
A PLATFORM TO BUILD SMART SPACES CONTROLLABLE FROM MOBILE DEVICES

D López-de-Ipiña, J I Vazquez, D García, J Fernández, I García, D Sainz and A Almeida

University of Deusto, SPAIN

{dipina, ivazquez}@eside.deusto.es, {dsainz, aalmeida}@tecnologico.deusto.es)

The current multimedia, processing and communication

capabilities of mobile devices make them most suitable

to act as our intermediaries with the surrounding

environment. They are capable of sensing, processing,

storing and communicating with the artefacts

augmented with computing services (i.e. smart objects)

deployed in a smart space. This paper describes a

device-type, user-location and communication-means

agnostic platform, namely EMI
2
lets, which fulfils a two-

fold purpose: a) it transforms our mobile devices into

universal remote controllers of smart objects and b) it

helps us constructing smart object ecosystems, i.e. smart

spaces.

1. INTRODUCCTION

Current PDAs and mobile phones are equipped with

continuously increasing processing and storage

capabilities, better and more varied communications

mechanisms (Bluetooth, Wi-Fi, GPRS/UMTS) and

increasingly capable multimedia capture and playback

facilities. Moreover, they are far more easily

programmable, Symbian (1), Microsoft (2), Sun (3),

Brew (4) or Opera (5), than ever before.

Mobile devices equipped with Bluetooth, built-in

cameras, GPS receivers, barcode or RFID readers can

be considered as sentient devices – López-de-Ipiña et al.

(6), Rohs and Zweifel (7) – since they can sense

(discover) what smart objects are in their whereabouts.

A smart object, Beigl et al. (8), is an everyday artefact,

physical (e.g. door, classroom) or virtual (e.g. a specific

location within a house) augmented with some

accessible computational service. Once a mobile device

discovers a nearby smart object, it can control it.

Taken into account all the above considerations, it is

logical to think that mobile devices will play a key role

in Ambient Intelligence (AmI), Shabolt (9). AmI

envisions sentient computing-service enriched

environments which explicitly or implicitly react to the

user’s current context, in order to enhance his daily

activities. In consequence, mobile devices can act as our

personal electronic butlers, facilitating and enhancing

our daily activities, and even acting on our behalf based

on our profiles, preferences and current context.

In this paper, we describe the design and

implementation of EMI
2
lets (Environment to Mobile

Intelligent Interaction), López-de-Ipiña et al. (10), a

middleware platform to facilitate the development and

deployment of AmI-aware environments, such as a

home or an office.

The structure of the paper is as follows. Section 2

describes the requirements to be fulfilled by a smart

space enabling middleware. Section 3 details the

EMI
2
lets platform, which simplifies both the creation of

software representatives for everyday objects and their

controlling proxies deployable in mobile devices.

Section 4 illustrates the smart object development and

deployment process allowed by the EMI
2
lets platform

and its plug-in based extensibility features. Section 5

gives some example applications developed with the

EMI
2
lets platform. Section 6 shows some performance

results. Section 7 overviews some related work. Finally,

section 8 offers some conclusions and suggests further

work.

2. SMART SPACE-ENABLING MIDDLEWARE

In order to make the AmI vision reality significant

progress must still be achieved in diverse areas such as

context-awareness (biometry, indoor location systems),

ubiquitous computing and communication, intelligent

interfaces, artificial intelligence (reasoning and

learning) and so forth. Despite all this, given the current

technology state of the art, the first AmI environments

or smart spaces, can start being deployed if suitable

AmI-specific middleware and tools are defined.

For us, a smart space is a physical location where the

artefacts (physical and virtual objects) present within

are augmented with computing services, i.e. they are

populated with smart objects ecologies. Two examples

of such smart objects would be: a) a mobile phone

locally accessible (Bluetooth) ticket booking service in

a cinema, preventing the user from long queuing to

purchase tickets; or b) a virtual post-it service assigned

to the fridge door where a user may see the notes left by

other family members in his mobile phone when he

passes by.

