
A Middleware for the Deployment of AmI Spaces

Diego López de Ipiña1, Iñaki Vázquez1, Daniel Garcia1, Javier Fernández1, Iván
García1, David Sáinz1 and Aitor Almeida1

1 University of Deusto, Faculty of Engineering, Avda. Universidades 28,
48007 Bilbao, Spain

{dipina, ivazquez}@eside.deusto.es,
{dsainz, aalmeida}@tecnologico.deusto.es

Abstract. The latest mobile devices are offering more multimedia features,
better communication capabilities (Bluetooth, Wi-Fi, GPRS/UMTS) and are
more easily programmable than ever before. So far, those devices have been
used mainly for communication, entertainment, and as electronic assistants. On
the other hand, Ambient Intelligence (AmI) is emerging as a new research
discipline merging the fields of Ubiquitous Computing and Communications,
Context Awareness and Intelligent User Interfaces. The ultimate goal of AmI is
to surround our working and living environments with context-aware,
cooperative and invisible devices that will assist and help us in our everyday
activities. Current mobile devices, which accompany us anywhere and at
anytime, are the most convenient tools to help us benefit from AmI-enhanced
environments. In other words, mobile devices are the best candidates to
intermediate between us and our surroundings. In consequence, this paper
proposes a middleware which aims to make this vision reality following a two-
fold objective: (1) to simplify the creation and deployment of physical spaces
hosting smart objects and (2) to transform mobile devices into universal remote
controllers of those objects.

1 Introduction

Ambient Intelligence (AmI) [13] defines an interaction model between us and a
context-aware environment, which adapts its behaviour intelligently to our
preferences and habits, so that our life is facilitated and enhanced.

Current PDAs and mobile phones are equipped with significant processing and
storage capabilities, varied communications mechanisms (Bluetooth [1], Wi-Fi,
GPRS/UMTS) and increasingly capable multimedia capture and playback facilities.
Moreover, they are far more easily programmable (Compact.NET [9], J2ME [15] or
Symbian [17]), i.e. extensible, than ever before.

Mobile devices equipped with Bluetooth, built-in cameras, GPS receivers, barcode
or RFID readers can be considered as sentient devices [8][11], since they are aware of
what smart objects are within an AmI space. We understand by Smart Space (or AmI-
enhanced environment), a location, either indoors or outdoors, where the objects
present within (smart objects) are augmented with computing services. A smart object
is an everyday object (door, classroom, parking booth) or a device augmented with

some accessible computational service [2]. Once a mobile device discovers a nearby
smart object, it may operate over it.

We deem that mobile devices will play a key role within AmI, since they are
always with us and can act as facilitators or intermediaries between us and the
environment. In other words, mobile devices can act as our personal electronic
butlers, facilitating and enhancing our daily activities, and even acting on our behalf
based on our profiles or preferences.

In this paper, we describe the design and implementation of EMI2lets, a
middleware to facilitate the development and deployment of mobile context-aware
applications for AmI spaces. This software provides the software infrastructure to (1)
convert physical environments into AmI spaces and (2) transform mobile devices into
remote controllers of the smart objects in those spaces.

The structure of the paper is as follows. Section 2 describes EMI2, a software
architecture modelling both passive and active interaction mechanisms for AmI.
Section 3 introduces the EMI2lets platform, a partial materialisation of the EMI2
architecture, which simplifies both the creation of software representatives for
everyday objects and their controlling proxies deployable in mobile devices. Section 4
illustrates the life cycle of an EMI2let from its development to its deployment in a
mobile device and lists some interesting applications produced with the EMI2lets
platform. Section 5 shows some performance results achieved by the current
implementation of EMI2lets. Section 6 overviews some related work. Finally, section
7 offers some conclusions and suggests further work.

2 EMI2: an AmI Architecture

Regardless of the continuous progress achieved in all the related research topics
which contribute to the AmI vision, we are still far away from its materialisation. A
good starting point to solve this may be the definition of suitable software
architectures and frameworks specially catered for AmI. The EMI2 (Environment to
Mobile Intelligent Interaction) architecture is our proposed solution.

EMI2 defines a multi-agent software architecture, where agents of different types,
modelling the different roles played by entities in AmI, communicate and cooperate to
fulfil a common goal, i.e. to enhance and facilitate the user interactions with her AmI
Space. For instance, a cinema may be enhanced with a Bluetooth mobile phone
accessible ticket booking service, so preventing the user from long queuing to
purchase tickets. Similarly, the door of our office may be augmented with an access
control service which demands the user to enter a PIN in her mobile to be given
access.

