
A Semantic Matching Algorithm for Discovery in UDDI 
 

 

Unai Aguilera 

Tecnológico – Fundación Deusto 

Avda. Universidades, 24 

48007 Bilbao, Spain 

uaguiler@tecnologico.deusto.es 

Joseba Abaitua, Josuka Díaz,  

David Buján, Diego López de Ipiña 

Universidad de Deusto 

Avda. Universidades, 24 

48007 Bilbao, Spain 

abaitua@fil.deusto.es 

{josuka, dbujan, dipina}@eside.deusto.es 

 

 

Abstract 
 
One of the key objectives of web 

service technology is to construct 

processes that enable service providers 

to inter-connect with their clients. 

The industry has developed the UDDI 

standard that allows providers to 

register their services and make them 

available to their clients. However, 

the search mechanism supported by UDDI 

is limited; it only enables the user to 

search using keywords. Keyword-based 

searches frequently return no results 

because they are not able to recognize 

the similarities and differences 

between the concepts used by the 

providers to describe their web 

services and the concepts used by the 

clients during the search process. This 

paper presents a semantic registry 

which extends the functionality of an 

UDDI registry adding semantic 

reasoning. These functionalities are 

introduced by means of semantic 

descriptions of the information stored 

in the registry. Previous work done on 

the combination of the UDDI registry 

with semantic information is extended 

in two ways: firstly, we propose a 

generic semantic discovery algorithm 

that is not restricted only to the 

inputs and outputs of the web services 

or to the OWL-S ontology. This matching 

algorithm can be applied to the 

discovery process using different 

ontologies because it is not bound to 

any specific ontology or concepts from 

it. Secondly, through the construction 

of an ontology which represents the 

information associated with a business 

entity in UDDI, and which enables users 

to register and search business 

information semantically using the 

former algorithm. 

 

1. Introduction 
 

In recent years, the web service technologies have 

considerably grown in their application in the enterprise 

world. The goal of web services is to enable 

heterogeneous applications to  intercommunicate easily. 

The application of this technology is very adequate for the 

B2B (Business to Business) solutions where providers and 

clients, with very different characteristics, need to 

communicate among themselves to perform various tasks. 

In this scope, where a client can select between many 

different providers, a process is necessary to help in the 

selection of the services that are more adequate to perform 

the desired task. The industry (guided by OASIS 

Consortium [1]) has developed a standard that permits 

providers to register their services and make them 

available to their clients. This system is called UDDI 

(Universal Description Discovery and Integration) [2]. 

UDDI is similar to a “yellow pages” where providers 

advertise themselves and which are used by the clients to 

search services that can fulfill their needs. When the 

provider performs a register the service is described using 

some keywords. During the search process the client 

specifies some keywords that describe the service he is 

searching for, and a string base comparison is performed 

to retrieve the services that meet this requirements. 

However, the possibilities of this approach are limited. 

The UDDI string-based search is not adequate in most 

cases because it only permits  keywords to be used in the 

search process combined with a classification system [3]. 

The keyword based search frequently returns no results 

because it is not able to recognize the similarities and 

differences between the concepts used to describe the web 

services. During recent years some efforts have been 

aimed at the solution to this problem introducing 

semantics into the  registration and search processes in the 



web services registry thanks to the use of shared 

ontologies to represent the concepts and the relations 

between them. 

In this paper we present the SemB-UDDI project which 

extends the functionality of an UDDI registry adding 

semantic capabilities. These new functionalities are 

introduced by means of the semantic description of the 

information stored in the registry. The goal of this 

approach is to avoid the limitations that exist in the string- 

based search of the UDDI registry. The introduction of 

semantics can add new possibilities to the matching 

process. These semantics are introduced by means of the 

use of ontologies. An ontology is a conceptualization of a 

specific domain that is shared among all the participants. 

This way ontologies enable  the participants to know the 

significance and relation between the terms and concepts 

being used. In the case of a UDDI registry, the use of 

ontologies enables the matching algorithm to discover the 

differences and similarities between the concepts used by 

the clients in their searches and the concepts used by the 

service providers when they described their services. This 

way, in their searches, users can employ  concepts that are 

not exactly equal to the concepts used by providers in 

their descriptions but are related to them thanks to the 

ontology. 