2.1. Active and Passive Mechanisms

An AmI agent (user or device) can influence the

environment, and thus, its constituent smart objects’

ecology state, via active (explicit interaction) or passive

(implicit interaction) methods.

Active methods are those in which the agent explicitly

commands the smart objects to change their state or

perform an action. For example, when a user enters a

building, a sensor identifies him and commands the lift

to be ready at the ground floor. When the user stands by

his office door his mobile phone commands the electric

lock to open.

Passive methods are those in which an agent or smart

object disseminates certain information (profiles,

preferences), expecting that other agents change their

state or perform an action at their discretion to create a

more adapted environment. Using passive methods an

agent does not command the target agents or smart

objects to do anything specific, it simply publishes

information preferences expecting the others to react

changing their state in a positive way. Passive

mechanisms are less intrusive than active methods, but

they are less predictable and significantly more complex

to implement.

In passive methods, the particular set of information to

be disseminated by the agent is dependant on the

configuration of the environment in which is going to be

published. Therefore, a discovery and negotiation

process must take place among the entities in an

environment in order to achieve an adapted behaviour

for the users present within. In previous work, we have

tackled these passive influence and context negotiation

issues, Vazquez and López-de-Ipiña (10).

2.2. Requirements for Active Influence over Smart

Objects

The two minimum requirements a platform enabling

active influence over smart objects must address are: a)

a mechanism to discover through ad-hoc or wireless

networking the computing services exported by

surrounding smart objects, and b) a mechanism to

interact with those discovered services, so that the

represented objects adapt to the user’s commands.

The current state of the art in discovery and interaction

platforms falls into three categories, according to Grace

et al. (12) and Zhu et al. (13). Firstly, solutions in which

discovery protocols are supported by mobile code, e.g.

Jini, Sun (14). After discovery, the service (either a

proxy or the full service) is downloaded onto the mobile

device where it then operates. Secondly, solutions

where the discovery protocols are integrated with

specific interaction protocols, which are used to invoke

the service after the service has been discovered, e.g.

Universal Plug and Play (UPnP (15)). Finally,

interaction independent discovery protocols such as

SLP, Czerwinski et al. (16).

One of the following communication mechanisms is

normally used to interact with a discovered service:

remote method invocation, publish-subscribe or

asynchronous messaging. For the purpose of this work

we will concentrate on the remote method invocation

paradigm, since it accommodates to the most popular

mechanisms for distributed computing such as CORBA

or Web Services.

In what follows, the design and implementation of an

AmI-enabling platform is described which addresses the

service discovery and interaction aspects required for

active influence (explicit invocation) over smart object

ecologies.

3. THE EMI
2
LETS PLATFORM

EMI
2
lets is a .NET-based software development

platform to enable AmI scenarios. It is specially suited

for active interaction mechanisms. However, it has been

designed so that passive mechanisms may be

incorporated in the future, or even different

implementation platforms. EMI
2
lets addresses the

intelligent discovery and interaction among mobile

devices and smart objects. EMI
2
lets follows a Jini-like

mechanism by which once a service is discovered, a

proxy of it (an EMI
2
let) is downloaded into the user’s

device. An EMI
2
let is a mobile component transferred

from a smart object to a nearby handheld device, which

normally offers a graphical interface to interact or

influence the behaviour of a surrounding smart object.

The EMI
2
lets platform addresses three main aspects:

• Mobility, seamlessly to the user it encounters all the

services available as he moves and selects the best

possible mechanism to communicate with them.

The EMI
2
let platform selects the communication

means with best trade-off between performance and

cost. For example, if Wi-Fi and Bluetooth are

available, the former is chosen, however if

GPRS/UMTS and Bluetooth are available, the latter

is chosen.

• Interoperability, the EMI
2
lets, i.e. the software

components downloaded from smart objects to

EMI
2
Proxies, are agnostic to the target device type,

e.g. PC, a PDA or a mobile phone.

• AmI is the application domain that has driven the

design of EMI
2
lets. This platform provides the

infrastructure and software tools required to ease

the development and deployment of the smart

objects that populate smart environments

.

