecture.

e Smobjects: embedded platforms based on AMTEL ARM7 with
55 MHz of processor speed and 16 Mb RAM running pClinux.
The Smobject middleware was implemented in Java and runs on
top of Mika (a Java VM for embedded platforms).

e Orchestrator: a platform based on Intel Pentium-M 1.86 GHz with
1Gb RAM, running Windows XP. The Orchestrator middleware
was implemented in Java using Cybergarage libraries for UPnP
communication and Jena libraries for Semantic Web reasoning
processes.

In order to test the execution and performance of the implemen-
tation, we created an hypothetical scenario emulating a smart living
room and featuring the following devices: a Hi-Fi system, a TV set,
an ambient microphone, a laptop, a temperature control system, and
a light.

The scenario was completed with a test user called Bob featuring
four adaptation profiles:

e AdaptationProfilel: If Bob is located in x, then x must have a
temperature of 24°C.

e AdaptationProfile2: If Bob is working with the laptop in x, and
x has an ambient sound y, then y must be classical music with a
volume level of 3.

e AdaptationProfile3: If Bob is talking in x, and x has an ambient
sound of y, then y must have a volume level of 0.

e AdaptationProfile4: If Bob is watching TV in x, and x has an am-
bient light y, then y must illuminate x with yellow colour and have
a luminance level of 10.

As Bob entered the room, his adaptation profiles were injected
into the Orchestrator, which discovered the smobjects and retrieved
its capabilities during the initialization phase. Given an arbitrary ini-
tial state of those smobjects, the Orchestrator retrieved the Context
Information and reasoned over it using description logics and knowl-
edge rules. The resulting enriched information was checked against

Bob’ Adaptation Profiles in order to generate associated Constraints
that were sent to appropriate smobjects.

For instance, AdaptationProfilel was activated at all times and the
constraint requesting a temperature of 24°C in room1 was sent to
the temperature control system smobject. When Bob logged in the
laptop, AdaptationProfile2 was activated, generating constraints for
the Hi-Fi system smobject, requesting a classical music background
sound with a volume level of 3.

Figure 5 illustrates the measured times for different phases (smob-
jects discovery and capabilities retrieval, context information re-
trieval, reasoning at the orchestrator and constraints processing at
the smobject) that were performed during 16 different tests, obtain-
ing the average times shown in Figure 6.

Time (ms)

Test #

m Discovery
@ Context Information Retrieval @ Reasoning
O Constraints injection

@ Capabilities Retrieval

0O Constraints processing

Figure 5. Measured times for the different SOAM phases.

100%

90% + 1268
80% - O Constraints processing
(]
04
E 0% 0O Constraints injection
3 60% 1350 )
2 O Reasoning
g 50% 261
@ @ Context Information Retrieval
2 40% -
8 30% A m Capabilities Retrieval
[J]
14 )
20% -+ m Discovery
10% -+
0% -

Average time (ms)

Figure 6. Average measures and relative elapsed time for the different
SOAM phases.

As we can notice the most costly phases are Constraints injection
and processing at the smobject, due probably to platform limitations,
despite an ARM7-based platform running at 55 MHz seems to be
quite average for any embedded device.

On the other hand, reasoning at the Orchestrator is surprisingly
efficient, probably due to platform features and the absence of com-



munication latencies during this phase (communication is not needed
during reasoning).

Considering that smobjects discovery, Capabilities retrieval and
Context Information retrieval are performed by the Orchestrator in
the background continuously, the average time for environment adap-
tation requests (reasoning + Constraints injection and processing) in
our tests is about 2.87 seconds. Our conclusion is that when Bob en-
ters the room and exposes his adaptation profiles, existing devices
can react appropriately in a minimum time of about 2.87 seconds,
which is a quite promptly environment response. Maximum response
time depends on particular device operation, e.g. maybe 10 minutes
are required for the heating system to achieve the desired temperature
in a big room.

In most cases, an environment is populated by several users at a
time, e.g. intelligent meeting rooms, public transport vehicles, shops,
and so forth. These users could broadcast their Adaptation Profiles
to the existing environment Orchestrator in order to obtain a com-
mon personalized ambient. In case of conflict, the Orchestrator could
decide which constraints to apply, depending on priorities or other
available user information.

