
Environment Adaptation Meeting User Preferences

Juan Ignacio Vazquez and Diego López de Ipiña
Faculty of Engineering, Deusto University, Avda. Universidades, 24,

48007 Bilbao, Spain
{ivazquez, dipina}@eside.deusto.es

Abstract. Automatic adaptation of the environment to user preferences relieves
users from continuously re-configuring their physical context as periodic every-
day activities are performed. However, the problem of environment adaptation
has been traditionally solved via ad-hoc context-specific solutions for concrete
problems and situations. In this paper we present the WebProfiles Markup Lan-
guage, a mechanism for Ubiquitous Computing, enabling user preferences rep-
resentation capabilities for influencing surrounding devices and services, so that
the environment meets the user and knows him as if specifically designed for
that purpose.

1 Introduction
Context-awareness mechanisms and, in particular, user-related information awareness,
are one of those required extensions for the Ubiquitous Computing to fulfill present
and future services demands. Context-awareness would allow a service to perceive
user-related and task-related information that can be used to provide a more suitable
and effective outcome for that user. Context information can be provided by the user-
agent explicitly (user-related data), or can be extracted by the service from other
available sources in a scenario dependent paradigm.

On the other hand, the Web model, including HTTP technology, has proven to be
suitable to support communication needs in Ubiquitous Computing scenarios [1,2], so
that the same communication model can be applied to provide both global scale and
local scale services.

HTTP context awareness is a broad concept than can embrace the traditional HTTP
state management mechanism [3], which has been very criticized over the years, de-
spite the Web would not be as powerful as it is without those small chunks of informa-
tion called cookies [4]. These pieces of data allow a web service to recognize immedi-
ately a visiting user and parameterize the nature of the information being presented
based on past visits and interaction, and it can be considered a very simple form of
user-awareness mechanism.

In order to materialize new capabilities we have created the WebProfiles model: an
HTTP extension that supports context information management as well as a negotia-
tion process that allows clients and service providers to establish the appropriate in-
formational environment for the service execution in Ambient Intelligence or Ubiqui-

tous Computing scenarios. The goal is to extend Personal Area Networks to create
what we call Personal Area Webs, applying the successful web communication model
around the user physical circumstances in order to weave context-aware user-device
relationships.

In our vision, Personal Area Webs exist around the user and move with him, link-
ing that user with the surrounding devices, and creating a services-rich digital ecosys-
tem extended with user awareness capabilities.

The WebProfiles model shares many similarities with both OPS (Open Profiling
Standard) [6] and the initial specifications of the Platform for Privacy Preferences
(P3P) [7], inheriting some of their characteristics, but we stress the use of user-related
context in the form of preferences about service characteristics. While CC/PP [8]
seems to be a good initial alternative, it is too oriented to express device information
and concrete data instead of conditional preferences as explained below.

Special attention must be paid to WS-Context [9], an ongoing work to define a
mechanism for context information sharing among multiple coordinated services for
executing a task. This specification is tightly linked to the Web Services technologies
such as SOAP [10], WSDL [11] and more concretely to WS-CAF (Composite Appli-
cation Framework), WS-Coordination and WS-Transactions.

In section 2, we introduce the concept of context awareness and its implications for
personal area web-based services. In section 3, we present our main contribution in
this paper, the WebProfiles Markup Language (WPML), the part of the WebProfiles
model that supports user preferences representation, that is, the context data used to
automatically adapt the environment. Finally in section 4, we present some open is-
sues about the evolution of the WebProfiles model, WPML and personal area user-
awareness in general.

2 User Context Awareness in the Personal Area Web
It is not easy to find a widely accepted definition for “context”, since it is very de-
pendable of the framework in which is applied. One of the most precise and open
statements we can mention is found in the WS-Context specification 0 and declares
that a “context contains information about the execution environment of an activity”.

That is, a context is an information entity that can be used to provide additional
data for some process execution. Probably, that execution could be performed without
that supplementary information, but surely its influence can be used to establish a
user-adapted execution framework more precisely.

Probably, and important part of the context information for a service is related to
the user, expressing data about him, his preferences maybe depending on other context
information, and so on. We can define user context information as the subset of the
context information influencing a service that model user-related aspects.

When coping with personal area web services and web processes, it is often neces-
sary to exchange a large amount of data to execute a service. The service provider
needs to be supplied with all the data the user keeps that are relevant to the situation.
For example, if a user wants to configure his temperature preferences every time he

enters a new room in a building, he must repeat similar interactions over the tempera-
ture control devices once and again at every location.