The objectives established for the design and

implementation of the EMI
2
lets platform are:

• Transform mobile devices into remote universal

controllers of the smart objects in an AmI

environment.

• Enable both local (Bluetooth, Wi-Fi) and global

access (GPRS/UMTS) to the smart objects in an

AmI environment, seamlessly adapting to the most

suitable underlying communication mechanisms

• Develop extensible middleware independent of a

particular discovery or interaction mechanism.

Abstract the programmer from the several available

or emerging discovery (Bluetooth SDP or wireless

UPnP discovery) and interaction mechanisms (RPC

or publish/subscribe).

• Make use of commonly available hardware and

software in mobile devices, without demanding the

creation of proprietary hardware, or software

protocols.

• Generate software representatives (proxies) of

smart objects which can be run in any platform,

following a “write once run in any device type”

philosophy. For instance, the same EMI
2
let should

be able to run in a mobile phone, a PDA or a PC.

3.1. The EMI
2
lets concept

Figure 2 shows a possible deployment of an EMI
2
lets-

powered environment. A group of handheld devices

running the EMI
2
let Player and hosting the EMI

2
let

runtime can discover and interact with the software

representatives (EMI
2
lets) of surrounding smart objects.

A smart object may be equipped with enough hardware

resources to host an EMI
2
let Server, or alternatively a

group of EMI
2
lets associated to different smart objects

may all be hosted within an autonomous version of an

EMI
2
let Server.

The EMI
2
let Server acts as a repository of smart object

representatives. It publishes the services offered by the

hosted EMI
2
lets by means of the communication

mechanism supported at the server (e.g. Bluetooth,

UPnP), transfers them on demand to the requesting

EMI
2
let Players, and, optionally acts as running

environment for the EMI
2
let server-side facets.

Some EMI
2
lets may directly communicate with their

associated smart object in order to issue adaptation

commands. However, often a specialised piece of

software may need to be developed which is far too

complex to be implemented in the embedded hardware

with which a smart object may be augmented. For those

cases, it will be more convenient to delegate those

cumbersome and heavy computing tasks to the server-

side (back-end) counterpart of an EMI
2
let. The EMI

2
let

on the hand-held device will communicate with its

server-side counterpart in the EMI
2
let Server by means

of the EMI
2
Protocol. For example, a light-controlling

EMI
2
let could communicate with its EMI

2
let server-

side, which would issue X10 commands over the power

line.

Figure 2: EMI
2
lets possible configuration

3.2. Internal architecture

The EMI
2
lets platform consists of the following

elements:

1. A programming framework defining a set of classes

and rules that every EMI
2
let component must

follow.

2. An integrated development environment, named

EMI
2
let Designer, which simplifies the

development of EMI
2
lets, both its client- and

(optional) server-side.

3. A runtime environment installed on EMI
2
let-aware

devices for executing downloaded code.

4. An EMI
2
let Player to discover, download, verify

and control the execution of a EMI
2
let. A version of

the player is available for each device type which

can host EMI
2
lets, e.g. PDA, mobile phone or PC.

5. An EMI
2
let Server which acts as a repository of

EMI
2
lets and as running environment of EMI

2
lets

server-sides.

In order to achieve the previously mentioned design

objectives, we have created the layered software

architecture shown in Figure 3. Programmers only deal

with the first layer, the EMI
2
let Abstract Programming

Model API, to develop the software counterparts of

smart objects. This layer offers a set of generic

interfaces (abstract classes) covering the main

functional blocks of a mobile sentient application:

1. Discovery interface to undertake the search for

available EMI
2
lets independently of the discovery

mechanisms used underneath.

2. Interaction interface to issue commands over the

services discovered.

3. Presentation interface to specify the graphical

controls and events that represent the look and feel

of an EMI
2
let.

4. Persistency interface to store EMI
2
let-related data

in the target device.