When many users disseminate their Adaptation Profiles through-
out a concrete environment the Orchestrator performance can be
severely affected. In order to determine how the amount of Adap-
tation Profiles is related to the performance of the reasoning process
for obtaining the constraints, we carried out several tests, where the
Orchestrator was provided with 4, 8, 16, 32, 64, 128 and 256 Adap-
tation Profiles. Obtained results are shown in Figure 7.

5000
4500 -
4000 -
3500 +
3000 -
2500
2000 |
1500
1000
500 -

Time (ms)

2
T

Figure 7. Orchestrator performance during reasoning with different
amounts of Adaptation Profiles.

As we can see, the Orchestrator performance is barely affected
with 4, 8, 16 and even 32 Adaptation Profiles, while from that point
ahead, the response time of the reasoning process almost doubles.

Initial estimation of the amount of Adaptation Profiles an environ-
ment must support is difficult. Considering that every user can dis-
seminate an average of 5 Adaptation Profiles, an Orchestrator similar
to the one we tested could support about 50 users, featuring a reason-
ing response time under 5 seconds.

We think that those response times can be improved via optimiza-
tion during evolution of our implementation. This improvement be-
comes a must when other less powerful platforms are intended to
host the orchestration process, as we are planning.

5 mRDP: MULTICAST RESOURCE
DISCOVERY PROTOCOL

The earlier versions of the SOAM platform, as many other architec-
tures, used SSDP for discovery. But as we stated earlier, in order to
fully take advantage of the potential of RDF during discovery, a new
protocol should be designed.

From our point of view such a protocol must meet the following
requirements:

e Able to query advanced devices (such as orchestrators) represent-
ing their internal state / managed information as RDF models.
Those models can be queried through languages such as SPARQL,
whose protocol uses HTTP interfaces.

e Able to cope with limited devices lacking RDF information mod-
els. The desired protocol must be also able to deal with simpler,
non SPARQL-based queries.

e Since a centralised device or entity registry is not suitable for per-
vasive computing scenarios, the protocol must feature multicast
communication.

Considering these requirements we designed a multicast protocol
over UDP, able to convey SPARQL queries as well as more simpler
attribute-value queries in a basic XML-based language called TiRDL
(Tiny Resource Discovery query Language).

The resulting protocol is mRDP (Multicast Resource Discovery
Protocol). mRDP conveys SPARQL or TiRDL queries in UDP mul-
ticast request packets. Receiving entities process the query and inject
the results into a requester provided callback URI using HTTP.

mRDP features two different commands:

e IDENTIFY: for resolving queries against existing RDF models in
the environment and obtaining the URI of the resource satisfying
the query.

o LOCATE: for locating SPARQL or HTTP endpoints where infor-
mation about a concrete resource can be provided.

SPARQL queries make mRDP extremely powerful: any mRDP
client application can search in the vicinity for any kind of resource,
including devices, services, documents, people information and so
on.

The steps involved in the mRDP discovery process are illustrated
in the following example:

1. A PDA application wants to display data about the owners of sur-
rounding devices.

2. The PDA application creates the SPARQL request using
the appropriate vocabularies and ontologies (e.g.: SELECT
?owner WHERE
?resource <rdf:type> <do:Device>.)).

3. The request is multicasted through the wireless network in a
mRDP IDENTIFY packet that includes a callback URI where the
application listens for responses.

4. Devices and appliances receive the request packet, execute the
query against their RDF information model, and, if matched, they
respond with an HTTP request to the callback URI conveying the
values for 2owner as well as SPARQL and / or HTTP URLs
where more information about that resource can be downloaded.

5. The PDA application collects all the possible values for 2owner
and retrieves the information from the supplied SPARQL or HTTP
URLs. Let us suppose that one of those values is the URI of Bob,
http://people.com/bobby.

(?owner <po:owns> ?resource



6. The PDA must retrieve all the possible information about the
different values of 2owner, not just that supplied by those
devices that processed the query. For instance, a device not
owned by Bob, may contain available information about him.
So, the PDA application multicasts a LOCATE command about
http://people.com/bobby.

7. All devices containing information about
http://people.com/bobby, respond with SPARQL
or HTTP interfaces where that information can be downloaded
from.

8. The PDA application downloads all the information about Bob
from the available surrounding sources, displaying it on the
screen.

The mRDP protocol itself is not complex at all and it represents
a kind of “multicast SPARQL protocol”. The mRDP client is very
light and can store predefined SPARQL queries as strings, without
any need for understanding the underlying syntax. The mRDP server
takes advantage of an integrated SPARQL engine for executing the
query and retrieving the results. Simpler queries, non SPARQL-
based, are also allowed via TiRDL for implementing mRDP servers
in more limited devices.