In addition, an UDDI registry not only stores 

information about the services, but it stores other 

information related to them (e.g. Business Entity). For 

these reason, we think that a completely semantic registry 

must semantically manage  all the entities involved in the 

process. So, we have constructed an ontology to represent 

the information related with a Business Entity, enabling 

the semantic register and search of these entities. 

In SemB-UDDI, when a user wants to search for a 

service or business entity he must construct a semantic 

description of the entity he wants to find. This description 

is matched against the descriptions of the services and 

business entities registered by the providers. We have 

developed a semantic matching algorithm that enables the 

matching between user request and registered descriptions 

to be performed in a general form and without knowing 

the specific ontology being compared. This way, this 

algorithm can be used to match descriptions of different 

ontologies, so it is applied to the search processes of 

service and business entities. 

The remainder of the paper is structured as follows: 

Section 2 presents the related technologies and previous 

work done in the area of adding semantic capabilities to 

UDDI registries. Section 3 presents the SemB-UDDI 

architecture explaining the connection between the 

elements. Section 4 discusses the new algorithm proposed 

to perform the semantic matching process. Section 5 

presents the ontologies used in the register including the 

ontology developed to represent the Business Entity 

information. Finally, Section 6 summarizes and concludes 

the paper. 

 

2.  Background 

 
2.1 UDDI 

 
The Universal Description Discovery and Integration is 

an open industry initiative guided by OASIS that enables 

businesses to publish their own services and discover 

other services. When the services are registered in the 

UDDI registry the clients can search them by name, 

description, the business offering them and other related 

information. This search mechanism supported by UDDI 

is limited [3]: it only enables the user to search using 

keywords. The user normally does not know the words 

that the service provider used to describe the service when 

it was registered. When a user starts a search in UDDI he 

needs to have some knowledge of the words that were 

used to describe the services or businesses. In most  cases, 

this knowledge is only partially available to the client, or 

is not available at all. For this reason, it is very likely that 

in his search, the client uses words  that are not present in 

the description of the service and, as result, the keyword 

based search will discard many results that might be 

useful for the client. This is because the search algorithm 

is not able to recognize similarities or differences between 

the significance of the keywords used by the client and the 

keywords used by the provider when the service was 

registered. In other words, the search algorithm does not 

know if the client and the service provider are using a 

common semantic when referring to the same kind of 

services. UDDI only works well when the client knows 

some information about the services, but it fails as a 

discovery strategy in other cases. 

 

2.2 OWL-S 

 
OWL-S [6] is an ontology for web services constructed 

using OWL [4] and [5] and it has been developed to 

enable the following tasks: automatic service discovery, 

automatic service invocation and automatic service 

composition. The service discovery is improved using 

ontologies because the information needed to perform this 

task is expressed using a machine-processable form. A 

computer can access the description of a web service and 

it can know exactly what the service does thanks to the 

shared concepts contained in the ontologies used in the 

description. 

A service described using OWL-S provides three types 

of knowledge: Service Profile, Process Model, Service 

Grounding. The ServiceProfile describes what the service 

does, including functional information such as inputs, 

outputs, and other non-functional information (category, 



classification). It is normally used during the automatic 

discovery of web services. The Process Model describes 

how the service works; it is an abstract vision of the 

service operation. Finally, the ServiceGrounding tells how 

to access the service; it contains all the information related 

to the real implementation of the service and is used to  

invoke it automatically. 

 

2.3 Related work 

 
In the last few years, some work has been done in the 

area of semantic web services discovery. In this section 

we present a short review of these works. 

One proposal for enhancing UDDI with semantic 

information is made in [7] and in [3]. In these papers the 

authors present an architecture to augment UDDI 

registries with additional semantic information. They add 

a new layer to the UDDI architecture that performs the 

semantic matching between service records. When an 

advertisement of a service containing semantic 

information is received, the information is extracted and 

stored in the registry. The services are described using 

OWL-S, and only the ServiceProfile is used to perform 

the discovery process. They use a one-to-one mapping if 

the information contained in the OWL-S profile has an 

equivalent in the UDDI registry. For those OWL-S profile 

elements that do not have a correspondence with UDDI 

registry elements a T-model based mapping is used. The 

same authors present a matching algorithm which they 

argue is efficient for semantic web service discovery [8] 

and is an evolution of the algorithm presented in [9]. The 

authors define four degrees of match for the result of the 

discovery process: exact, plugin, subsume and fail, 

ordered from the best to the worst result. The matching 

algorithm contains some optimizations, such as the 

indexation of the registered services, to improve the 

discovery process. Another solution is presented in [10], 

where the authors propose a similar solution to the former, 

but they use a filtering mechanism that progressively 

reduces the set of registered services being matched to 

improve the matching algorithm. The filtering mechanism 

used is similar to that developed in [11].  