The EMI
2
let Abstract-to-Concrete Mapping layer

translates the invocations over the generic interfaces to

the appropriate available mechanisms both in the mobile

device and the smart object representatives (EMI
2
lets) in

the environment. The discovery, interaction,

presentation and persistency abstractions encapsulate

the concrete discovery, interaction, presentation or

persistency models used. They provide an API for

performing service discovery and interaction, graphical

interface generation and data persistence independent of

the actual implementation of that API in the target

device.

Figure 3: EMI
2
lets internal architecture

On deployment, the code developed by means of the

mentioned API abstract interfaces (Abstract

Programming Model) is late bound to the concrete

implementations of those interfaces (Concrete

Mappings) which are part of the EMI
2
let runtime in the

target device.

In the process of associating a generic invocation to an

actual one, the EMI
2
let Abstract-to-Concrete Mapping

will be responsible for selecting the actual mapping (or

group of mappings) which best matches the invocation

type. For example, if a downloaded EMI
2
let is installed

on a device where both Bluetooth and GPRS

communication are available, the abstract-to-concrete

layer will have to choose one of those mechanisms to

issue commands. Thus, if the mobile device is still

within Bluetooth range of the EMI
2
2let server-side, then

it will translate the invocation into an EMI
2
Protocol

message transported over Bluetooth RFCOMM.

Otherwise, it will invoke via GPRS the generic web

service (with methods corresponding to the

EMI
2
Protocol commands) implemented by an EMI

2
let

back-end. In the case that a communication link fails,

the EMI
2
lets runtime will use other available

communication links in a transparent way to the user.

With regards to the presentation abstraction, we have

defined a minimum set of graphical controls with which

the graphical interface of an EMI
2
let is generated. Some

examples are: EMI2Panel, EMI2Button or

EMI2TextBox. This enables us to create EMI
2
let

graphical interfaces agnostic of the target mobile device.

Thus, when a programmer creates an EMI2Button, it

is translated into a button control in a PC or a PDA, but

into a menu option in a mobile phone.

The operation of the functional mapping plug-ins is

ruled by an XML configuration file, which states

whether a plug-in may be run concurrently with other

plug-ins of the same type or in isolation. In the latter

case, a priority is assigned to each plug-in which will

determine which of the plug-ins to select when several

of them are available. Both the Abstract-to-Concrete

Mappings and the Functional Mapping layers and plug-

ins will be linked to the arriving EMI
2
let in an EMI

2
let

Player, running in any of the four supported device

types (see Figure 4).

Figure 4: EMI
2
let Players in the PC, Windows Mobile

Pocket PC and Web platforms

3.3. Importance of Reflection

The use of reflection is very important in the EMI
2
lets

platform. It enables an EMI
2
let Player to verify that the

code arriving as part of an EMI
2
let complies with the

EMI
2
lets framework, and most importantly, is a piece of

code which can be trusted. Every EMI
2
let downloaded

is signed with a private key only shared by the EMI
2
let

designer and the player.

After verification, the player can start the EMI
2
let by

invoking the methods defined in the EMI2let base

class, extended by every EMI
2
let. The methods defined

by this class follow similar signatures to those found in

a J2ME (3) MIDlet class:

• Start, starts or resumes the execution of a

downloaded EMI
2
let.

• Pause, pauses its execution.

• Destroy, destroys it.

In addition, the EMI2let class includes some

EMI
2
lets-specific methods such as:

• GetUUID, returns the unique identifier of an

EMI
2
let, under which state related to an EMI

2
let

can be persisted.

• SetProperty/GetProperty, sets or gets the

properties associated to a EMI
2
let. For instance, the

EMI2let.Durable property is set to true when

an EMI
2
let has to be cached in the player, so that it

can be executed again in the future. Otherwise, an

EMI
2
let is removed from the player either when its

execution is completed or it is out of range, cannot

access, the smart object it represents.

• NotifyDisconnected, offers an EMI
2
let the

possibility of being aware when the controlled

smart object cannot be accessed.

• GetAddresses, enables the EMI
2
let-hosting

player to retrieve the EMI
2
let server-side addresses.

For instance, an EMI
2
let back-end may be accessed

both through a Bluetooth address or a url pointing

to a web service.

