

Towards a Canonical Software Architecture for Multi-Device WebLabs

Javier García-Zubía
Faculty of Engineering
University of Deusto

Apdo. 1, 48080 Bilbao, Spain
zubia@eside.deusto.es

Diego López-de-Ipiña
Faculty of Engineering
University of Deusto

Apdo. 1, 48080 Bilbao, Spain
dipina@eside.deusto.es

.

Pablo Orduña
Faculty of Engineering
University of Deusto

Apdo. 1, 48080 Bilbao, Spain
pablo@ordunya.com

Abstract – Traditionally the focus on WebLab design has been
placed on the hardware side, i.e. enabling data and program
transfer between a PC remotely accessible through TCP/IP and
its attached controllable/programmable device. Little attention
has been paid to the other communication segment going from
the controlling PC (WebLab server) to the remote users’ PCs,
since this has been regarded as a “solved software problem”.
Consequently, aspects such as security, scalability, accessibility,
user friendliness, or the possibility of collaborative work in
WebLabs have often been disregarded. This situation may be
resolved if a serious effort is placed on the definition of a proper
distributed software architecture for WebLabs. In this paper,
we describe such ideal software architecture, resulted from an
iterative process seeking a web-based, secure, scalable, multi-
user, multi-device WebLab.

I. INTRODUCTION

The concept of WebLab has been around since the early
nineties. Its development is widespread in laboratories of
analog [1] and digital [2] electronics, programmable logic [3]
or process control [4]. We can encounter good examples of
WebLabs in different countries: USA [5], Colombia [6],
Spain [3,7,8], Italy [9], Corea [4] and so forth.

A WebLab can be studied from different points of view:
• Didactical: didactic goals, quality and suitability of

the WebLab, didactic platform integration, etc.
[9,10,11,12]

• Hardware technology: cards, electronic prototypes,
data acquisition, etc. [6,10]

• Software technology: client/server design, security,
integration, etc. [10]

• Software development platforms: Web-Services [4],
LabView [2,13], C applications [14], JAVA [15],
Matlab [9], etc.

• Communication: through RS-232[16], TCP/IP[12],
XML[17], etc.

• Social: international solidarity, disabled people
adaptation, etc. [3].

The recent popularity of the WebLab concept, its different
approaches and the abundant existing bibliography only
prove the great activity on a field which is called to represent
a cornerstone of worldwide engineering education.

WebLabs are traditionally designed by electronic and
control engineers who naturally tend to place a major
attention on the hardware side of the system. They usually
follow a three step process: (1) choose a programmable
device, (2) attach it to a server, accessible through the web or
simply a TCP/IP socket, and (3) design a simple protocol to
record programs in the remote device, send inputs and

receive outputs. Unfortunately, the software side involved in
the last two steps is often paid too little attention and hence a
poor usage of the remotely available programmable hardware
devices is achieved. We believe that better software
architectures for WebLabs should lead us to more user-
friendly, cost-efficient, reliable and scalable WebLabs.

In this paper we illustrate the successive improvements
applied to the software architecture of our WebLab (see Fig.
1) to progress from a 1-1-1 (1 user, 1 server, 1 programmable
device) to an N-1-N WebLab. Our final goal is to achieve a
reliable, cost-efficient, user-friendly, collaborative and
scalable WebLab. Progressively we examine the advantages
and disadvantages of the different iterations of our software
architecture to conclude with a definition of what we
consider may be the canonical architecture for WebLabs.

The structure of the paper is as follows. In section 2 we
review the WebLab concept. Section 3 shows the different
evolutions of the software architecture of our WebLab and
proposes a new architectural model for WebLabs which will
allow among other things collaborative work. Finally, section
4 draws some conclusions.