6 CONCLUSIONS AND FUTURE WORK

SOAM is an effort to create a passive influence model for automatic
environment adaptation to required conditions. SOAM applies Se-
mantic Web technologies for knowledge representation and reason-
ing (vocabularies and ontologies) and it can take advantage of exist-
ing standard ontologies, such as SOUPA[4], or CONON [9] for this
purpose.

We think that SOAM has some advantages over other alternatives,
such as its novel approach based on passive influence through ex-
change of “adaptation profiles”, its technological consistency relying
completely on web technologies and the capability and semantic rep-
resentation both of context information and the adaptation require-
ments.

Moreover, mRDP constitutes an innovative approach for resource
discovery in ambient intelligence environments, it is also strongly
based on web and semantic web technologies, and it will be incorpo-
rated into the architecture.

SOAM has been implemented and tested, obtaining some interest-
ing results about how distributed smart objects can be orchestrated to
achieve coordinated adaptation of the environment via passive influ-
ence. To the extent of our knowledge other alternatives lack of such
testing and concrete results.

There are some open research issues related to SOAM architecture
and passive influence models that still need to be investigated.

For dealing with conflict resolution when incompatible adaptation
profiles are injected, devices can be preconfigured with several strate-
gies depending on the particular device and situation: the first profile
wins, the last wins, find a balanced value, privileges, and so forth.

The centralised topology is one of the weakest points in all the
ubiquitous computing architectures that integrate semantic web tech-
nologies: the requirement of a central reasoner managing all the con-
text information impose some deployment requirements that are most
of times unacceptable in this kind of scenarios.

One of the future challenges of SOAM is to solve this problem
through a distributed choreographical model, without a central entity,
meeting much better the requirements of real pervasive computing
environments.

ACKNOWLEDGEMENTS

This work has been partially supported by the Department of In-
dustry, Commerce and Tourism of the Basque Government under a
SAIOTEK grant, and the Cathedra of Telefonica Moviles at the Uni-
versity of Deusto, Bilbao, Spain.

REFERENCES

[1] Harry Chen, Tim Finin, and Anupam Joshi, ‘A context broker for build-
ing smart meeting rooms’, in Proceedings of the Knowledge Represen-
tation and Ontology for Autonomous Systems Symposium, 2004 AAAI
Spring Symposium, eds., Craig Schlenoff and Michael Uschold, pp. 53—
60, Stanford, California, (March 2004). AAAI, AAAI Press, Menlo
Park, CA.

[2] Harry Chen, Tim Finin, and Anupam Joshi, ‘Semantic web in in the
context broker architecture’, in Proceedings of the Second Annual IEEE
International Conference on Pervasive Computer and Communica-
tions. IEEE Computer Society, (March 2004).

[3] Harry Chen, Tim Finin, and Anupam Joshi, Ontologies for Agents:
Theory and Experiences, chapter The SOUPA Ontology for Perva-
sive Computing, Whitestein Series in Software Agent Technologies,
Springer, July 2005.

[4] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi, ‘Soupa: Stan-
dard ontology for ubiquitous and pervasive applications’, in First An-
nual International Conference on Mobile and Ubiquitous Systems: Net-
working and Services (MobiQuitous’04), Boston, MA, (August 2004).

[5]1 UPnP Forum, UPnP Device Architecture v.1.0.1 Draft, 2003.

[6] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste,
‘Project aura: Toward distraction-free pervasive computing’, I[EEE Per-
vasive Computing, 1(2), 22-31, (2002).

[7]1 Yaron Y. Goland, Ting Cai, et al., Simple Service Discovery Proto-
col/1.0. Operating without an Arbiter, 1999. Internet Draft.

[8] Tao Gu, Hung Keng Pung, and Da Qing Zhang, ‘A service-oriented
middleware for building context-aware services’, Journal of Network
and Computer Applications, 28(1), 1-18, (2005).

[9] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing Zhang, ‘An
ontology-based context model in intelligent environments’, in Proceed-
ings of Communication Networks and Distributed Systems Modeling
and Simulation Conference, (2004).

[10] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan,
Rafik Chibout, Nicole Levy, and Angel Talamona, ‘Developing ambi-
ent intelligence systems: A solution based on web services’, Automated
Software Engineering, 12(1), 101-137, (2005).

