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The current multimedia, processing and communication 

capabilities of mobile devices make them most suitable 

to act as our intermediaries with the surrounding 

environment. They are capable of sensing, processing, 

storing and communicating with the artefacts 

augmented with computing services (i.e. smart objects) 

deployed in a smart space. This paper describes a 

device-type, user-location and communication-means 

agnostic platform, namely EMI
2
lets, which fulfils a two-

fold purpose: a) it transforms our mobile devices into 

universal remote controllers of smart objects and b) it 

helps us constructing smart object ecosystems, i.e. smart 

spaces.  

 

 

1. INTRODUCCTION 

 

Current PDAs and mobile phones are equipped with 

continuously increasing processing and storage 

capabilities, better and more varied communications 

mechanisms (Bluetooth, Wi-Fi, GPRS/UMTS) and 

increasingly capable multimedia capture and playback 

facilities. Moreover, they are far more easily 

programmable, Symbian (1), Microsoft (2),  Sun (3), 

Brew (4) or Opera (5), than ever before. 

 

Mobile devices equipped with Bluetooth, built-in 

cameras, GPS receivers, barcode or RFID readers can 

be considered as sentient devices – López-de-Ipiña et al. 

(6),  Rohs and Zweifel (7) – since they can sense 

(discover) what smart objects are in their whereabouts. 

A smart object, Beigl et al. (8), is an everyday artefact, 

physical (e.g. door, classroom) or virtual (e.g. a specific 

location within a house) augmented with some 

accessible computational service. Once a mobile device 

discovers a nearby smart object, it can control it.  

 

Taken into account all the above considerations, it is 

logical to think that mobile devices will play a key role 

in Ambient Intelligence (AmI), Shabolt (9). AmI 

envisions sentient computing-service enriched 

environments which explicitly or implicitly react to the 

user’s current context, in order to enhance his daily 

activities. In consequence, mobile devices can act as our 

personal electronic butlers, facilitating and enhancing 

our daily activities, and even acting on our behalf based 

on our profiles, preferences and current context.    

 

In this paper, we describe the design and 

implementation of EMI
2
lets (Environment to Mobile 

Intelligent Interaction), López-de-Ipiña et al. (10), a 

middleware platform to facilitate the development and 

deployment of AmI-aware environments, such as a 

home or an office. 

 

The structure of the paper is as follows. Section 2 

describes the requirements to be fulfilled by a smart 

space enabling middleware.  Section 3 details the 

EMI
2
lets platform, which simplifies both the creation of 

software representatives for everyday objects and their 

controlling proxies deployable in mobile devices. 

Section 4 illustrates the smart object development and 

deployment process allowed by the EMI
2
lets platform 

and its plug-in based extensibility features. Section 5 

gives some example applications developed with the 

EMI
2
lets platform. Section 6 shows some performance 

results. Section 7 overviews some related work. Finally, 

section 8 offers some conclusions and suggests further 

work.  

 

 

2. SMART SPACE-ENABLING MIDDLEWARE 

 

In order to make the AmI vision reality significant 

progress must still be achieved in diverse areas such as 

context-awareness (biometry, indoor location systems), 

ubiquitous computing and communication, intelligent 

interfaces, artificial intelligence (reasoning and 

learning) and so forth. Despite all this, given the current 

technology state of the art, the first AmI environments 

or smart spaces, can start being deployed if suitable 

AmI-specific middleware and tools are defined.    

 

For us, a smart space is a physical location where the 

artefacts (physical and virtual objects) present within 

are augmented with computing services, i.e. they are 

populated with smart objects ecologies. Two examples 

of such smart objects would be: a) a mobile phone 

locally accessible (Bluetooth) ticket booking service in 

a cinema, preventing the user from long queuing to 

purchase tickets; or b) a virtual post-it service assigned 

to the fridge door where a user may see the notes left by 

other family members in his mobile phone when he 

passes by.  

 



2.1. Active and Passive Mechanisms 

 

An AmI agent (user or device) can influence the 

environment, and thus, its constituent smart objects’ 

ecology state, via active (explicit interaction) or passive 

(implicit interaction) methods.  