Fig. 1. University of Deusto’s WebLab-PLD

II. WEBLAB OVERVIEW

A remote WebLab, from now on WebLab, is a

hardware/software system which allows remote control and
monitoring of an electronic programmable device via web.
WebLabs are usually employed in universities to enable
students to access the lab resources from anywhere with an
Internet connection. In a nutshell, a WebLab is a ubiquitous
lab. A WebLab allows for:
• the adjustment of electronic devices on which a task is

deployed
• the programming of the control device if there is one,
• the induction of inputs to the programmable device,

• the personalisation and configuration of the
programmable device,

• the data acquisition by means of a DAQ card or
virtual equipment,

• monitoring the evolution of an experiment by means
of a WebCam or data capturing program,

• the WebLab administration: login, password, security,
etc.

• learning with material complementary to the
assignment.

Thus, an analog electronics WebLab [1] allows a student
to configure using hardware or software the electronic circuit
to analyse, adjust the function generator and oscilloscope or
observe the results in the PC’s terminal. On the other hand, a
Programmable Logic Device (PLD)-based [12] WebLab can
be used to remotely program an integrated circuit (or any
other programmable device CPLD or FPGA device), induce
inputs into it, or monitor the device outputs by means of
WebCams or data captures exported to files.

In the first example, the WebLab configures the electronic
circuits with some limitations whereas in the second, the
inputs and outputs are always the same. In the latter example,
the WebLab allows the programming of a device, whereas in
the former there is no device to program. Moreover, in the
analog electronics example there is a need for an oscilloscope
or a data acquisition card, whereas in the PLD case the
outputs may be LEDs or moving engines viewed from a
WebCam.

The usual components of a WebLab are:
• A server machine (WebLab server) together with the

software that exports the service to students. The best
solution is to offer a web front-end to control the
remote device. However, we often encounter a simple
socket server which accepts commands and inputs
and sends outputs through a TCP/IP channel.

• A PC where the client software is run, which allows
the student to connect to the WebLab server and
complete an assignment remotely. The device from
which the user interacts could potentially also take the
form of a PDA or mobile phone capable of
communicating through HTTP.

• The piece of hardware over which the assignment is
defined: an analog filter, a PLD with switches and
LEDs, a robot, and so forth.

• Traditional electronic instrumentation to excite inputs
and analyze the outputs: function generator,
oscilloscope, data acquisition cards and so on. The
instrumentation hardware requires of a
communication means and the associated software for
remote configuration, such as GPIB, LabView, RS-
232, etc.

• A hardware/software equipment to excite logic inputs
like switches: PIC, RS-232, etc.

• A WebCam and perhaps a microphone to receive live
feedback of the experiment evolution.

From the above we can observe that PCs, software
applications, hardware cards, networks and communication
protocols are needed in the construction of a WebLab. An

unfortunate trend observed is that each available product
seems to suggest its own communication protocol. Therefore,
there is an opportunity to standardise the interface to
WebLabs by process interaction standards such as Web
Services.

III. SOFTWARE ARCHITECTURE EVOLUTION

The software architecture of our WebLab has gone

through the following four iterations:
1. Socket and Applet-based Proprietary solution [3].
2. Web-based solution [12].
3. AJAX-based Web solution [12].
4. MicroServer-based AJAX-based Web solution.
As a result of this iterative process we have envisioned the

architecture of a next-generation WebLab which will allow
mainstream access to WebLabs worldwide, we have called
this architectural concept “Universal WebLabs”.

A. Socket and Applet-based Proprietary Solution

Fig. 2. shows the first iteration of the software architecture
we devised for our WebLab. A proprietary standalone client
implemented in C communicated using the SDLnet library
with the WebLab server. This server was in charge of
communication through RS-232 with a PIC acting as bridge
of a programmable PLD. In parallel to the command-line
application remotely controlling the programmable device,
an ActiveWebCam applet by PySoft was used to observe in
real-time the status of the hardware being programmed. The
WebLab server kept user-access and usage control. Each
time only one user could be accessing the remote device.
This was a prototype only used by lecturers and guests.

Fig. 2. 1st Iteration Software Architecture

The main drawbacks of this solution were:
• Interoperability issues. Both the client and server

solutions could only be run on the MicroSoft
Windows platform.