Fig. 1. The EMI2 Architecture

Fig. 1 portrays the main components of the EMI2 architecture. We distinguish three
main types of agents:
• EMI2Proxy: is an agent representing the user, which runs on the user’s mobile

device (PDA or mobile phone). It acts on behalf of the user, adapting/controlling
the environment for him, both explicitly, under the user’s control, or implicitly, on
its own judgement based on the profiles, preferences and previous interactions.

• EMI2Object: is an agent representing any device or physical object (vending
machine, door, ticket box) within a smart environment augmented with
computational services, i.e. the capacity to adapt its behaviour based on ambient
conditions or user commands. An EMI2Object cooperates with other EMI2 agents.

• EMI2BehaviourRepository: is an agent where knowledge and intelligence are
combined to support sensible adaptation. EMI2Objects may require the assistance
of an external EMI2BehaviourRepository to coordinate their own adaptation
according to the user’s preferences, behaviour patterns or even the explicit
commands received from an EMI2Proxy. The user’s mobile device can also be
powered with an internal EMI2BehaviourRepository.

2.1 Active and Passive Mechanisms

A concrete agent can influence the environment, and thus, its constituent agents’ state,
via active (explicit interaction) or passive (implicit interaction) methods.

Active methods are those in which the agent explicitly commands other agents to
change their state or perform an action. For example, when a user enters a building, a
sensor identifies him and commands the lift to be ready at the ground floor. When the
user stands by his office door his mobile phone commands the electric lock to open.
Active methods can be implemented with any distributed computing technology
capable of issuing commands, which will be transported in a local context by bearers
such as Bluetooth or Wi-Fi and in a global context by GPRS/UMTS.

Passive methods [19] are those in which an agent disseminates certain information
(profiles, preferences), expecting that other agents change their state or perform an

action at their discretion to create a more adapted environment. Using passive
methods an agent does not command the target agents to do anything concrete, it
simply publishes/broadcasts information preferences expecting the others to react
changing their state in a positive way. Passive mechanisms are less intrusive than
active methods, but they are less predictable and significantly more complex.

2.2 Active Influence over EMI2Objects

In this paper we want to concentrate on the design and implementation of a
middleware to provide universal active influence capabilities to our mobile devices
over the surrounding smart objects in our environment.

The minimum features such a middleware has to provide are: (1) a mechanism to
discover through ad-hoc or wireless networking the computing services exported by
surrounding smart objects, and (2) a mechanism to interact with those discovered
services, so that the objects they represent adapt to the user’s preferences and
commands.

The current state of the art in discovery and interaction platforms falls into three
categories [5][21]. Firstly, solutions in which discovery protocols are supported by
mobile code, e.g. Jini [16]. After discovery, the service (either a proxy or the full
service) is downloaded onto the mobile device where it then operates. Secondly,
solutions where the discovery protocols are integrated with specific interaction
protocols, which are used to invoke the service after the service has been discovered.
A good example of this is Universal Plug and Play (UPnP) [18]. Finally, there are
interaction independent discovery protocols such as the Service Location Protocol [3].

In what follows we explain the design and implementation of an AmI-enabling
middleware which addresses the service discovery and interaction aspects required for
active influence (explicit invocation) on EMI2Objects.

3 The EMI2lets Platform

EMI2lets is the result of mapping the EMI2 architecture into a software development
platform to enable AmI scenarios. This platform is specially suited for active
interaction mechanisms. However, it has been designed so that passive mechanisms
may be incorporated in the future.

EMI2lets is a development platform for AmI which addresses the intelligent
discovery and interaction among EMI2Objects and EMI2Proxies. EMI2lets follows a
Jini-like mechanism by which once a service is discovered, a proxy of it (an EMI2let)
is downloaded into the user’s device (EMI2Proxy). An EMI2let is a mobile component
transferred from a smart object to a nearby handheld device, which offers a graphical
interface for the user to interact over that smart object.

The EMI2lets platform addresses three main aspects:
• Mobility, seamlessly to the user it encounters all the services available as he moves

and selects the best possible mechanism to communicate with them. In other
words, the EMI2let platform ensures that an EMI2Proxy is always using the

communication means with best trade-off between performance and cost. For
example, if Wi-Fi and Bluetooth are available, the former is chosen.

• Interoperability, the EMI2lets are agnostic of the target device type, e.g. PC, a PDA
or a mobile phone.