 

Active methods are those in which the agent explicitly 

commands the smart objects to change their state or 

perform an action. For example, when a user enters a 

building, a sensor identifies him and commands the lift 

to be ready at the ground floor. When the user stands by 

his office door his mobile phone commands the electric 

lock to open. 

 

Passive methods are those in which an agent or smart 

object disseminates certain information (profiles, 

preferences), expecting that other agents change their 

state or perform an action at their discretion to create a 

more adapted environment. Using passive methods an 

agent does not command the target agents or smart 

objects to do anything specific, it simply publishes 

information preferences expecting the others to react 

changing their state in a positive way. Passive 

mechanisms are less intrusive than active methods, but 

they are less predictable and significantly more complex 

to implement. 

 

In passive methods, the particular set of information to 

be disseminated by the agent is dependant on the 

configuration of the environment in which is going to be 

published. Therefore, a discovery and negotiation 

process must take place among the entities in an 

environment in order to achieve an adapted behaviour 

for the users present within. In previous work, we have 

tackled these passive influence and context negotiation 

issues, Vazquez and López-de-Ipiña (10). 

 

2.2. Requirements for Active Influence over Smart 

Objects 

 

The two minimum requirements a platform enabling 

active influence over smart objects must address are: a) 

a mechanism to discover through ad-hoc or wireless 

networking the computing services exported by 

surrounding smart objects, and b) a mechanism to 

interact with those discovered services, so that the 

represented objects adapt to the user’s commands.  

 

The current state of the art in discovery and interaction 

platforms falls into three categories, according to Grace 

et al. (12) and Zhu et al. (13). Firstly, solutions in which 

discovery protocols are supported by mobile code, e.g. 

Jini, Sun (14). After discovery, the service (either a 

proxy or the full service) is downloaded onto the mobile 

device where it then operates. Secondly, solutions 

where the discovery protocols are integrated with 

specific interaction protocols, which are used to invoke 

the service after the service has been discovered, e.g. 

Universal Plug and Play (UPnP (15)). Finally, 

interaction independent discovery protocols such as 

SLP, Czerwinski et al. (16).  

 

One of the following communication mechanisms is 

normally used to interact with a discovered service: 

remote method invocation, publish-subscribe or 

asynchronous messaging. For the purpose of this work 

we will concentrate on the remote method invocation 

paradigm, since it accommodates to the most popular 

mechanisms for distributed computing such as CORBA 

or Web Services.  

 

In what follows, the design and implementation of an 

AmI-enabling platform is described which addresses the 

service discovery and interaction aspects required for 

active influence (explicit invocation) over smart object 

ecologies.  

 

3. THE EMI
2
LETS PLATFORM 

EMI
2
lets is a .NET-based software development 

platform to enable AmI scenarios. It is specially suited 

for active interaction mechanisms. However, it has been 

designed so that passive mechanisms may be 

incorporated in the future, or even different 

implementation platforms. EMI
2
lets addresses the 

intelligent discovery and interaction among mobile 

devices and smart objects. EMI
2
lets follows a Jini-like 

mechanism by which once a service is discovered, a 

proxy of it (an EMI
2
let) is downloaded into the user’s 

device. An EMI
2
let is a mobile component transferred 

from a smart object to a nearby handheld device, which 

normally offers a graphical interface to interact or 

influence the behaviour of a surrounding smart object.  

 

The EMI
2
lets platform addresses three main aspects:  

 

• Mobility, seamlessly to the user it encounters all the 

services available as he moves and selects the best 

possible mechanism to communicate with them. 

The EMI
2
let platform selects the communication 

means with best trade-off between performance and 

cost. For example, if Wi-Fi and Bluetooth are 

available, the former is chosen, however if 

GPRS/UMTS and Bluetooth are available, the latter 

is chosen.  

• Interoperability, the EMI
2
lets, i.e. the software 

components downloaded from smart objects to 

EMI
2
Proxies, are agnostic to the target device type, 

e.g. PC, a PDA or a mobile phone. 



• AmI is the application domain that has driven the 

design of EMI
2
lets. This platform provides the 

infrastructure and software tools required to ease 

the development and deployment of the smart 

objects that populate smart environments 

.  

The objectives established for the design and 

implementation of the EMI
2
lets platform are: 

 

• Transform mobile devices into remote universal 

controllers of the smart objects in an AmI 

environment. 