• User-friendliness issues. The users needed to start
two independent applications, the controlling
standalone C-based application and the Java viewing
applet. Moreover, the controlling client offered a
primitive command-interface through which FTP-like
commands could be used to upload new logic to the
programmable device, induce inputs and read outputs.

• Security issues. On the server side, the firewall has to
be configured to enable traffic offer two non well-
known ports rather than using already opened ports
such as 80 for HTTP. In addition, there was not built-
in user access control. Consequently, there was fear to
open the WebLab to the public, and it was only used
for demonstration purposes within the University’s
LAN.

B. Web-based Solution

Fig. 3 shows the second iteration of our software

architecture. Here, the server-side was composed of three
elements: a) an Apache web server hosting a webpage with
the controlling and viewing applets, b) a Python server which
communicates though the serial port with the PIC that
controls a PLD and c) a webcam server broadcasting the
images captured. In this iteration, the client application was
totally based in Java, accessible through a web browser with
a pre-installed Java plug-in. The controlling applet
communicated with the controlling server, whereas the
viewing applet connected with the webcam server.

The WebLab server’s logic was updated to keep user-
access and usage control. Each time only one user could be
accessing the remote device for a maximum period of time
(120 secs). The only requirement imposed to students was to
use a browser with a pre-installed Java plug-in.

Fig. 3. 2nd Iteration Software Architecture

This solution still presented some issues regarding user-

friendliness and security:
• User-friendliness issues. We had two independent

applets executing on the same webpage. The
download of the applets took some time and required
the user browsers to have installed the Java plug-in.

• Security issues. A security alert was raised every
time the user downloaded the controlling applet since
this required access to the file system of the user in
order to upload a file with the new programming
logic. Moreover, we still had to keep opened two
ports in the firewall: one for the webcam server and
another for the controlling server. This supposed a
hassle for the firewall maintenance.

With this iteration, we finally gave access to students of
the “Programmable Logic” module to access the system from
an Internet browser outside the University.

C. AJAX-based Web Solution

The third iteration of our WebLab, currently in use, is

shown in Fig. 4. A single client application shown in the
user’s browser communicates with the server through HTTP.
We now have a web-based firewall-safe system programmed
with AJAX (Asynchronous JavaScript and XML). The main
benefit of this web development approach is that it only uses
tools readily available on any web browser, i.e. XHTML,
DOM and JavaScript. Therefore, no plug-in installations are
required on the users’ browsers.

Fig. 4. 3rd Iteration Software Architecture

The server side is composed of the following elements: a)

a Java server continuously capturing images from a WebCam
and saving them into a directory exported by an Apache web
server, b) a Python server controlling the communication
with the programmable device and c) an ASP.NET
application based on Mono and running on the Apache Web
Server offering a web-service interface to client applications.

The client application is now a pure HTML/JavaScript
solution which follows the AJAX web interaction model, i.e.
rather than changing the full content of a page every time
there is an interaction between the client and server, only the
portion of the page affected by the interaction is modified.
This technology is being applied successfully to sophisticated
web applications such a Gmail, Google Maps or Flicr. The
key of this technology is that the control commands,
responses and images are transmitted asynchronously,
without interrupting the user interaction with the system, by
means of the JavaScript’s XmlHttpRequest object [18].

The data exchanged between the AJAX client and the
Mono-based server is through the standard Web Services
transport protocol, namely SOAP. The Mono-based server
delegates the arriving web-service method invocations to the
Python server controlling the programmable device. The
latest captured image is continuously being retrieved through
HTTP by the AJAX-based client by accessing to a well-
known URL.

The main drawbacks of this solution are:

• Interoperability issues. Although the client-side is
multi-platform, the server software still relies on the
Windows platform. Both the serial communication
and storing software programs only run on Windows.

• Server Software Maintenance issues. Far too many
technologies are used on the server side: Java,
Python and ASP.NET. For maintenance purposes it
would be interesting to concentrate all the
functionality in a single component developed with
only one programming technology.