Another approach for a semantic UDDI registry is 

presented in [12] and is based on the proposal made in 

[13], but it extends the UDDI API to support the semantic 

based inquires and a planning algorithm to help users in 

web service composition is introduced.  

Another work related to union of UDDI and the 

semantic web is presented in [14]. It presents an external 

matching mechanism to enhance the search in a service 

registry, and to permit the integration of multiple external 

engines. Another algorithm is presented in [18] where the 

authors propose a more grained ranking of results for the 

semantic matching adding more possible results than these 

that can be obtained performing only a subsume matching. 

The proposed algorithm performs a matching of the 

ServiceProfile as a whole, taking into account the service 

classes in addition to the inputs and outputs of the service. 

In this paper we present an enhanced UDDI registry 

that uses some of the algorithms explained here, like the 

roots of the algorithm developed for the SemB-UDDI 

registry. We have developed a more general algorithm 

that not only performs semantic matching between inputs 

and outputs, but also the semantic matching between other 

concepts presents in the OWL ontology. So it can be used 

to match other concepts present in the OWL-S profile or 

other ontologies that represent other semantic information. 

The proposed algorithm is explained later in the section 

about the semantic matching algorithm. 

 

 

 

3. SemB-UDDI architecture 
 

The architecture of the SemB-UDDI registry is shown 

in Figure 1. It extends the functionality of the standard 

UDDI registry by adding semantic capabilities. It adds 

new functions that enable the clients to register 

advertisements and search among them using the new 

semantic capabilities of the register. These new functions 

use the matchmaker module to perform the semantic 

process. The providers add the semantic descriptions by 

means of these functions. These descriptions are 

processed by the extended UDDI registry and sent to the 

matchmaker in order to store them in the knowledge base. 

When the client wants to discover a service or business 

entity he must construct a semantic description of the 

entity he wants to find, using the OWL-S ontology for 

semantic service or the developed ontology for business. 

This description is sent to the SemB-UDDI register and 

processed by the extended UDDI that uses the 

matchmaker to perform the matching process. The result 

of the matching is returned to the user in a list containing 

 

Figure 1: SemB-UDDI architecture 



the URI of the discovered descriptions that have a 

relationship with the request sent by the client, and the 

degree of match obtained in the matching process. 

The matchmaker module performs the semantic 

matching functions. It has a functionality to register the 

semantic descriptions in its knowledge base, to compare 

them with a user request and to unregister them when 

necessary. It contains the algorithm used to perform the 

matching process. This algorithm, which will be explained 

later, performs the semantic comparison between the user 

request and the registered descriptions and obtains a result 

that expresses the degree of semantic similarity. 

Internally, the matchmaker has various components 

that contribute to obtaining the functionality: a reasoner 

that performs the logic reasoning over the information 

contained in the ontologies stored in the knowledge base. 

It is used by the semantic matching algorithm to perform 

the comparison between user request and the registered 

descriptions. In the current implementation of the 

matchmaker module we are using Pellet as the reasoner 

for the matching operations [15]. The reasoner also 

contains a knowledge base that stores the ontologies and 

the related information about them. When a new instance 

(service description or business description) is stored the 

related ontologies are also downloaded and stored in the 

knowledge base to allow the reasoner to work with them. 

The knowledge base of the reasoner is not persistent so 

the ontologies and instances need to be reloaded every 

time the reasoner is restarted. For this reason, the 

matchmaker module includes a database that is used in 

order to maintain persistence. Whenever a new ontology 

or instance is stored in the matchmaker module the 

database stores the same information to provide 

persistence. When the semantic matching module is 

restarted this information is retrieved from the database 

and loaded enabling the reasoner to start with the 

information stored in previous sessions.  