Web-based surrounding devices populated with embedded web services are not
aware of users’ context, provoking unnecessary interactions refinements over the time
that end up in entering the same data manually along different devices repeatedly.

HTTP state management mechanism has provided a simple method for a service
provider to recognize the user in subsequent visits via cookies. Nevertheless, cookies
are used primary for client identification, not for context information representation
due to format limitations and security considerations.

Our goal was to find a mechanism as simple as cookies but able to cope with user
context information sharing between embedded clients and servers, where user prefer-
ences could be formally defined and structured so that they could be passed forward to
validated devices in order to obtain a more personalized service execution.

That is, prior to actual service interaction between the user and the service provider
(a web-enabled device), the user-agent and the embedded server negotiate and set up
an information-rich context in such a way that it seems that the service provider knows
the user beforehand, despite the latter has never interacted with the device before.
Further interactions can be accomplished inside that mutual knowledge framework.

Figure 1 illustrates the interaction process between a client, also called user-agent
(some kind of process running within the user’s mobile phone or PDA), and a service
provider (a surrounding device) in the usual way, without previous context negotia-
tion.

Data are supplied by the client as needed, increasing the number of interactions.
This diagram is familiar in the traditional Web paradigm, since several extensions
implement similar mechanisms, such as HTTP Authentication, where the client sup-
plies authentication data under demand in a client-driven negotiation.

Client Service
Provider

Service A Request

Data required

Context information

ci1 ci2

ci3 ci4
Service A Request

+ Data [ci1]

Service B Request

Service B Request
+ Data [ci2, ci3]

Service A Response

Data required

Service B Response

ci1

ci2 ci3

Service C Request

Service C Request
+ Data [ci4]

Data required

Service C Response ci4

Fig. 1. Service interaction without previous context negotiation

Figure 2 illustrates the same services requests with a previous context negotiation
process.

Client Service
Provider

Service A Request

Context required

Context information

ci1 ci2

ci3 ci4
Service A Request

+ Data [ci1, ci2, ci3, ci4]

Service B Request

Service A Response

Service B Response

Service C Request

Service C Response

ci1 ci2

ci3 ci4

Fig. 2. Service interaction with previous context negotiation

As we can see, context is established in the initial phases of the communication
process. The service provider obtains immediately a perfect knowledge about required

user information, which can be applied to carry out a personalized service execution.
Moreover, the number of interactions decreases dramatically, resulting in saved time
and communication efforts.

Of course, these advantages depend significantly in how accurately the user context
and preferences information can be identified beforehand. Imprecise negotiation can
result in a large amount of unusable exchanged data along with a lack of relevant
information that forces extra interactions. How the WebProfiles model represents the
user context in the form of preferences is described in the next section.

3 The WebProfiles Markup Language (WPML)
A service or a system can be probably represented at any time via state information,
which evolves along the state space that represents all the possible situations under
which the service can be found.

After all, expressing and transmitting user preferences is a way of influencing the
state of the service or system when interacting with the user [5] to meet his desires or
requirements.

But the reality is a bit more complex. Probably the user wants his preferences to be
applied in a context-sensitive way, that is, depending on the service actual state or
information, the preferences can vary.

Here, we redefine the concept and define context as the set of conditions that must
be tested and probably fulfilled by the service to activate the user preferences. Thus,
the context represents the surrounding information that must be checked to determine
the need for setting up some concrete preferences.

On the other hand, we define configuration as the set of related preferences that
express user requirements or predilections for some features of the service operation.

Finally, we define profile as the association of a context to a configuration, that is,
the set of conditions under which some preferences must be activated. In fact, an ac-
cepted configuration provokes a change in the service state related to the user, creat-
ing a new context closer to the user’s desires, so the whole process can be called con-
text negotiation.

Via context negotiation the user (or user-agent) expresses and transmits profiles
that must be processed by the target service, influencing its behaviour and state, thus
achieving user-aware web services.

For example, a user preference can represent “I want the temperature of my present
location to be between 20ºC and 30ºC when outside because out of this range I use to
get ill, so this is mandatory, and between 25ºC and 30ºC when at home at night, man-
datory too.” In this case “temperature of my present location to be between 20ºC and
30ºC” is the preference to be activated in a context “when outside” and “between 25ºC
and 30ºC” is a preference to be activated in the context “when at home at night”.