• AmI is the application domain that has driven the design of EMI2lets. This platform
provides the infrastructure and software tools required to ease the development and
deployment of AmI scenarios.
The objectives established for the design and implementation of the EMI2lets

platform are:
• Transform mobile devices (mobile phones and PDAs) into remote universal

controllers of the smart objects located within an AmI space.
• Enable both local (Bluetooth, Wi-Fi) and global access (GPRS/UMTS) to the smart

objects in an AmI space, seamlessly adapting to the most suitable underlying
communication mechanisms

• Develop middleware independent of a particular discovery or interaction
mechanism. Abstract the programmer from the several available discovery
(Bluetooth SDP or wireless UPnP discovery) and interaction mechanisms (RPC or
publish/subscribe). Allow this middleware to easily adapt to newly emerging
discovery (e.g. RFID identification) and interactions means.

• Make use of commonly available hardware and software features in mobile
devices, without demanding the creation of proprietary hardware, or software.

• Generate software representatives (proxies) of smart objects which can be run in
any platform, following a “write once run in any device type” philosophy. For
instance, the same EMI2let could be run in a mobile, a PDA or a PC.

3.1 The EMI2lets Vision

Fig. 2 shows a possible deployment of an EMI2let-aware environment. A group of
devices running the EMI2let Player and hosting the EMI2let runtime can discover and
interact with the software representatives (EMI2lets) of surrounding EMI2Objects. An
EMI2Object may be equipped with enough hardware resources to host an EMI2let
Server, or alternatively a group of EMI2lets associated to different EMI2Objects may
all be hosted within an autonomous version of an EMI2let Server. The EMI2let Server
acts as a repository of EMI2Objects. It publishes the services offered by the hosted
EMI2Objects, transfers them on demand to the requesting EMI2let Players, and,
optionally acts as a running environment for the EMI2let server-side facets.

Some EMI2lets may directly communicate with their associated EMI2Objects in
order to issue adaptation commands. However, often a specialised piece of software
may need to be developed which is far too complex to be implemented in the
embedded hardware with which a smart object is normally equipped. For those cases,
it will be more convenient to delegate those cumbersome computing tasks to the
server-side (back-end) counterpart of an EMI2let. The EMI2let on the hand-held
device will communicate with its server-side counterpart in the EMI2let Server by
means of the EMI2Protocol. For example, a light-controlling EMI2let could
communicate with its EMI2let server-side, which would issue X10 commands over
the power line.

3.2 Internal Architecture

The EMI2lets platform consists of the following elements:
1. A programming framework defining a set of classes and rules that every EMI2let

component must follow.
2. An integrated development environment, named EMI2let Designer, which

simplifies the development of EMI2lets, both its client- and (optional) server-side.
3. A runtime environment installed on EMI2let-aware devices for executing

downloaded code.
4. An EMI2let Player to discover, download, verify and control the execution life of a

downloaded EMI2let. A version of the player is available for each device type
which may act as host of EMI2lets, e.g. PDA, mobile phone or PC.

5. An EMI2let Server which acts as repository of EMI2lets and as running
environment of EMI2lets server-sides.

Fig. 2. The EMI2lets in action.

In order to achieve the design objectives previously listed, we have created the
layered software architecture shown in Fig. 3. Programmers only deal with the first
layer, the EMI2let Abstract Programming Model API, to develop the software
counterparts of smart objects. This layer offers a set of generic interfaces (abstract
classes) covering the main functional blocks of a mobile sentient application:
1. Discovery interface to undertake the search for available EMI2lets independently of

the discovery mechanisms used underneath.
2. Interaction interface to issue commands over the services discovered.
3. Presentation interface to specify the graphical controls and events that represent

the look and feel of an EMI2let.
4. Persistency interface to store EMI2let-related data in the target device.

The EMI2let Abstract-to-Concrete Mapping layer translates the invocations over
the generic interfaces to the appropriate available mechanisms both in the mobile
device and the EMI2Objects in the environment. The discovery, interaction,
presentation and persistency abstractions encapsulate the concrete discovery,

interaction, presentation or persistency models used. They implement an API for
performing service discovery and interaction, graphical interface generation and data
persistence independent of the actual implementation in the target device. On
deployment the code generated through these abstract interfaces is linked to the
concrete implementations of the abstractions which are part of the EMI2let runtime in
the target device.

Fig. 3. EMI2lets Internal Architecture

In the process of associating a generic invocation to an actual one, the EMI2let
Abstract-to-Concrete Mapping will be responsible of selecting the actual mapping (or
group of mappings) which best matches the invocation type. For example, if a
downloaded EMI2let is installed on a device where both Bluetooth and GPRS
communication are available, the abstract-to-concrete layer will have to choose one of
those mechanisms to issue commands. Thus, if the mobile device is still within
Bluetooth range of the EMI2let server-side, then it will translate the invocation into an
EMI2Protocol message transported over Bluetooth RFCOMM. Otherwise, it will
invoke via GPRS the generic web service (with methods corresponding to the
EMI2Protocol commands) implemented by every EMI2let server-side.