• Enable both local (Bluetooth, Wi-Fi) and global 

access (GPRS/UMTS) to the smart objects in an 

AmI environment, seamlessly adapting to the most 

suitable underlying communication mechanisms 

• Develop extensible middleware independent of a 

particular discovery or interaction mechanism. 

Abstract the programmer from the several available 

or emerging discovery (Bluetooth SDP or wireless 

UPnP discovery) and interaction mechanisms (RPC 

or publish/subscribe). 

• Make use of commonly available hardware and 

software in mobile devices, without demanding the 

creation of proprietary hardware, or software 

protocols.   

• Generate software representatives (proxies) of 

smart objects which can be run in any platform, 

following a “write once run in any device type” 

philosophy. For instance, the same EMI
2
let should 

be able to run in a mobile phone, a PDA or a PC. 

 

3.1. The EMI
2
lets concept 

Figure 2 shows a possible deployment of an EMI
2
lets-

powered environment. A group of handheld devices 

running the EMI
2
let Player and hosting the EMI

2
let 

runtime can discover and interact with the software 

representatives (EMI
2
lets) of surrounding smart objects. 

A smart object may be equipped with enough hardware 

resources to host an EMI
2
let Server, or alternatively a 

group of EMI
2
lets associated to different smart objects 

may all be hosted within an autonomous version of an 

EMI
2
let Server. 

 

The EMI
2
let Server acts as a repository of smart object 

representatives. It publishes the services offered by the 

hosted EMI
2
lets by means of the communication 

mechanism supported at the server (e.g. Bluetooth, 

UPnP), transfers them on demand to the requesting 

EMI
2
let Players, and, optionally acts as running 

environment for the EMI
2
let server-side facets.  

 

Some EMI
2
lets may directly communicate with their 

associated smart object in order to issue adaptation 

commands. However, often a specialised piece of 

software may need to be developed which is far too 

complex to be implemented in the embedded hardware 

with which a smart object may be augmented. For those 

cases, it will be more convenient to delegate those 

cumbersome and heavy computing tasks to the server-

side (back-end) counterpart of an EMI
2
let. The EMI

2
let 

on the hand-held device will communicate with its 

server-side counterpart in the EMI
2
let Server by means 

of the EMI
2
Protocol. For example, a light-controlling 

EMI
2
let could communicate with its EMI

2
let server-

side, which would issue X10 commands over the power 

line. 

 

Figure 2: EMI
2
lets possible configuration 

3.2. Internal architecture 

The EMI
2
lets platform consists of the following 

elements: 

 

1. A programming framework defining a set of classes 

and rules that every EMI
2
let component must 

follow. 

2. An integrated development environment, named 

EMI
2
let Designer, which simplifies the 

development of EMI
2
lets, both its client- and 

(optional) server-side. 

3. A runtime environment installed on EMI
2
let-aware 

devices for executing downloaded code.  

4. An EMI
2
let Player to discover, download, verify 

and control the execution of a EMI
2
let. A version of 

the player is available for each device type which 

can host EMI
2
lets, e.g. PDA, mobile phone or PC. 

5. An EMI
2
let Server which acts as a repository of 

EMI
2
lets and as running environment of EMI

2
lets 

server-sides. 

 

In order to achieve the previously mentioned design 

objectives, we have created the layered software 

architecture shown in Figure 3. Programmers only deal 

with the first layer, the EMI
2
let Abstract Programming 

Model API, to develop the software counterparts of 

smart objects. This layer offers a set of generic 

interfaces (abstract classes) covering the main 

functional blocks of a mobile sentient application: 

 



1. Discovery interface to undertake the search for 

available EMI
2
lets independently of the discovery 

mechanisms used underneath.  

2. Interaction interface to issue commands over the 

services discovered.  

3. Presentation interface to specify the graphical 

controls and events that represent the look and feel 

of an EMI
2
let. 

4. Persistency interface to store EMI
2
let-related data 

in the target device. 

 

The EMI
2
let Abstract-to-Concrete Mapping layer 

translates the invocations over the generic interfaces to 

the appropriate available mechanisms both in the mobile 

device and the smart object representatives (EMI
2
lets) in 

the environment. The discovery, interaction, 

presentation and persistency abstractions encapsulate 

the concrete discovery, interaction, presentation or 

persistency models used. They provide an API for 

performing service discovery and interaction, graphical 

interface generation and data persistence independent of 

the actual implementation of that API in the target 

device. 