 

3.1 Extending UDDI with semantics 
 

The SemB-UDDI project extends the UDDI standard 

API to enable the registration and search of registered 

descriptions (services and business). These functions have 

been added by means of modifying an existing 

implementation of UDDI called jUDDI [16]. In order to 

enable the clients to use these new functions we have 

extended an implementation of a UDDI client called 

UDDI4J [17]. This way a user can access the new 

capabilities of the semantic register. The new functions 

added to the SemB-UDDI registry are the following: 

save_semantic_service: this function enables  a 

semantic web service description to be added to the 

register. The service description consists of an OWL-S 

Profile. When the description is added to the registry all 

the syntactic information is extracted from the description 

and stored using the internal UDDI functions. This is done 

in order to maintain compatibility with the traditional 

UDDI registry. The OWL-S profile will be stored in the 

matchmaker module in order to enable semantic matching. 

find_semantic_service: this function enables to search 

a service using the semantic capabilities of the SemB-

UDDI register. The user needs to specify the description 

of the service that he wants to find and the registry will 

use the semantic matching module to obtain the degree of 

match between the user request and the descriptions stored 

in the knowledge base. The user request is an OWL-S 

Profile describing the service being sought. The correct 

execution of this function returns a list of the results 

obtained in the matching process. Only the services whose 

results are not fail are returned to the user. The returned 

list is a list of pairs containing the URL of the 

ServiceProfile and the degree of match obtained in the 

matching process with the user request. 

save_semantic_business: this function enables 

business descriptions to be stored in the registry. 

According to the UDDI specifications a Business Entity is 

an entity that offers one or more services. In this case, the 

user sends a semantic description of the business which he 

wants to register. This description must use the Business 

ontology explained above. When the business description 

is sent to the registry, it is stored in the semantic matching 

module to permit semantic reasoning, and in the UDDI 

registry to maintain compatibility with the UDDI standard.  

find_semantic_business: this function enables a 

business entity to be searched using the semantic 

capabilities of the registry. 

There are also functions to remove the stored service 

descriptions and the business descriptions named 

delete_semantic_service and delete_semantic_business 

respectively. 

 

4. Matchmaker algorithm 
 

The semantic matching process has been implemented 

using an algorithm based on the idea proposed in [7] and 

[18]. In the first paper the authors propose a solution for 

semantic service discovery where the matching process is 

only performed between the inputs and outputs of the 

services being matched. In the second, an algorithm that 

matches the Service Profile as a whole is proposed, but it 

is restricted to OWL-S ontology. We propose an 

algorithm where the matching is performed with all the 

concepts included in the user request. The goal of the 

proposed algorithm is to compare instances (registered 

descriptions and user request) in a generic form without 

specifically knowing the ontologies and concepts being 

compared. That is, the proposed algorithm is able to 

match instances of any class and it is not only restricted to 



OWL-S or other ontologies. This way, it can be used to 

match other ontologies like the business ontology that has 

been developed to represent the UDDI Business Entity 

information. 

In the SemB-UDDI registry all the advertisements 

(services and businesses) are stored in the knowledge base 

of the matchmaker module. The semantic advertisements 

consist of a description constructed using OWL-S. In the 

case of a semantic web service this description is an 

OWL-S Service Profile. As explained above, the service 

profile contains all the information needed to perform the 

discovery of a web service, so this is the information used 

to perform the discovery of the web services in the 

registry. In the other case, when registering business 

entities, these are described using the ontology 

constructed for this objective. Whenever a client wants to 

search the registry for a semantic web service or a 

business entity he must construct an instance, using the 

corresponding ontology, to describe the service he is 

looking for. For example, if the user wants to search a 

semantic web service he must construct a service profile 

to describe the service that he wants to discover. Or, if he 

wants to discover a business entity he must construct a 

description using the business ontology. This description 

is matched against the stored descriptions in the 

knowledge base to search the registered instances that 

match the user’s request. During the process of semantic 

matching the instances, classes, properties and values of 

the registered advertisements and the user request are 

compared to determine the degree of match between them. 

The results of the match are ranked from the best to the 

worst possible result in ascending order. The following 

table summarizes the values assigned to each of the 

possible results of the match. This rank will be used by the 

algorithm to compute the global result of the matching 

process. 