Similarly, if a mobile device is Bluetooth and Wi-Fi capable, it will use both
Bluetooth SDP and UPnP service discovery to concurrently search for smart objects
in its surroundings.

With regards to the presentation abstraction, we have defined a minimum set of
graphical controls with which we can generate the graphical interface of an EMI2let.
Currently we support the following controls: panel, label, button, textbox, checkbox,
combobox, listbox, sound and image. Some examples of the graphical control classes
defined are: EMI2Panel, EMI2Button or EMI2TextBox. This set of controls
enables us to create graphical interfaces for EMI2lets which are agnostic to the target
mobile device. Thus, when a programmer creates an EMI2Button, it is translated
into a button control in a PC or a PDA, but into a menu option in a mobile phone.
Still, in order to guarantee a proper layout of the graphical controls according to the
three target device types (PC, PDA and mobile phone) supported, specific layout hints

can be given, with the help of the EMI2let Designer, for each device type. An example
showing this fact can be seen in Fig. 4. Lately, we have added support for a new
target device type, namely web-enabled devices. We have enhanced the functionality
of the EMI2let Server so that it can export EMI2lets as web pages accessible from non
EMI2let-compliant web-enabled devices.

The modus operandi of the plug-ins associated to any of the four available
functional mapping is ruled by an XML configuration file, which states whether a
plug-in may be run concurrently with other plug-ins of the same type or in isolation.
In the latter case, a priority is assigned to each plug-in which will determine which of
the plug-ins to select when several of them are available. We plan to establish a more
sophisticated and flexible plug-in configuration model in due time.

Both the Abstract-to-Concrete Mappings and the Functional Mapping (plug-ins)
layers compose the runtime installed in each target device. The code of the
downloaded EMI2let is linked on arrival by the EMI2let Player with the runtime.

Fig. 4. EMI2lets Designer

3.3 The EMI2Protocol

The EMI2Protocol defines a set of basic commands or messages which are exchanged
among EMI2let Players and Servers and EMI2let client- and server-sides. For those
messages to be exchanged, a connection between the client and server peers must
have previously been established. The discovery plug-ins in a Player are in charge of
discovering surrounding Servers and opening connections between Players and
Servers.

The plug-in implementations which use the Bluetooth bearer actually exchange the
commands as specified below, whereas plug-ins using other bearers such as Wi-Fi or
GPRS invoke a generic web service with methods corresponding to those commands.
The most important commands offered are:
• HELLO, through this message an EMI2let Player provides metadata to an EMI2let

Server. The metadata provided is the type of device the Player is running on and
the set of communication and discovery mechanisms (i.e. plug-ins installed and
running) available at the device.

• HELLO_RESPONSE, the EMI2let Server informs the connected EMI2let Player
about the communication channels it supports (i.e. the server’s own plug-ins
installed and running).

• SERVICE_QUERY, message issued by an EMI2let Player to an EMI2let Server in
order to retrieve information about the EMI2lets it hosts.

• SERVICE_QUERY_RESPONSE, message issued by an EMI2let Server to
provide a requesting EMI2let Player with the metadata of the services it hosts.

• DOWNLOAD_SERVICE, message issued by an EMI2let Player to an EMI2let
Server in order to retrieve the code of a selected EMI2let.

• DOWNLOAD_SERVICE_RESPONSE, message issued by an EMI2let Server to
provide a requesting EMI2let Player with the code of a selected service.

• COMMAND_SEND, message encapsulating a packet of data sent between an
EMI2let executing in a Player and its server-side hosted on an EMI2let Server.

• COMMAND_RESPONSE, message encapsulating a packet of data sent between an
EMI2let server-side and the EMI2let running in the Player.

3.4 Implementation

Reflection is paramount in the EMI2lets platform. It enables an EMI2let Player to
verify that the code arriving as part of an EMI2let complies with the EMI2lets
framework and can be trusted. Every EMI2let downloaded is encrypted with a private
key only shared by the EMI2let designer and the player. After downloading an
EMI2let, the Player unencrypts its code and verifies that the class downloaded follows
the EMI2let framework rules.

After verification, the player can start the EMI2let by invoking the methods defined
in the EMI2let base class, from which every EMI2let must inherit. The methods
defined by this class closely resemble the ones provided by a J2ME 9 MIDlet class:
• Start, starts or resumes the execution of a downloaded EMI2let.
• Pause, pauses its execution.
• Destroy, destroys it.