 

Figure 3: EMI
2
lets internal architecture 

On deployment, the code developed by means of the 

mentioned API abstract interfaces (Abstract 

Programming Model) is late bound to the concrete 

implementations of those interfaces (Concrete 

Mappings) which are part of the EMI
2
let runtime in the 

target device. 

 

In the process of associating a generic invocation to an 

actual one, the EMI
2
let Abstract-to-Concrete Mapping 

will be responsible for selecting the actual mapping (or 

group of mappings) which best matches the invocation 

type. For example, if a downloaded EMI
2
let is installed 

on a device where both Bluetooth and GPRS 

communication are available, the abstract-to-concrete 

layer will have to choose one of those mechanisms to 

issue commands. Thus, if the mobile device is still 

within Bluetooth range of the EMI
2
2let server-side, then 

it will translate the invocation into an EMI
2
Protocol 

message transported over Bluetooth RFCOMM. 

Otherwise, it will invoke via GPRS the generic web 

service (with methods corresponding to the 

EMI
2
Protocol commands) implemented by an EMI

2
let 

back-end. In the case that a communication link fails, 

the EMI
2
lets runtime will use other available 

communication links in a transparent way to the user. 

 

With regards to the presentation abstraction, we have 

defined a minimum set of graphical controls with which 

the graphical interface of an EMI
2
let is generated. Some 

examples are: EMI2Panel, EMI2Button or 

EMI2TextBox. This enables us to create EMI
2
let 

graphical interfaces agnostic of the target mobile device. 

Thus, when a programmer creates an EMI2Button, it 

is translated into a button control in a PC or a PDA, but 

into a menu option in a mobile phone.  

 

The operation of the functional mapping plug-ins is 

ruled by an XML configuration file, which states 

whether a plug-in may be run concurrently with other 

plug-ins of the same type or in isolation. In the latter 

case, a priority is assigned to each plug-in which will 

determine which of the plug-ins to select when several 

of them are available.  Both the Abstract-to-Concrete 

Mappings and the Functional Mapping layers and plug-

ins will be linked to the arriving EMI
2
let in an EMI

2
let 

Player, running in any of the four supported device 

types (see Figure 4). 

 

Figure 4: EMI
2
let Players in the PC, Windows Mobile 

Pocket PC and Web platforms 

3.3. Importance of Reflection 

The use of reflection is very important in the EMI
2
lets 

platform. It enables an EMI
2
let Player to verify that the 



code arriving as part of an EMI
2
let complies with the 

EMI
2
lets framework, and most importantly, is a piece of 

code which can be trusted. Every EMI
2
let downloaded 

is signed with a private key only shared by the EMI
2
let 

designer and the player.  

 

After verification, the player can start the EMI
2
let by 

invoking the methods defined in the EMI2let base 

class, extended by every EMI
2
let. The methods defined 

by this class follow similar signatures to those found in 

a J2ME (3) MIDlet class:  

 

• Start, starts or resumes the execution of a 

downloaded EMI
2
let. 

• Pause, pauses its execution. 

• Destroy, destroys it. 

 

In addition, the EMI2let class includes some 

EMI
2
lets-specific methods such as:  

 

• GetUUID, returns the unique identifier of an 

EMI
2
let, under which state related to an  EMI

2
let 

can be persisted. 

• SetProperty/GetProperty, sets or gets the 

properties associated to a EMI
2
let. For instance, the 

EMI2let.Durable property is set to true when 

an EMI
2
let has to be cached in the player, so that it 

can be executed again in the future. Otherwise, an 

EMI
2
let is removed from the player either when its 

execution is completed or it is out of range, cannot 

access, the smart object it represents. 

• NotifyDisconnected, offers an EMI
2
let the 

possibility of being aware when the controlled 

smart object cannot be accessed.  

• GetAddresses, enables the EMI
2
let-hosting 

player to retrieve the EMI
2
let server-side addresses. 

For instance, an EMI
2
let back-end may be accessed 

both through a Bluetooth address or a url pointing 

to a web service. 