 Table 1: Ranking of match results  

Result Rank 

Exact 0 

Plugin 1 

Subsume 2 

Fail 3 

 

4.1 Algorithm main loop 
 

The matching algorithm is a generic algorithm for the 

comparison of instances that performs matching without 

knowing the ontologies and concepts being compared. 

The algorithm starts retrieving from the knowledge base 

the instances that have some semantic relationship with 

the instance contained in the user request. First, it obtains 

the class of the user request and then it retrieves from the 

knowledge base those instances whose classes are related 

with it. For example, if the user sends a search request that 

is an instance of an OWL-S ServiceProfile, the algorithm 

will retrieve the instances whose class is a super-class, a 

sub-class or is equal to that of the user request. Each of 

these retrieved instances is compared with the user request 

in order to obtain the degree of similarity between them. If 

the global result computed during the matching process is 

different from fail, the result is added to a list of results 

and returned to the user. The main loop of the matching 

algorithm is presented in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The matchInstance function computes the degree of 

similarity between two instances. This similarity is 

obtained in the following way: first, the relationship 

between the classes is obtained, and second, the properties 

of the instance are matched. If the match of the classes 

returns fail, the matching process stops because the user 

request cannot be satisfied. To obtain the final result of 

the process we compute the worst result of the two 

semantic comparisons, that is, the result with the highest 

rank.  

computeMatch(request) { 

 matchlist = [] 

 advertisements = getRelatedInstances(request) 

 for all advert in advertisements { 

  gResult = matchInstance(advert,request) 

   if (gResult != fail) 

    matchlist.add(matchResult) 

  } 

  return matchlist 

} 

Figure 1. Matching algorithm main loop 



 

 

 

 

 

 

 

 

 
 

 

4.2 Matching classes 

 
The classes of the instances being compared are 

matched in the following way: if the class from the request 

and the class from the advertised instance are equal the 

result is exact; if the class of the request subsumes the 

class of the advertised instance, the result is plugin, 

because the user is searching for instances of a more 

generic class and it can be satisfied by any of its  

subclasses; if the registered instance subsumes the class of 

the user request the result is subsume, which is a worse 

result than the former because the user is searching for a 

more specific class than the one being compared. If none 

of these cases occurs the result is fail. 

 

 

 

4.3 Matching properties 
 

After computing the relation between the classes of the 

instances, and only when a result different from fail is 

obtained, the algorithm will proceed to perform a 

comparison between the properties from the user request 

and the registered instance.  

 

This comparison is performed by obtaining each of the 

properties contained in the user request and comparing 

them with the properties of the same type that exist in the 

advertised instance. There are two cases when comparing 

properties from instances in OWL: data properties, which 

have simple values, and object properties which have 

values that are instances.  

When comparing literal values the matching is done by 

the matchDataProperties function, and it is performed in 

the following way: the associated values of the property 

are obtained from the user request and the registered 

instance. If the values are not concepts from an ontology, 

a literal comparison occurs. This literal comparison can 

only return two possible results - exact or fai -, that 

correspond to the case when the two values are exactly 

equal or different, respectively. 

If the literal values of the properties being compared 

are concepts from an ontology, a semantic matching is 

performed to obtain the degree of similarity between 

them. In this case, the result of the comparison is one of 

the following: 

Table 2: Matching concepts 

Result Rank Explanation 

Exact 0 Request concept and the 

registered concept are exactly 

equal.  

Plugin 1 Registered concept subsumes the 

concept of the user request. 

Subsume 2 Request concept subsumes the 

concept of the registered service. 

matchInstance(advert, request) { 

  result = matchClasses(advert, request) 

  if result != fail { 

   matchResult = matchProperties(advert, request) 

   if matchResult > result 

   result = matchResult  

  } 

  return result 

} 

Figure 2. Matching instances 

matchClasses(advert, request) { 

   aClass = advert.getClass() 

   rClass = request.getClass() 

  if aClass = rClass return exact 

  if aClass subsumes rClass return plugin 

  if rClass subsumes aClass return subsume 

  otherwise return fail 

} 

Figure 3. Matching classes 

matchProperties(advert, request) { 

   properties = request.getProperties() 

  forall reqProp in properties { 

   advProp = advert.getProperty() 

   if isDataProperty(prop) 

     matchResult = matchDataProperties(advProp, prop) 

    if isObjectProperty(prop) 

      matchResult = matchObjectProperties(advProp, prop) 

  } 

   if matchResult > result 

    result = matchResult 

} 

Figure 4. Matching properties 



Fail 3 None of the previous cases. 