In addition, the EMI2let class includes some EMI2let-specific methods such as:
• GetUUID, returns the unique identifier of an EMI2let.
• SetProperty/GetProperty, sets or gets the properties associated to a

EMI2let. For instance, the EMI2let.Durable property is set to true when an
EMI2let has to be cached in the player after its execution. Thus, it can be executed
again in the future. Otherwise, an EMI2let is wiped out from the Player either when
its execution is completed or it is out of range of the EMI2Object it represents.

• NotifyDisconnected, offers an EMI2let the possibility of being aware of
when the EMI2Object that it controls cannot be accessed any longer.

• GetAddresses, enables the EMI2let-hosting player to retrieve the addresses at
which the EMI2let server-side is available. For instance, an EMI2let server-side
may be accessible both through a Bluetooth address or a url pointing to a web
service.

Our first reference implementation has used Microsoft .NET, a platform that fully
supports reflection through the System.Reflection namespace. Moreover, the
.NET platform addresses software development for all the client hardware platforms
considered in EMI2lets, namely PC, PDA and mobile phone. As a least common
multiple for the definition of the presentation controls of an EMI2let, we have chosen
most of the Compact.NET framework graphical controls, which represent a superset
of the ones in the SmartPhone framework and a subset of the standard .NET desktop-
oriented ones.

The most noticeable part of our implementation is the assembly fusion undertaken
at the player side merging the arriving EMI2let assembly with the EMI2let library
installed in each target device. This library represents the player’s runtime, i.e. the
abstract-to-concrete layer and the interaction, discovery, presentation and persistency
mappings implementation with their corresponding plug-in modules. In other words,
the assembly code downloaded is linked dynamically (late bound) with the runtime
installed in the target device. This assembly process would not have been possible
without the use of reflection.

3.5 An EMI2let Plug-in Example

The plug-in based mechanism adopted in EMI2lets guarantees its extensibility. If we
want to add support to EMI2lets for any newly emerging discovery or communication
technology we simply need to implement a plug-in for the corresponding abstraction.
In order to prove this point we have implemented a service discovery plug-in based
on the TRIP [7] tag-based visual identification system.

A factor that limits the use of Bluetooth as an underlying networking technology
for publicly accessible mobile services is that its device discovery process takes a
significant (sometimes unbearable) time. The discovery process in Bluetooth is
divided into two main phases: (1) device discovery, i.e. what other devices are
accessible via Bluetooth, and (2) service discovery, i.e. what services are offered by
the discovered devices. In an error-free environment, the device discovery phase must
last for 10.24s if it is to discover all the devices [1].

In order to speed up service discovery, we have devised a tag-based content/service
selection mechanism, which bypasses the slow Bluetooth device discovery process.
Our approach is inspired by the work of [12].

The TRIP visual tags are circular barcodes (ringcodes) with 4 data-rings and 20
sectors. A visual tag, large enough to be detected by a mobile device tag reading
software, is shown in Fig. 5. The ringcode is divided into: (1) one sync-sector used to
specify the beginning of the data encoded in a tag, (2) two checksum-sectors used to
encode an 8-bit checksum, which detects decoding errors and corrects three bit errors,
and (3) seventeen data-sectors which encode 66 bits of information.

The information in a TRIP tag is encoded in anti-clockwise fashion from the sync
sector. Each sector encodes a hexadecimal digit comprising the values 0 to D. The E
hexadecimal number is only permitted in the sync sector. Given the 17 data encoding
sectors, the range of valid IDs is from 0 to 1517-1 (98526125335693359375 ≈ 266).

Fig. 5. A tag encoding 66 bits of data.

The TRIP tags were designed to work well with the low-resolution fixed-focal-

length cameras found on conventional CCTV systems. Consequently, they are also
very well suited for the low-quality built-in cameras of mobile devices, as we
suggested in [8]. In fact, our experience shows that the TRIP ringcodes are more
reliably recognized than linear (UPC) barcodes, which demand far higher image
resolutions. TRIP works reliably with 160x120 pixel images taken at a distance of 5-
30 cms from the tags which label the smart objects in an environment. We have
implemented the TRIP tag reading software for Compact.NET devices, achieving 2
fps in a TSM 500 Pocket PC.

3.6 EMI2lets State Management

The EMI2lets platform incorporates a simple state management mechanism. In order
to prevent the user from continuously entering the same input details in the execution
of a previously run (durable) EMI2let, the player stores in EMI2 Cookie objects the
last values input. The EMI2 Cookies, contrary to the well-known HTTP cookies, keep
the state in the player (client-side). The UDDI associated to an EMI2let is employed
to establish associations between EMI2lets and EMI2Cookies. Currently, we are
working on extending state management in EMI2lets by adopting the WebProfiles
model proposed at [20].