 

3.4. The EMI
2
lets implementation 

The most noticeable part of our implementation is the 

assembly fusion undertaken at the player side merging 

the arriving EMI
2
let assembly with the EMI

2
let library 

installed in each target device. This library represents 

the player’s runtime, i.e. the abstract-to-concrete layer 

and the four mappings implementation with their 

corresponding plug-in modules. In other words, the 

assembly code downloaded is linked dynamically (late 

bound) with the runtime installed in the target device.  

The .NET’s System.Reflection namespace has 

provided us the support to enable this.  

 

4. BUILDING AND DEPLOYING EMI
2
LETS 

The main goal of the EMI
2
lets framework is to simplify 

the development and deployment of smart objects which 

can later be discovered and consumed by client devices 

in a communication and discovery protocol agnostic 

manner.  

 

The development of smart objects is eased by:  a) 

providing a framework, i.e. an API with a set of rules 

that every developer must follow, and b) an IDE which 

simplifies the interface design of an EMI
2
let for its three 

supported platforms: mobile phone, PDA and PC.  

 

The deployment of smart objects is simplified by the 

EMI
2
let Server component, in charge of hosting and 

publishing EMI
2
lets.  

 

The EMI
2
lets platform supports several discovery 

protocols and communication mechanisms in the form 

of plug-ins. Each discovery plug-in implements the 

discovery interface, whilst the interaction plug-ins do 

the same with the interaction interface. Currently, we 

can discover smart objects by means of UPnP, 

Bluetooth SDP, or looking up a simple web service 

registry. Invocations can be transmitted to smart objects 

following the EMI
2
let protocol by means of sockets 

through Wi-Fi and GPRS/UMTS and Bluetooth 

RFCOMM. 

 

4.1. An EMI
2
let Life Cycle 

 

Figure 5 illustrates the life cycle of an EMI
2
let from its 

development to its deployment: 

 

1. .NET code following the EMI
2
let framework’s API 

is developed on a PC through the EMI
2
let Designer. 

This tool offers a drag & drop based interface 

designer (see Figure 6) and simplifies the overall 

EMI
2
let coding and compilation process. Once the 

EMI
2
let implementation is completed it is uploaded 

into an EMI
2
let Server. 

2. The EMI
2
let Server publishes the available 

EMI
2
lets deployed within it. This server is in 

charge of publishing the registered EMI
2
lets using 

all the available communication mechanisms and 

discovery protocols available at the hosting 

machine. 

3. An EMI
2
let Player, running on either a PC, a PDA, 

a mobile phone or a web browser, discovers the 

services available in nearby EMI
2
let Servers by 

means of the available communication mechanisms 

on the device. 

4. An EMI
2
let Player downloads from an EMI

2
let 

Server a user selected EMI
2
let which is then 

verified, installed and executed on the player. After 



iterating with the EMI
2
let, the user may stop it and 

choose whether to wipe it out from the device or 

save it in the player EMI
2
let repository for later use. 

 

 

Figure 5: EMI
2
let lifecycle. 

 

 

Figure 6: EMI
2
let Designer. 

4.2. An EMI
2
let Discovery Plug-in 

 

In order to prove the extensibility features of the 

EMI
2
lets platform, an interesting example of an 

EMI
2
lets plug-in is described. This plug-in 

accommodates to the discovery abstraction of EMI
2
lets 

and it is based on the TRIP, López-de-Ipiña (17), tag-

based visual system. 

 

A factor that limits the use of Bluetooth as an 

underlying networking technology for publicly 

accessible mobile services is that its device discovery 

model takes a significant (sometimes unbearable) 

amount of time. The discovery process in Bluetooth is 

divided into two main phases: a) device discovery and 

b) service discovery in the devices discovered. In an 

error-free environment, the device discovery phase must 

last for 10.24s if it is to discover all the devices, 

Bluetooth (18).  

 

In order to reduce the delay in service discovery, we 

propose a tag-based service selection, which bypasses 

the slow Bluetooth Device Discovery process, similar to 

Scott et al. (19).  

 

The TRIP visual tags are circular barcodes (ringcodes) 

with 4 data-rings and 20 sectors. A visual tag, large 

enough to be detected by a mobile device tag reading 

software, is shown in Figure 7.  