• Scalability issues. The server provides service to
only one user accessing the remotely programmable
device each time. Ideally we would like to network N
devices controllable by the same server instance, and
accessible simultaneously by N users.

• Image Streaming issues. The reception of the
remotely programmable device images is still far
from optimum. Each image is transmitted as a JPEG
file instead of a streaming solution which would
allow for a more up to date and reliable tracking of
the remote device’s activities.

• Security issues. This iteration still lacks a semantic
verification of the programs uploaded to the
programmable device which would prevent the
upload of hazardous software. However, now only
port 80 is used in the communication between the
client and server side of the system. Therefore, this
solution is firewall-safe.

D. MicroServer AJAX Web-based Solution

We are currently progressing to the WebLab architecture

shown in Fig. 5. This solution will be web-based, firewall-
safe, more scalable (will provide several programmable
devices) and support cooperative work among group
members. N groups of users from any client platform will be
able to access simultaneously to any of the N networked
programmable devices.

Fig. 5. 4th Iteration Software Architecture

In our third WebLab iteration, the communication and

control of I/O was performed through RS-232 (see Fig. 6) by
means of a PIC microcontroller acting as a bridge between
the server and the electronic prototype. Moreover, the
WebCam was connected to the server by means of an USB
port. Therefore, if we wanted a single server to control

several prototypes and WebCams we would need several
serial and USB ports together with the corresponding
coordination protocol for all those devices.

Fig. 6. 3rd Iteration Electronic Prototype Connectors.

In the currently ongoing development of the fourth

iteration of our WebLab we will replace the PIC
microcontroller by an assortment of IP-accessible
MicroServers, as shown in Fig. 7. The adoption of
MicroServers will turn our WebLab into a much more
flexible and scalable distributed system:

• The WebLab server will no longer have to deal with
the low-level RS-232 communication details. It will
instead communicate through HTTP by means of data
encoding standards as XML.

• The MicroServers will allow the set of programmable
devices within a WebLab to be connected in a LAN.
The MicroServers will connect either through an
Ethernet port or will host an IEEE 802.11 chip to
allow them to be wirelessly connected among
themselves and the controlling WebLab server.

• The electronic prototypes attached to the
MicroServers will also be capable of exchanging
information among themselves. The information does
not only flow between the electronic prototype and
the server, but it also can flow among prototypes with
the help of the MicroServers.

With the incorporation of MicroServers, each
programmable device in a WebLab will be transformed into a
networked node. Therefore, network administrators will now
have to deal with a new type of device and ensure it is
operational on a 24x7 basis.

An interesting application of this more scalable WebLab,
now we can have N students simultaneously accessing to the
N available programmable devices, is that its use could be
shared with organisations external to our University. For
instance, taking into consideration the hour zone differences
between Spain and South America, our WebLab could be
accessible to South American Universities during Spanish
night hours. That activity would not suppose a big
disadvantage for our students, since their use of the WebLab
is very marginal at night.

Fig. 7. 4th Iteration Electronic Prototype Connectors.

On the client-side, the current AJAX-based solution will

be improved to add groupware features, i.e. the capability of
working in group, and better image retrieval features. On the
other hand, the WebLab server will concentrate all the
functionality currently dispersed in three components: the
webcam server, the controlling Python server and the Web
Services hosted in Apache. It will be reimplemented in a
single programming language (probably Python). This server
will now communicate with N autonomous MicroServers,
small hardware devices attached to each programmable
device, providing two main function: (1) writing programs
and configurations into the remote devices, induce inputs and
capture outputs, and (2) be accessible through TCP/IP. Each
MicroServer will implement a cut-down web server. Access
control to each of these MicroServers will be regulated by
the WebLab server. In addition, we will incorporate IP
cameras also accessible through TCP/IP, without having to
attach them to a PC.

In conclusion, this fourth iteration will provide us with a
cross-platform, secure, collaborative multi-user multi-device
solution, which maximises the use of the hardware resources
allocated. The core idea behind our fourth iteration
architecture will be to “push away” from the WebLab server
all the functionality specific to a given programmable device.