4 EMI2lets Applications

In this section we will first describe the lifecycle of an EMI2let from its development
to its deployment and secondly we will mention some of the applications developed
with EMI2lets.

4.1 The Life Cycle of an EMI2let

Fig. 6 shows the life cycle of an EMI2let from its development with the EMI2let
Designer (see Fig. 4) until its deployment at the target mobile device and EMI2let
server. In our approach, active .NET code developed on a PC with the help of the
EMI2let Designer is uploaded into an EMI2let Server, from where it is later
discovered, downloaded, verified and executed in the context of an EMI2let Player.
After its execution and depending on its durability properties, the EMI2let is cached or
removed from the Player.

Fig. 6. EMI2let Life Cycle.

4.2 Examples of EMI2lets

We have developed EMI2lets targeted to the following application domains:
accessibility, home/office automation, industry and public spaces.

In the domain of accessibility we have developed EMI2lets which associated to a
bus stop offer a voice synthesized bus arrival notification for blind people or provide
subtitles on the mobile phones of people attending to a conference. These applications
demonstrated how simple it is to transform a physical space (bus stop or conference
hall) into a more accessible environment thanks to the EMI2lets platform.

In the home and office automation domain we have created EMI2lets that enable us
to control from our mobile devices the lights, music system (in fact the Windows
Media Player in a PC) and a Pan/Tilt/Zoom security camera at a home or office.

As far as the industry domain is concerned we have developed an EMI2let which
allows us to control from our mobile device a robot equipped with a communications
module supporting both Bluetooth and GPRS. When co-located with the robot our
EMI2let uses the Bluetooth communication channel. When we are far away from the
location of the robot, the EMI2let uses the GPRS channel to communicate with the
robot. The communication channel choice is undertaken by the EMI2lets runtime
autonomously.

Finally, on what we call the “public space” domain, we have created EMI2lets
which allow us to control a parking booth, order food in a restaurant or review the
departure time and gate of a plane in an airport. Those EMI2lets show how a physical
object in an outdoors space can be augmented with AmI features. For example, the
Parking EMI2let is meant to be deployed in any street parking booth, where we can

purchase tickets to park our car for a limited period of time. Often, we have to keep
returning to the parking place to renew the ticket so that the local police force does
not issue a fine for parking time expiration. Thanks to the EMI2lets platform a user
could discover, download (from the ticket booth) and install a parking EMI2let which
would help him solve this situation. With the downloaded EMI2let the user could
purchase parking tickets via Bluetooth while in the parking, and remotely via GPRS
when the EMI2let warns her (at her office) that its parking ticket is about to expire.
This scenario shows one of the biggest virtues of EMI2lets, its capability to enact an
action over an EMI2Object both locally, while in the environment, or remotely, far
away from the environment.

Fig. 7. EMI2lets running on a PDA.

Fig. 7 and Fig. 8 show three of the previously described EMI2lets in action running
in a PDA and a mobile phone, respectively. The EMI2lets shown allow a user to
control from his mobile device a robot, a lamp or a PTZ security camera. Something
remarkable about the EMI2lets platform is that in the development of those EMI2lets
we have written the code only once, independently of the target device where they
will run. This is due to the “write once run in any device type” philosophy followed
by our system.

Fig. 8. EMI2lets running on a mobile phone.

5 EMI2lets Performance Results

In order to asses the performance of our current implementation of the EMI2lets
platform we have carried out two tests:
1. A comparative measurement illustrating the different latencies experienced during

an EMI2let discovery, download and communication with its server-side, bearing
in mind the nature of the communication channel used (Wi-Fi, Bluetooth or
GPRS).

2. A comparative measurement to determine the average data rate achieved
depending on whether we use Bluetooth, Wi-Fi or GPRS to transfer data between
an EMI2let and its server-side.
Fig. 9 shows that the discovery process based on UPnP over Wi-Fi is much faster

than connecting directly to the IP address and port number of an EMI2let Server to
enquire about its installed EMI2lets over GPRS or undertaking Bluetooth discovery.
However, once the Bluetooth discovery has concluded the download of an EMI2let
code and the exchange of information between an EMI2let and its server-side is much
better than through GPRS and only worse to Wi-Fi which has a much better transfer
rate.

Fig. 10 shows the effective data transfer rates obtained over the three wireless
communication mechanisms we have used in EMI2lets. Obviously, the data transfer
rate obtained through Wi-Fi is the best, whereas Bluetooth offers the second best
behaviour.