 

The information in a TRIP tag is encoded in anti-

clockwise fashion from the sync sector. The sync-sector 

differs from the rest by presenting black in its four data 

rings sections. Each sector encodes a hexadecimal digit 

comprising the values 0 to D. The E hexadecimal 

number is only permitted in the sync sector. Given the 

17 data encoding sectors, the range of valid IDs is from 

0 to 1517-1 (98526125335693359375 ≈ 2
66

). 

 

The TRIP tags were designed to work well with the 

low-resolution fixed-focal-length cameras found on 

conventional CCTV systems. Consequently, they are 

also suitable for mobile phone cameras (6).  

 

Figure 7: A tag encoding 66 bits of data. 

We have applied TRIP tags to encode the Bluetooth 

address of an EMI
2
let Server and an identifier to select a 

smart object representative in the server. Likewise, we 

have also used those tags to encode tiny urls (see 

http://tinyurl.com) which point to an EMI
2
let in an 

EMI
2
let Server. The tiny url server is currently 

generating 6 character-long identifiers, whilst we can 



encode up to 8 characters. The scheme followed to 

encode an EMI
2
let address in a TRIP ringcode is: 

 

• Two bits have been allocated to encode the address 

type, i.e. whether it is a Bluetooth (00) or an 

Internet tiny url (01) address.  

• For Bluetooth, 48 bits are dedicated to encode the 

BD_ADDRESS of an EMI
2
let Server, and the 

remaining 16 bits to encode a unique identifier to 

select a specific EMI
2
let. 

• For Internet, we have used the 66 bits available to 

encode a tiny url, containing the address of an 

EMI
2
let. For example, the tiny url identifier 8ggaj 

maps to the url http://wap.deusto.es. 

 

Noticeably, the TRIP visual tags do not only improve 

service discovery but they also serve to call user’s 

attention about the smart objects available, including the 

virtual ones, in his surroundings. 

 

5. EMI
2
LETS EXAMPLES 

We have developed EMI
2
lets targeted to the following 

application domains: a) accessibility, b) home/office 

automation, c) industry, and d) public spaces. 

 

In the domain of accessibility we have developed 

EMI
2
lets which associated to a bus stop offer a voice 

synthesized bus arrival notification for blind people or 

provide subtitles on the mobile phones of deaf people 

attending to a conference. These applications 

demonstrated how simple it is to transform a physical 

space (bus stop or conference hall) into a more 

accessible environment thanks to the EMI
2
lets platform.  

 

In the home and office automation domain some 

EMI
2
lets have been created that enable to control the 

lights, a music system (in fact the Windows Media 

Player in a PC) or a Pan/Tilt/Zoom security camera at a 

home or office, from mobile devices.  

 

As far as the industry domain is concerned we have 

developed an EMI
2
let which allows us to control from 

our mobile device a robot equipped with a 

communications module supporting both Bluetooth and 

GPRS. When co-located with the robot our EMI
2
let uses 

the Bluetooth communication channel. When we are far 

away from the location of the robot, the EMI
2
let uses 

the GPRS channel to communicate with the robot. The 

communication channel choice is undertaken by the 

EMI
2
lets runtime autonomously.  

 

Finally, on what we call the “public space” domain, we 

have created EMI
2
lets which allow us to control a 

parking booth, order food in a restaurant or review the 

departure time and gate of a plane in an airport. Those 

EMI
2
lets show how a physical object in a space can be 

augmented with AmI features. For example, the Parking 

EMI
2
let is meant to be deployed in any street parking 

booth, where we can purchase tickets to park our car for 

a limited period of time. Often, we have to keep 

returning to the parking place to renew the ticket so that 

the local police force does not issue a fine for parking 

time expiration. Thanks to the EMI
2
lets platform a user 

could discover, download (from the ticket booth) and 

install a parking EMI
2
let which would help him solve 

this situation. With the downloaded EMI
2
let the user 

could purchase parking tickets via Bluetooth while in 

the parking, and remotely via GPRS when the EMI
2
let 

warns her (at her office) that its parking ticket is about 

to expire. This scenario shows one of the biggest virtues 

of EMI
2
lets, its capability to enact an action over a 

smart object both locally, while in the environment, or 

remotely, far away from the environment.  

 

 

Figure 8:  EMI
2
lets running on a PDA. 