 

When comparing object properties, the match is 

performed re-using the same algorithm explained in this 

section. The instances are retrieved and compared using 

the matchInstance function again in a recursive manner. 

This way, it is possible to compare all the user request 

with the registered instances without knowing the 

concepts being compared. 

The matching process is always performed taking the 

user request as a description that contains all the minimum 

requirements that a semantic description registered in the 

knowledge base must satisfy in order to be returned to the 

user. If the user request contains a property with a specific 

value only those instances that have the same property 

with the same value can be returned to the user. If the 

instance does not have an associated value with this 

property the result of the matching will be fail, because 

the user is searching for an instance with specific 

characteristics that cannot be completely satisfied with the 

registered instance. 

The final result of all these semantic comparisons of  

instances, classes, properties and their associated values 

are combined using the worst result. The result obtained 

by the user after performing a matching request is the 

worst of all the results obtained when comparing the 

classes, properties and instances. The reason for this is 

that the user request contains all requirements that must be 

satisfied by the instance in order to be returned to the user. 

The instances that obtain a fail result are not returned to 

the user because they are not able to satisfy the user 

request. 

 

5. SemB-UDDI ontologies 
 

The information stored in the SemB-UDDI registry is 

described using various ontologies, some of them re-used 

from existing ones while others have been constructed 

expressly to represent specific entities required in the 

semantic registry. The description of the web services, 

used in the register and discovery processes is performed 

with the ServiceProfile of the OWL-S ontology. OWL-S 

is a very general ontology created for the description of 

any kind of web service and, for this reason, it only 

introduces some concepts and relations that are common 

and useful for all web services without considering their 

specific domain of application. When OWL-S is used to 

describe a web service another ontology is needed to 

capture the particular information that is related to that 

domain of application. Those domain ontologies are used 

with OWL-S to represent the concepts for the inputs, 

outputs and other information necessary to describe the 

web service semantically. 

 

 

As explained before we consider that a semantic 

registry must semantically manage all the information of 

the entities that are being stored. The UDDI standard 

defines the entities, the relations between them, and how 

they are stored in the registry. Those specifications 

include web services and some other elements as business 

entities. The business entity, as explained in the UDDI 

standard specification, represents the business that offers 

the services. We think that the semantic description of this 

entity is also needed to achieve the goal of a complete 

semantic registry for web services. This way a user can 

search all the data contained in the registry semantically 

without the need to consider the distinction between what 

information is semantically described and what not. So, 

for this reason, we think that an ontology to describe the 

information that corresponds to a business entity is 

needed. We have created an ontology to represent this 

information based on the specification of a business entity 

contained in the UDDI standard. We have represented this 

information because we want  the SemB-UDDI registry to 

be able to maintain compatibility with a standard UDDI 

registry. This ontology enables the minimum information 

associated with a business entity to be captured while it 

enables the possibilities of the semantic web to be applied. 

Using the proposed ontology to represent the data we are 

able to capture all this information adding semantic 

searching capabilities at the same time. The Business 

ontology is depicted in Figure 5. 

 

6. Conclusions and future work 
 

In this article we have shown how a UDDI registry can 

be extended to allow the registry and semantic search of 

web services and related business entities. We have 

proposed a generic matching algorithm that allows the 

discovery of the registered entities to be made. This 

algorithm makes a comparison between all the concepts 

that appear in the user’s request allowing a greater 

flexibility in the searches. In addition, this algorithm is not 

only related to a specific ontology and, therefore, the same 

algorithm can be used to make the semantic discovery of 

web services and business entities. This algorithm has 

been implemented completely and it is being tested. In 

addition, we have proposed an ontology for the 

description of the business entities, which allow basic 

 
 

Figure 5. SemB-UDDI Business Ontology 



information about business presented in the UDDI 

standard to be captured and at the same time enables to 

support the possibilities of the semantic web.  

In future work we plan to test the proposed algorithm 

in discovery tasks based on other parts of the OWL-S 

ontology, like the ServiceModel sub-ontology. The 

ServiceModel ontology describes how to use the service, 

and it contains useful information for service composition 

tasks. So, we will try to prove the usefulness of the 

proposed algorithm in discovery oriented towards 

automatic composition of semantic web services. 