Fig. 9. EMI2lets communication costs.

Fig. 10. Effective data transfer rate in EMI2lets.

6 Related Work

The EMI2lets platform presents some resemblance to the Smoblets software
framework proposed by [14]. Both frameworks download into a mobile device the
software representatives of objects located in a smart space. However, Smoblets only
operate when they are within range of the smart object they represent. On the
contrary, EMI2lets can remain at the user’s terminal, even when he is far away from
the smart object. This allows the user to control that smart object anytime and
anywhere, both using local (Bluetooth) and global (GPRS) communication
mechanisms. Furthermore, the main application of Smoblets is to transform mobile
devices into execution platforms for code downloaded from smart items with limited
processing resources, whereas EMI2lets are mainly thought to transform mobile
devices into hosts of smart object proxies, which simplify their remote control.

The EMI2lets framework’s layered software architecture has been inspired by the
ReMMoC framework [5]. However, EMI2lets does not only address the service

discovery and interaction issues of mobile context-aware applications. It also tackles
the graphical presentation and persistency aspects commonly used in those
applications. Moreover, the EMI2let code generated is independent of the target
platform where it will be run (PC, PDA or mobile).

The Pebbles project [10] is exploring how handheld devices, such as PDAs and
mobile phones, can be used when they are communicating with a "regular" personal
computer (PC), with other handhelds, and with computerized appliances such as
telephones, radios, microwave ovens, automobiles, and factory equipment. Pebbles
shares with EMI2lets the goal of transforming handheld devices into universal remote
controllers. Moreover, it adopts a similar architecture where a player in the handheld
device communicates with server-side intermediaries to control the operation of the
underlying smart objects. However, the main difference is that Pebbles defines a
Personal Universal Controller (PUC) Specification Language through which the
device parameters that can be controlled are specified. The PUC language does not
only specifies these control parameters but also a protocol for transmitting changes to
the state of these parameters between the appliance and the controller. Essentially, the
player in Pebbles has to interpret the PUC specification published by a device in order
to generate its interface, i.e. applies an XSLT-like transformation to obtain from the
XML representation of the controlling parameters a set of graphical controls.
Unfortunately, Pebbles focuses all its work on the presentation and interaction process
and has not solved the important service discovery issues that EMI2lets has addressed.
Moreover, in EMI2lets is the designer of a smart object the one who decides which
will be the best look and feel of the graphical interface to control the smart object,
whereas in Pebbles that decision is left to the player itself.

The Obje software architecture [4] is an interconnection technology that enables
digital devices and services to interoperate over both wired and wireless networks –
even when they know almost nothing about one another. Their goal is to be able of
simply plug new device types into the network and all existing peers on the network
will be able to use them. Similarly to EMI2lets, Obje is agnostic to the underlying
discovery and communication mechanisms. It also defines four simple abstractions
that remain constant and all peers on the network understand: a) connect to another
device, b) provide metadata about itself, c) be controlled, and d) provide references to
other devices. In addition, it defines a messaging protocol over TCP/IP that every
Obje-enabled device must implement. The main difference between EMI2lets and
Obje is that whereas in the former is the developer of a smart object the one who
decides what the user interface presented to the end user will look like and what
functionality it will have access to, in the Obje case the responsibility for determining
appropriate interactions shifts from the developer to the end user. In other words, the
programming on each device in Obje only tells the device how to interact with peers
using the abstract mechanisms previously mentioned. The authors of Obje argue such
semantic ignorance is necessary for open-ended interoperability. However, this
flexible approach implies that they will need to provide tools that let end-users
compose and configure devices within a space. Our approach in EMI2lets is much
simpler and almost as flexible. The smart object developer decides the best and
richest multiplatform (PC, PDA and mobile phone) user interface to control an object.
Through EMI2lets the end-user can directly operate with its surrounding objects. As a
second drawback, Obje only runs on the PC platform and provides the capability for

the end user to integrate different components within a smart space but does not make
the smart objects embedded in AmI spaces readily available for the end-user to
control as EMI2lets does.

7 Conclusion and Future Work

This work has described the design and implementation of a novel reflective
middleware which provides universal active influence capabilities to mobile devices
over smart objects, independently of the objects location. This framework presents the
following features:
• Transforms mobile devices into universal remote controllers of smart objects.
• Enables both local and global access to those smart objects, i.e. anywhere and at

anytime.
• Independent and extensible to the underlying service discovery and interaction,

graphical representation and persistence mechanisms.
• Enables AmI using conventional readily-available hardware and software tools.
• Follows a “write once run in any device type” development philosophy.