 

Figure 9: EMI
2
lets running on a mobile phone. 



Figure 8 and Figure 9 show three of the previously 

described EMI
2
lets running in a PDA and a mobile 

phone, respectively. The EMI
2
lets shown allow a user to 

control from his mobile device a robot, a lamp or a PTZ 

security camera. Something remarkable about the 

EMI
2
lets platform is that in the development of those 

EMI
2
lets we have written the code only once, 

independently of the target device where they will run. 

This is due to the “write once run in any device type” 

philosophy followed by our system. 

 

6. EMI
2
LETS PERFORMANCE RESULTS 

In order to asses the performance of our current 

implementation of the EMI
2
lets platform we have 

carried out two tests on a TSM 500 PDA with 

Bluetooth, Wi-Fi and GPRS support:  

 

1. A comparative measurement illustrating the 

different latencies experienced during an EMI
2
let 

discovery, download and communication with its 

server-side, bearing in mind the nature of the 

communication channel used (Wi-Fi, Bluetooth or 

GPRS). 

2. A comparative measurement to determine the 

average data rate achieved depending on whether 

we use Bluetooth, Wi-Fi or GPRS to transfer data 

between an EMI
2
let and its server-side. 

 

Figure 10 shows that the discovery process based on 

UPnP over Wi-Fi is much faster than connecting 

directly to the IP address and port number of an EMI
2
let 

Server to enquire about its installed EMI
2
lets over 

GPRS or undertaking Bluetooth discovery. However, 

once the Bluetooth discovery has concluded the 

download of an EMI
2
let code and the exchange of 

information between an EMI
2
let and its server-side is 

much better than through GPRS and only worse to Wi-

Fi which has a much better transfer rate. 

 

Figure 10:EMI
2
lets communication costs. 

Figure 11 shows the effective data transfer rates 

obtained over the three wireless communication 

mechanisms we have used in EMI
2
lets. Obviously, the 

data transfer rate obtained through Wi-Fi is the best, 

whereas Bluetooth offers the second best behaviour. 

 

Figure 11: Effective data transfer rate in EMI
2
lets. 

7. RELATED WORK 

The EMI
2
lets platform presents some resemblance to the 

Smoblets software framework proposed by Siegemund 

and Krauer (20). Both frameworks offer the possibility 

to download into a mobile device the software 

representatives of objects located in a smart space. 

However, Smoblets are thought to operate when they 

are only within range of the smart object they represent, 

whereas EMI
2
lets can remain at the user’s terminal, 

even when he is far away from the smart object. This 

allows the user to control that smart object anytime and 

anywhere, both using local (Bluetooth) and global 

(GPRS) communication mechanisms. Furthermore, the 

main application of Smoblets is to transform mobile 

devices into execution platforms for code downloaded 

from smart items with limited processing resources, 

whereas EMI
2
lets are mainly thought to transform 

mobile devices into hosts of smart object proxies, which 

simplify their remote control. 

 

The EMI
2
lets framework’s layered software architecture 

has been inspired by the ReMMoC framework (12). 

However, EMI
2
lets does not only address the service 

discovery and interaction issues of mobile context-

aware applications. It also tackles the graphical 

presentation and persistency aspects commonly used in 

those applications. Moreover, as main innovation, the 

code generated for an EMI
2
let is independent of the 

target platform type where it will be run (PC, PDA or 

mobile phone). This is due to the fact that our layered 

software architecture follows a “write once run in any 

device type” philosophy.  

 

The Pebbles project, Myers (21), is exploring how 

handheld devices, such as PDAs and mobile phones, can 

be used when they are communicating with a "regular" 

personal computer (PC), with other handhelds, and with 



computerized appliances such as telephones, radios, 

microwave ovens, automobiles, and factory equipment. 

Pebbles shares with EMI
2
lets the goal of transforming 

handheld devices into universal remote controllers. 

Moreover, it adopts a similar architecture where a 

player in the handheld device communicates with 

server-side intermediaries to control the operation of the 

underlying smart objects.  