[11] European Commission IST Advisory Group (ISTAG), ‘Scenarios for
ambient intelligence in 2010°, Technical report, EU Commission,
(2001).

[12] European Commission IST Advisory Group (ISTAG), ‘Ambient in-
telligence: from vision to reality’, Technical report, EU Commission,
(2003).

[13] European Commission IST Advisory Group (ISTAG), ‘IST research
content’, Technical report, EU Commission, (2003).

[14] Tim Kindberg and John Barton, ‘A web-based nomadic computing sys-
tem’, Computer Networks: The International Journal of Computer and
Telecommunications Networking, 35(4), 443456, (2001).

[15] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan,
Howard Morris, John Schettino, Bill Serra, and Mirjana Spasojevic,
‘People, places, things: web presence for the real world’, Mobile Net-
works and Applications, 7(5), 365-376, (2002).

[16] Diego Lépez de Ipifia, Juan Ignacio Vazquez, Daniel Garcia, Javier Fer-
nandez, and Ivan Garcia, ‘A reflective middleware for controlling smart
objects from mobile devices’, in Proceedings of sOc-EUSAI 2005:
Smart Objects & Ambient Intelligence, (2005).

[17] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin,
‘Ontology-enabled pervasive computing applications’, IEEE Intelligent
Systems, 18(5), 6872, (September-October 2003).

[18] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou, ‘Task computing
- the semantic web meets pervasive computing’, in Proceedings of 2nd
International Semantic Web Conference (ISWC2003), Sanibel Island,
Florida, (October 2003).

[19] Robert E. McGrath, Anand Ranganathan, M. Dennis Mickunas, and
Roy H. Campbell, ‘Investigations of semantic interoperability in ubiq-



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

uitous computing environments’, in Proceedings of the 15th Interna-
tional Conference Parallel and Distributed Computing and Systems
(PDCS), (2003).

Anand Ranganathan, A Task Execution Framework for Autonomic
Ubiquitous Computing, Ph.D. dissertation, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

Anand Ranganathan, Jalal Al-Muhtadi, and Roy H. Campbell, ‘Rea-
soning about uncertain contexts in pervasive computing environments’,
IEEE Pervasive Computing, 03(2), 62-70, (2004).

Evren Sirin, James Hendler, and Bijan Parsia, ‘Semi-automatic compo-
sition of web services using semantic descriptions’, in Web Services:
Modeling, Architecture and Infrastructure workshop in ICEIS 2003,
Angers, France, (April 2003).

Joo Sousa and David Garlan, The Aura Software Architecture: an In-
frastructure for Ubiquitous Computing, 2003. Carnegie Mellon Tech-
nical Report, CMU-CS-03-183.

Joo Pedro Sousa and David Garlan, ‘Aura: an architectural framework
for user mobility in ubiquitous computing environments’, in Proceed-
ings of WICAS3: the IFIP 17th World Computer Congress - TC2 Stream
/ 3rd IEEE/IFIP Conference on Software Architecture, pp. 29-43, De-
venter, The Netherlands, The Netherlands, (2002). Kluwer, B.V.

Joo Geok Tan, Daqing Zhang, Xiaohang Wang, and Heng Seng Cheng,
‘Enhancing semantic spaces with event-driven context interpretation’,
in Proceedings of Pervasive 2005: Third International Conference on
Pervasive Computing, volume 3468 of Lecture Notes in Computer Sci-
ence, pp. 80-97. Springer, (2005).

Juan Ignacio Vazquez and Diego Lépez de Ipifia, ‘A language for ex-
pressing user-context preferences in the web’, in WWW ’05: Special in-
terest tracks and posters of the 14th international conference on World
Wide Web, pp. 904-905, New York, NY, USA, (2005). ACM Press.
Juan Ignacio Vazquez and Diego Lopez de Ipifia, ‘An interaction model
for passively influencing the environment’, in Adjunct Proceedings of
the 2nd European Symposium on Ambient Intelligence, (2004).

Mark Weiser, ‘“The computer for the 21st century’, SIGMOBILE Mobile
Computing and Communications Review, 3(3), 3-11, (1999).

World Wide Web Consortium, OWL Web Ontology Language
Overview, World Wide Web Consortium, February 2004. W3C Rec-
ommendation.

‘World Wide Web Consortium, RDF Primer, World Wide Web Consor-
tium, February 2004. W3C Recommendation.