Both contexts and configurations are expressed with two complementary mecha-
nisms. First, data structures of XML Data Schemas are used to identify the concepts
about which conditions and preferences are going to be expressed. Second, we have
developed an XML-based language called WPML (WebProfiles Markup Language)

to relate configurations to contexts in which those preferences must be activated, that
is, to represent profiles.

In order to express both the context information and the preferences we need to use
XML Data Schemas that structure the involved domain of knowledge, maybe the
“location” domain, the “time” domain, and the “ambient conditions” domain, which
includes the temperature, in the above example. Depending on some characteristics in
the location and time domain we want some preferences in the ambient/temperature
domain. Since every domain is identified via a unique namespace, no ambiguities
must arise when generating our profile.

The above example can be represented in WPML in the following way:

<?xml version="1.0" encoding="UTF-8"?>
<wpml xmlns="http://www.webprofiles.org/schemas/wpml10"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.webprofiles.org/schemas/wpml10
http://www.webprofiles.org/schemas/wpml10.xsd" querylang="xpath">
<profile uri="urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6">
<context
xmlns:loc="http://www.webprofiles.org/dataschemas/location">
<pattern ID="pat1" use="required"
match="/loc:location[@loc:type!='Home']"/>

</context>
<configuration

xmlns:amb="http://www.webprofiles.org/dataschemas/ambientconditions
">

<preference ID="pre1" use="required"
about="/amb:ambient/amb:temperature/text()"
operator="gt" value="20"/>

<preference ID="pre2" use="required"
about="/amb:ambient/amb:temperature/text()"
operator="lt" value="30"/>

</configuration>
</profile>

</wpml>

The <profile> element contains an attribute uri, with a unique universal identifier
for referencing this profile and two elements: <context> and <configuration>. The
<context> expresses a set of patterns (the technical word we use for conditions) in
domains to activate preferences. Those patterns are expressed using XPath and are
considered to be fulfilled if the XPath expression yields an object when evaluated.
The <configuration> element contains the user preferences, addressing them also via
XPath but expressing ranges via the operator and value attributes.

This is a remarkable difference with other systems like CC/PP [12], which merely
conveys user-agent information using the classical attribute-value method. In the Web-
Profiles model, we can express ranges of values that are preferred by the user for a
concrete attribute, thus allowing more expressive power about real preferences. We
can even represent our desire for a concrete attribute not to have a certain value or
range, using the MathML-based operators eq, neq, gt, lt, geq and leq.

Of course, we could express our temperature preferences without any condition re-
lated to the location. In those cases where preferences are not attached to existing
context conditions, the context section can be omitted, so that only the configuration
information is conveyed. We call this type of profiles, context-less profiles.

The “required” value at the use attribute in the pattern element indicates that the
condition must be present and fulfilled, considering it as failed if not present or nor
checkable. An “optional” value there indicates that the condition must only be ful-
filled if present, which is not mandatory

Several patterns must be provided in the same or different domains. For example,

<context xmlns:loc="http://www.webprofiles.org/dataschemas/location"
xmlns:time=”http://www.webprofiles.org/dataschemas/time”>
<pattern ID="pat1" use="required"

match="/loc:location[@loc:type='Home']"/>
<pattern ID="pat2" use="required"

match="/time:time[@time:hours<6 or @time:hours>20"/>
</context>

With these context patterns, the associated configuration must only be applied if the
location type is “Home” and it is sooner than 6:00 or later than 20:00 which can be
considered “night time”. Both patterns are mandatory to exist and fulfill.

Again, we want to stress that there is a subtle but important difference among the
context-related information structures and the “configuration of preferences”-related
structures. Context information represents state information that the service provider
is able to check, either directly from databases or files, or indirectly by requesting the
state from some originating sources. In both cases, that state information must be
structured in XML format meeting the requirement of an associated grammar, possibly
in the form of a XML Schema. That XML formatted state information is the target of
the XPath expressions in the context section of the profile. So, we call context do-
mains to the set of domains of knowledge the service is aware of.

On the other hand, preferences configuration information represents domains over
which the service keeps control to make changes to fulfill user preferences and drive
the system towards the desired state. The service can implement those changes invok-
ing some low level functions on actuators, or invoking operations on other devices, for
instance. The selected mechanism is up to the service and out of the scope of the
WebProfiles model. So, we call configuration domains to the set of domains of
knowledge over which the service keeps control

XPath is the preferred element addressing language as well, but WPML is open for
other mechanisms such as XQuery, just establishing the querylang attribute at the
<wpml> element (in our current implementation only XPath is supported).