 

However, the main difference is that Pebbles defines a 

Personal Universal Controller (PUC) Specification 

Language through which the device parameters that can 

be controlled are specified. The PUC language does not 

only specify these control parameters but also a protocol 

for transmitting changes to the state of these parameters 

between the appliance and the controller. Essentially, 

the player in Pebbles has to interpret the PUC 

specification published by a device in order to generate 

its interface, i.e. applies an XSLT-like transformation to 

obtain from the XML representation of the controlling 

parameters a set of graphical controls. Unfortunately, 

Pebbles focuses all its work on the presentation and 

interaction process and has not solved the important 

service discovery issues that EMI
2
lets has addressed. 

Moreover, in EMI
2
lets is the designer of a smart object 

the one who decides which will be the best look and feel 

of the graphical interface to control the smart object, 

whereas in Pebbles that decision is left to the player 

itself. 

 

The Obje software architecture, Edwards et al. (22), is 

an interconnection technology that enables digital 

devices and services to interoperate over both wired and 

wireless networks – even when they know almost 

nothing about one another. Their goal is to be able of 

simply plug new device types into the network and all 

existing peers on the network will be able to use them. 

Similarly to EMI
2
lets, Obje is agnostic to the underlying 

discovery and communication mechanisms. It also 

defines four simple abstractions that remain constant 

and all peers on the network understand: a) connect to 

another device, b) provide metadata about itself, c) be 

controlled, and d) provide references to other devices. In 

addition, it defines a messaging protocol over TCP/IP 

that every Obje-enabled device must implement.  

 

The main difference between EMI
2
lets and Obje is that 

whereas in the former is the developer of a smart object 

the one who decides what the user interface presented to 

the end user will look like and what functionality it will 

have access to, in the Obje case the responsibility for 

determining appropriate interactions shifts from the 

developer to the end user. In other words, the 

programming on each device in Obje only tells the 

device how to interact with peers using the abstract 

mechanisms previously mentioned. The authors of Obje 

argue such semantic ignorance is necessary for open-

ended interoperability. However, this flexible approach 

implies that they will need to provide tools that let end-

users compose and configure devices within a space. 

Our approach in EMI
2
lets is much simpler and almost as 

flexible. The smart object developer decides the best 

and richest multiplatform (PC, PDA and mobile phone) 

user interface to control an object. Through EMI
2
lets the 

end-user can directly operate with its surrounding 

objects. As a second drawback, Obje only runs on the 

PC platform and provides the capability for the end user 

to integrate different components within a smart space 

but does not make the smart objects embedded in AmI 

spaces readily available for the end-user to control as 

EMI
2
lets does. 

 

Other authors (19) have also used TRIP tags to encode 

addresses of smart objects. Our data encoding strategy, 

using the same number of rings as them, achieves better 

error correction capabilities (from 2 to 3 bits) and has a 

bigger encoding capacity (from 63 to 66 bits).   

 

8. CONCLUSION AND FURTHER WORK 

This work has described the design and implementation 

of the EMI
2
lets middleware platform which simplifies 

the development and deployment of smart objects and 

their discovery and control from mobile devices. 

EMI
2
lets is aimed at enhancing our mobile devices and 

everyday objects in the environment with universal 

active influence capabilities and computer accessible 

computing services, respectively. The main features of 

this platform are: 

 

• Transforms mobile devices into universal remote 

controllers of smart objects. 

• Enables both local and global access of those smart 

objects, i.e. anywhere and at anytime. 

• Is independent and extensible to the underlying 

service discovery and interaction, graphical 

representation and persistence mechanisms.  

• Enables AmI using conventional readily-available 

hardware and software tools. 

• Follows a “write once run in any device type” 

software development philosophy. 

 

We are currently working in an implementation of 

EMI
2
lets for the Java platform based on the OSGi 

standard (OSGi Alliance (23)).  

 

In future work we want to add more sophisticated 

service discovery and context negotiation features 

between EMI
2
let Players and Servers. For example, we 

want to make a user representing EMI
2
let Player to only 

“see” (discover) those services that adjust to his profile, 

preferences and current context, rather than all the 

available services at that area. Moreover, we would like 

to enhance the EMI
2
let Players with smart object 



orchestration capabilities, so that the services offered by 

several smart objects can be composed. Finally, we 

would like to introduce mechanisms to enable the 

cooperation of smart objects, for instance, through the 

incorporation of distribution shared tuple space or the 

adoption of semantic web technologies. 
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