3.4. The EMI
2
lets implementation

The most noticeable part of our implementation is the

assembly fusion undertaken at the player side merging

the arriving EMI
2
let assembly with the EMI

2
let library

installed in each target device. This library represents

the player’s runtime, i.e. the abstract-to-concrete layer

and the four mappings implementation with their

corresponding plug-in modules. In other words, the

assembly code downloaded is linked dynamically (late

bound) with the runtime installed in the target device.

The .NET’s System.Reflection namespace has

provided us the support to enable this.

4. BUILDING AND DEPLOYING EMI
2
LETS

The main goal of the EMI
2
lets framework is to simplify

the development and deployment of smart objects which

can later be discovered and consumed by client devices

in a communication and discovery protocol agnostic

manner.

The development of smart objects is eased by: a)

providing a framework, i.e. an API with a set of rules

that every developer must follow, and b) an IDE which

simplifies the interface design of an EMI
2
let for its three

supported platforms: mobile phone, PDA and PC.

The deployment of smart objects is simplified by the

EMI
2
let Server component, in charge of hosting and

publishing EMI
2
lets.

The EMI
2
lets platform supports several discovery

protocols and communication mechanisms in the form

of plug-ins. Each discovery plug-in implements the

discovery interface, whilst the interaction plug-ins do

the same with the interaction interface. Currently, we

can discover smart objects by means of UPnP,

Bluetooth SDP, or looking up a simple web service

registry. Invocations can be transmitted to smart objects

following the EMI
2
let protocol by means of sockets

through Wi-Fi and GPRS/UMTS and Bluetooth

RFCOMM.

4.1. An EMI
2
let Life Cycle

Figure 5 illustrates the life cycle of an EMI
2
let from its

development to its deployment:

1. .NET code following the EMI
2
let framework’s API

is developed on a PC through the EMI
2
let Designer.

This tool offers a drag & drop based interface

designer (see Figure 6) and simplifies the overall

EMI
2
let coding and compilation process. Once the

EMI
2
let implementation is completed it is uploaded

into an EMI
2
let Server.

2. The EMI
2
let Server publishes the available

EMI
2
lets deployed within it. This server is in

charge of publishing the registered EMI
2
lets using

all the available communication mechanisms and

discovery protocols available at the hosting

machine.

3. An EMI
2
let Player, running on either a PC, a PDA,

a mobile phone or a web browser, discovers the

services available in nearby EMI
2
let Servers by

means of the available communication mechanisms

on the device.

4. An EMI
2
let Player downloads from an EMI

2
let

Server a user selected EMI
2
let which is then

verified, installed and executed on the player. After

iterating with the EMI
2
let, the user may stop it and

choose whether to wipe it out from the device or

save it in the player EMI
2
let repository for later use.

Figure 5: EMI
2
let lifecycle.

Figure 6: EMI
2
let Designer.

4.2. An EMI
2
let Discovery Plug-in

In order to prove the extensibility features of the

EMI
2
lets platform, an interesting example of an

EMI
2
lets plug-in is described. This plug-in

accommodates to the discovery abstraction of EMI
2
lets

and it is based on the TRIP, López-de-Ipiña (17), tag-

based visual system.

A factor that limits the use of Bluetooth as an

underlying networking technology for publicly

accessible mobile services is that its device discovery

model takes a significant (sometimes unbearable)

amount of time. The discovery process in Bluetooth is

divided into two main phases: a) device discovery and

b) service discovery in the devices discovered. In an

error-free environment, the device discovery phase must

last for 10.24s if it is to discover all the devices,

Bluetooth (18).

In order to reduce the delay in service discovery, we

propose a tag-based service selection, which bypasses

the slow Bluetooth Device Discovery process, similar to

Scott et al. (19).

The TRIP visual tags are circular barcodes (ringcodes)

with 4 data-rings and 20 sectors. A visual tag, large

enough to be detected by a mobile device tag reading

software, is shown in Figure 7.