 

7. References 
 
[1] OASIS - Organization for the Advancement of Structured 

Information Standards. http://www.oasis-open.org/ 

[2] OASIS, UDDI Committee Specification [Julio 2002] UDDI 

Version 2.04 API, Specification, 

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-

20020719.htm 

[3] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. 

“Adding OWL-S to UDDI: implementation and throughput”. In 

Proc. 1st Intl. Workshop on Semantic Web Services and Web 

Process Composition (SWSWPC 2004), pages 6–9, 2004. 

[4] W3C, World Wide Web Consortium [Febrero 2004] OWL 

Web Ontology Language Overview – W3C Recommendation, 

(http://www.w3.org/TR/owl-features/). 

[5] W3C, World Wide Web Consortium [Febrero 2004] OWL 

Web Ontology Language Reference – W3C Recommendation, 

(http://www.w3.org/TR/owl-ref/). 

[6] W3C, World Wide Web Consortium [Noviembre 2004] 

OWL-S Semantic Markup for Web Services – W3C Member 

Submission, (http://www.w3.org/Submission/2004/SUBM-

OWL-S-20041122/). 

[7] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. 

Importing the Semantic Web in UDDI. In Proceedings of the 

Workshop of Web Services, E-Business, and the Semantic 

Web, 2002. 

[8] Naveen Srinivasan, Massimo Paolucci and Katia Sycara, 

"An Efficient Algorithm for OWL-S based Semantic Search in 

UDDI" First International Workshop on Semantic Web 

Services and Web Process Composition (SWSWPC 2004) 6-9, 

2004, San Diego, California, USA. 

[9] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. 

"Semantic Matching of Web Services Capabilities". In 

Proceedings of the 1st International Semantic Web Conference 

(ISWC2002) 

[10] T. Kawamura, J. D. Blasio, T. Hasegawa, M. Paolucci, K. 

Sycara, “Public Deployment of Semantic Service Matchmaker 

with UDDI Business Registry”, Proceedings of 3rd 

International Semantic Web Conference (ISWC 2004), LNCS 

3298, pp. 752-766, 2004. 

[11] K. Sycara, S. Widoff, M. Klusch, and J. Lu. “Larks: 

Dynamic matchmaking among heterogeneus software agents in 

cyberspace” Autonomous agents and multi-agent systems, 

5:173–203, 2002. 

[12] Rama Akkiraju, Richard Goodwin, Prashant Doshi, and 

Sascha Roeder. “A method for semantically enhancing the 

service discovery capabilities of UDDI”. In In Proceedings of 

the Workshop on Information Integration on the Web, pages 

87–92, August 2003. 

[13] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. 

“Semantic Matching of Web Services Capabilities”. In The 

First International Semantic Web Conference, 2002. 

[14] J. Colgrave, R. Akkiraju, and R. Goodwin. “External 

matching in UDDI”. In Intl. Conference on Web Services, 

2004. 

[15] Bijan Parsia and Evren Sirin. Pellet: An OWL DL 

Reasoner. Poster In Third International Semantic Web 

Conference (ISWC2004), Hiroshima, Japan, November 2004. 

[16] jUDDI: http://ws.apache.org/juddi/ 

[17] UDDI4J (http://uddi4j.sourceforge.net/). 

[18] Yonglei Yao, Sen Su, Fangchun Yang. “Service Matching 

Based on Semantic Descriptions”, Advanced International 

Conference on Telecommunications and International 

Conference on Internet and Web Applications and Services 

(AICT-ICIW'06), February 2006, pp. 126.  
 

http://www.oasis-open.org/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.daml.ri.cmu.edu/matchmaker/download/cr-swsws-paper.pdf
http://www.daml.ri.cmu.edu/matchmaker/download/cr-swsws-paper.pdf
http://ws.apache.org/juddi/
http://uddi4j.sourceforge.net/
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/&toc=comp/proceedings/imsccs/2006/2581/02/2581toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/&toc=comp/proceedings/imsccs/2006/2581/02/2581toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/&toc=comp/proceedings/imsccs/2006/2581/02/2581toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/&toc=comp/proceedings/imsccs/2006/2581/02/2581toc.xml