E. Towards Universal WebLabs

In this section we explain our vision on the future of

WebLab architectures.
The adoption of IP-accesible MicroServers giving access

to attached programmable devices removes the previous
location dependency between the server and its associated
programmable devices. Before, the server and the electronic
prototypes have to be co-located in the same lab premises.

However, now they can be placed in any network accessible
location. For instance, university A may implement
programmable logic prototypes and host the WebLab server
whilst university B may provide an assortment of process
control prototypes, still controlled by university A’s server.

There is a clear analogy between the World Wide Web
and MicroServer-based Multi-Device WebLabs. Everybody
can create a new web page, store it in a web server and
automatically make it accessible on the web. Likewise, any
organisation could create a set of network accessible
prototypes and register them with a controlling WebLab
server. In essence, we could be talking about “WWW
hardware”.

However, before this vision can become reality is
necessary to standardize the controlling interfaces offered by
a WebLab MicroServer. Every compliant WebLab
MicroServer should implement the same Web Service
interface, so that a given WebLab server can act as proxy
between the users’ browser and the MicroServers controlling
any kind of programmable device. More ambitiously, we
could even consider the concept of “WebLab MicroServer
Plug&Play”. The software stored in a MicroServer could
implement automatic discovery, interaction and registration
mechanisms similar to the ones provided by UPnP [19].
Thus, a manual registration of each MicroServer added with
the WebLab server would not be required any longer. In
essence, we would be moving from a centralised (all
programmable devices in one physical location) to a
distributed cross-organitational WebLab [20].

Finally, from a didactical point of view collaborative work
is paramount. It is usually applied to sharing documents.
Applied to WebLabs, collaborative work will enable to do
the same with hardware devices. WebLabs clearly improve
the possibilities to share devices in a remote way.

We have not found any references in the literature
mentioning the possibilities for cooperative work opened by
WebLabs. We believe that the software architecture proposed
by our fourth generation WebLab presents very promising
collaborative features and will truly approach to the final
goal of a WebLab, i.e. to allow almost the same kind of
interaction as the one achieved by a group of people working
in the same physical lab.

IV. CONCLUSIONS

Traditionally little attention has been payed to the

software part of WebLabs. This paper has shown the benefits
of aiming better software solutions. A good software solution
should lead to a more efficient use of hardware resources.
Consequently, we have applied an iterative process to the
software architecture of our own WebLab in order to
progress from a 1/1/1 (user/server/programmable device) to
an N/1/N WebLab.

 As a result of our iterative study we suggest a new
canonical software architecture based on the concepts of
Web Services and MicroServers which presents the
following features: cross-platform, secure and firewall-safe
and scalable (multi-user and multi-device).

V. ACKNOWLEDGMENTS

WebLab-PLD has been part of the project WebLab-PLD

supported by the Regional Government of the Basque
Country (Spain): Department of Industry, Commerce and
Tourism, SAIOTEK 2004, S-OD04UD18.

VI. REFERENCES

[1] Gustavsson, I. et al. “A flexible remote electronics

laboratory". 2nd International Symposium in Remote
Engineering and Virtual Instrumentaion, REV 2005,
Brasov (Romania), July 2005

 [2] Barrón, M. “Laboratorios virtuales para enseñanza por
internet" en I Jornadas de Tendencias sobre eLearning,
TEL 2005, Madrid (Spain), febrero de 2005.

[3] García Zubía, J. “Programmable Logic and WebLab” V
European Workshop on Microelectronics Education,
Proceedings of the 5th European Workshop on
Microelectronics Education ISBN: 1-4020-2072-4, pp:
277-282, 2004.