In future work we want to add more sophisticated service discovery and context
negotiation features between EMI2let Players and Servers, following the WebProfiles
model described in [20]. In addition, we want to enable the cooperation of smart
objects, for instance, through the creation of a distributed shared tuple space. Finally,
we intend to incorporate Semantic Web features to our framework, which may move
the user “out of the loop” in the EMI2lets discovery and execution process, as
suggested in [6].

Acknowledgements

This work has been financed by a SAIOTEK 2004-05 grant from the Basque
Government and the Cátedra de Telefónica Móviles at the University of Deusto. This
work was granted the Image Cup 2005 prize by Microsoft Spain.

References

1. Bluetooth Specification version 1.1, http://www.bluetooth.com, (2005)
2. Beigl, M., Gellersen H.W., and Schmidt, A.: MediaCups: Experience with Design and Use

of Computer-Augmented Everyday Objects. Computer Networks, Special Issue on
Pervasive Computing, Vol. 25, No. 4, (2004) 401–409.

3. Czerwinski S., Zhao B. et al.: An architecture for a Secure Service Discovery Service.
Proceedings of MobiCom’99, (1999)

4. Edwards W.K., Newman M. W., Sedivy J.Z. and Smith T.F: Bringing Network Effects to
Pervasive Spaces. IEEE Pervasive Computing – Mobile and Ubiquitous Systems, Vol. 4,
No. 1, (2005) 15-17

5. Grace P., Blair G. S. and Samuel S.: A Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile Environments. Mobile Computing and
Communications Review, ACM SIGMOBILE, Vol. 9, No. 1, (2005) 2-14

6. Lassila O. and Adler M.: Semantic Gadgets: Device and Information Interoperability in
Kalle Lyytinen & Yongjin Yoo (eds.): "Ubiquitous Computing Environment", Case
Western Reserve University, (2003)

7. López de Ipiña, D., Mendonça P. and Hopper A.: TRIP: a Low-cost Vision-based
Location System for Ubiquitous Computing, in Personal and Ubiquitous Computing, Vol.
6, No. 3, (2002) 206-219

8. López de Ipiña D., Vázquez I. and Sainz D.: Interacting with our Environment through
Sentient Mobile Phones. Proceedings of 2nd International Workshop in Ubiquitous
Computing (IWUC-2005), ICEIS 2005, ISBN 972-8865-24-4, (2005) 19-28

9. Microsoft Corporation.: Mobile Developer Center, http://msdn.microsoft.com/mobility/,
(2005)

10. Myers B.A.: Using Hand-Held Devices and PCs Together. Communications of the ACM,
Vol. 44, No. 11, (2001) 34 - 41.

11. Rohs M., Zweifel P.: A Conceptual Framework for Camera Phone-based Interaction
Techniques. Pervasive Computing: Third International Conference, PERVASIVE 2005,
Lecture Notes in Computer Science (LNCS) No. 3468, Springer-Verlag, Munich,
Germany, (2005)

12. Scott D. et al.: Using Visual Tags to Bypass Bluetooth Device Discovery. ACM Mobile
Computing and Communications Review, Vol.9, No.1, (2005) 41-52.

13. Shadbolt N.: Ambient Intelligence. IEEE Intelligent Systems, Vol. 2, No.3, (2003)
14. Siegemund, F. and Krauer T.: Integrating Handhelds into Environments of Cooperating

Smart Everyday Objects. Proceedings of the 2nd European Symposium on Ambient
Intelligence. Eindhoven, The Netherlands, (2004)

15. Sun Microsystems, Inc.: Java 2 Platform, Micro Edition (J2ME), http://java.sun.com/j2me/
(2005)

16. Sun Microsystems, Inc.: Jini Specifications Archive - v2.1,
http://java.sun.com/products/jini/2_1index.html, (2005)

17. Symbian Ltd.: Symbian OS – the mobile operating System, http://www.symbian.com/,
(2005)

18. The Universal Plug and Play Forum: http://www.upnp.org/, (2005)
19. Vázquez, J.I., López de Ipiña, D.: An Interaction Model for Passively Influencing the

Environment. Adjunct Proceedings of the 2nd European Symposium on Ambient
Intelligence, Eindhoven, The Netherlands, (2004)

20. Vázquez, J.I. and López de Ipiña D.: An HTTP-based Context Negotiation Model for
Realizing the User-Aware Web. 1st International Workshop on Innovations In Web
Infrastructure (IWI 2005), Chiba, Japan (2005)

21. Zhu F., Mutka M.W., L.M. Ni.: Service Discovery in Pervasive Computing Environments.
IEEE Pervasive Computing, Vol. 4, No. 4, (2005) 81-90