4 Conclusions and Future Work
The WebProfiles Markup Language constitutes a convenient extension to the HTTP
protocol in order to support automatic customization and adaptation in Ubiquitous

Computing environments populated with devices and embedded services, where these
are automatically configured to match user preferences and requirements.

Our current implementation of the negotiation mechanism takes the form of a back-
ground process for PocketPC which discovers surrounding devices using UPnP, and
negotiates user preferences represented via WPML to adapt the environment, made up
of small HTTP server-embedded devices.

The WPML documents can be created by the user via UI wizards or inferred from
past manual interactions with devices which can be recorded and analyzed by pattern-
detection or heuristic tools.

The use of well-known standards such as HTTP, XML or XML Schemas guaran-
tees the stability and coherence of the model itself, while retaining the extensibility
that can be added by using accompanying web technologies such as HTTPS. The
WebProfiles model relies also on P3P technology for validating the use of the prefer-
ences by the device against user privacy policy.

Finally, we think that RDF [14], OWL [15] and other Semantic Web technologies
could also be applied to declare the relationships about context conditions and prefer-
ences, instead of XML Schemas. XPath in WPML could also be substituted by other
semantic alternatives, still under development and sparsely standardized, such as
CXPath [16], RDF Path [17] or RPath [13]. SWRL [18] is a suitable alternative for
representing rules about context conditions and desired configurations without any
need for path-based languages, to create Semantic WebProfiles that would allow the
expression of user-preferences by means of their real relationships.

Acknowledgements
This work has been partially supported by the Department of Industry, Commerce and
Tourism of the Basque Government under the SAIOTEK grant S-OD04UD02, and the
Cathedra of Telefónica Móviles España at Deusto University, Bilbao, Spain.

References
1. UPnP Forum. UPnP Device Architecture v1.0. 2000. http://www.upnp.org.
2. Issarny, V., Sacchetti, D. et al. Developing Ambient Intelligence Systems: A Solution based

on Web Services. Journal of Automated Software Engineering. 2004.
3. Kristol, D., and Montulli, L. RFC 2965: HTTP State Management Mechanism. IETF RFC.

2000.
4. St. Laurent, S. Cookies. Computing Mcgraw-Hill. 1998.
5. Vázquez, J.I., and López de Ipiña, D. An Interaction Model for Passively Influencing the

Environment. Adjunct Proceedings of the 2nd European Symposium on Ambient Intelli-
gence (Eindhoven, The Netherlands). 2004.

6. Hensley, P. et al. Implementation of OPS Over HTTP. 1997. http://www.w3.org/TR/NOTE-
OPS-OverHTTP.html

7. P3P Specification Working Group. The Platform for Privacy Preferences 1.1 (P3P1.1) Speci-
fication. W3C Working Draft. 2004. http://www.w3.org/TR/P3P11/

8. Coyle, K. P3P: Pretty Poor Privacy? A Social Analysis of the Platform for Privacy Prefer-
ences (P3P). 1999. http://www.kcoyle.net/p3p.html

9. Little, M., Newcomer, E. and Pavlik, G. (eds.). Web Services Context Specification (WS-
Context). OASIS Committee Draft v.0.8. 2004.

10.XML Protocol Working Group. SOAP Version 1.2 Part 0: Primer. W3C Recommendation.
2003.

11.Web Services Description Working Group. Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language. W3C Working Draft. 2004.

12.W3C Device Independence Working Group. Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0. W3C Recommendation.

13.Matsuyama, K. et al. A Path-Based RDF Query Language for CC/PP and UAProf. Second
IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004.

14.RDF Core Working Group. RDF Primer. W3C Recommendation. 2004.
http://www.w3.org/TR/rdf-primer/

15.Web Ontology Working Group. OWL Web Ontology Language Overview. W3C Recom-
mendation. 2004. http://www.w3.org/TR/owl-features/

16.Camillo, S.D., et al. Querying Heterogeneous XML Sources through a Conceptual Schema-
Conceptual Modeling - ER 2003, 22nd International Conference on Conceptual Modeling.
LNCS 2813. Springer. 2003.

17.http://infomesh.net/2003/rdfpath/
18.DARPA DAML. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Draft version 0.7. 2004.