 [4] Ko, C.C.; Chen, Ben. M.; Chen, Jianping. Creating Web-
Based Laboratories, Springer-Verlag 2004, London,
ISBN: 1-85233-837-7

[5] Alamo, J.A., MIT Microelectronics Weblab, Marzo, 27,
2001. http://web.mit.edu

[6] Pérez M. et al. “Laboratorios de acceso remoto. Un
nuevo concepto en los procesos de Enseñanza-
Aprendizaje”.
http://digital.ni.com/worldwide/latam.nsf/web/all/F5436
9A0EC8C0B4486256B5F006565A9

[7] Kahoraho Bukubiye, E., Larrauri Villamor, J.I. "A
WebLab System for the Study of the Control and
Protection of Electric Motors", Proceedings of
Telecommunication, Electronics and Control, pp. 7.
Cuba 2002. ISBN: 84-8138-506-2, 2002

[8] Rodrigo, V.M; Bataller, F.M.; Baquero, M. and Valero,
A. “Virtual Laboratories in Electronic Engineering
Education”. Proceedings ICEE International Conference
on Engineering Education. ISBN: 84-600-9918-0, 5 pp
in CD, Valencia, España, 2000.

[9] Almeida, P., Viera Coito, F., Brito Palma, L. “An
Environment for Remote Control”. 1st International
Workshop on e-learning and Virtual and Remote
Laboratories, VIRTUAL-LAB’2004, Setubal, August
2004.

[9] Casini, M.; Prattichizzo, D. y Vicino, A. “e-Learning by
Remote Laboratories: a new tool for control education” .
The 6th IFAC Conference on Advances in Control
Education, Finland, 2003.

[10] Cabello, r. et al. "EMERGE: A European Educational
Network for Dissemination of OnLine Laboratory
Experiments". Innovations 2004, Ed. iNNER, 2004.

[11] Soysal, O. "Computer Integrated Experimentation in
Electrical Engineering Education over Distance"
Proceedings of ASEE 2000 Annual Conference, Saint
Louis, MO, June 2000.

[12] García-Zubia, J et al. “A new approach for
implementing remote laboratories: a practical case”. 2nd
International Symposium in Remote Engineering and
Virtual Instrumentaion, REV 2005, Brasov (Romania),
July 2005

[12] Bagnasco, A.; Ponta, D.; Scapolla, A.M. “Remote
esperiments in electronics: pedagogical issues". 2nd
International Symposium in Remote Engineering and
Virtual Instrumentaion, REV 2005, Brasov (Romania),
July 2005

[13] Gomes, C. “Distance Learning Remote Laboratories
using LabVIEW”. 1st International Workshop on e-
learning and Virtual and Remote Laboratories,
VIRTUAL-LAB’2004, Setubal, August 2004

[14] Aliane, N.; Martínez, A.; Fraile, A.; Ortiz, J. "LABNET:
laboratorio remoto para control de procesos". Actas de
las XI Jornadas de Enseñanza Universitaria de la
Informática, JENUI 2005, pp: 515-522, ISBN: 84-9732-
421-8, Julio 2005, Madrid (Spain)

[15] Pelcz, A. et al. “Remote experiments using JAVA:
Inplementations in the Virtual Electro Lab project". 1st
International Workshop on e-learning and Virtual and
Remote Laboratories, VIRTUAL-LAB’2004, Setubal,
August 2004

[16] Gomes, L.; Costa, A. “Embedded sytems introductory
course supported by remote experiments ". 1st
International Workshop on e-learning and Virtual and
Remote Laboratories, VIRTUAL-LAB’2004, Setubal,
August 2004.

[17] Bagnasco, A.; Chirico, M.; Scapolla, A.M. "XML
Technology to Design Didactical Distributed
Measurement Laboratory (RmwLAB) Instrument",
IEEE Transactions on Instrumentation and
Measurement, VOL. 54, Nº 1, february 2005

[18] McLellan, D. “Very Dynamic Web Interfaces”,
O'Reilly Xml.com, http://www.xml.com/pub/a/2005/
02/09/xml-http-request.html, February 2005.

[19] The Universal Plug and Play Forum, 2005,
http://www.upnp.org/.

[20] Rasche, A. et al. “Distributed Control Lab". 1st
International Workshop on e-learning and Virtual and
Remote Laboratories, VIRTUAL-LAB’2004, Setubal,
August 2004.