The information in a TRIP tag is encoded in anti-

clockwise fashion from the sync sector. The sync-sector

differs from the rest by presenting black in its four data

rings sections. Each sector encodes a hexadecimal digit

comprising the values 0 to D. The E hexadecimal

number is only permitted in the sync sector. Given the

17 data encoding sectors, the range of valid IDs is from

0 to 1517-1 (98526125335693359375 ≈ 2
66

).

The TRIP tags were designed to work well with the

low-resolution fixed-focal-length cameras found on

conventional CCTV systems. Consequently, they are

also suitable for mobile phone cameras (6).

Figure 7: A tag encoding 66 bits of data.

We have applied TRIP tags to encode the Bluetooth

address of an EMI
2
let Server and an identifier to select a

smart object representative in the server. Likewise, we

have also used those tags to encode tiny urls (see

http://tinyurl.com) which point to an EMI
2
let in an

EMI
2
let Server. The tiny url server is currently

generating 6 character-long identifiers, whilst we can

encode up to 8 characters. The scheme followed to

encode an EMI
2
let address in a TRIP ringcode is:

• Two bits have been allocated to encode the address

type, i.e. whether it is a Bluetooth (00) or an

Internet tiny url (01) address.

• For Bluetooth, 48 bits are dedicated to encode the

BD_ADDRESS of an EMI
2
let Server, and the

remaining 16 bits to encode a unique identifier to

select a specific EMI
2
let.

• For Internet, we have used the 66 bits available to

encode a tiny url, containing the address of an

EMI
2
let. For example, the tiny url identifier 8ggaj

maps to the url http://wap.deusto.es.

Noticeably, the TRIP visual tags do not only improve

service discovery but they also serve to call user’s

attention about the smart objects available, including the

virtual ones, in his surroundings.

5. EMI
2
LETS EXAMPLES

We have developed EMI
2
lets targeted to the following

application domains: a) accessibility, b) home/office

automation, c) industry, and d) public spaces.

In the domain of accessibility we have developed

EMI
2
lets which associated to a bus stop offer a voice

synthesized bus arrival notification for blind people or

provide subtitles on the mobile phones of deaf people

attending to a conference. These applications

demonstrated how simple it is to transform a physical

space (bus stop or conference hall) into a more

accessible environment thanks to the EMI
2
lets platform.

In the home and office automation domain some

EMI
2
lets have been created that enable to control the

lights, a music system (in fact the Windows Media

Player in a PC) or a Pan/Tilt/Zoom security camera at a

home or office, from mobile devices.

As far as the industry domain is concerned we have

developed an EMI
2
let which allows us to control from

our mobile device a robot equipped with a

communications module supporting both Bluetooth and

GPRS. When co-located with the robot our EMI
2
let uses

the Bluetooth communication channel. When we are far

away from the location of the robot, the EMI
2
let uses

the GPRS channel to communicate with the robot. The

communication channel choice is undertaken by the

EMI
2
lets runtime autonomously.

Finally, on what we call the “public space” domain, we

have created EMI
2
lets which allow us to control a

parking booth, order food in a restaurant or review the

departure time and gate of a plane in an airport. Those

EMI
2
lets show how a physical object in a space can be

augmented with AmI features. For example, the Parking

EMI
2
let is meant to be deployed in any street parking

booth, where we can purchase tickets to park our car for

a limited period of time. Often, we have to keep

returning to the parking place to renew the ticket so that

the local police force does not issue a fine for parking

time expiration. Thanks to the EMI
2
lets platform a user

could discover, download (from the ticket booth) and

install a parking EMI
2
let which would help him solve

this situation. With the downloaded EMI
2
let the user

could purchase parking tickets via Bluetooth while in

the parking, and remotely via GPRS when the EMI
2
let

warns her (at her office) that its parking ticket is about

to expire. This scenario shows one of the biggest virtues

of EMI
2
lets, its capability to enact an action over a

smart object both locally, while in the environment, or

remotely, far away from the environment.

Figure 8: EMI
2
lets running on a PDA.

Figure 9: EMI
2
lets running on a mobile phone.

Figure 8 and Figure 9 show three of the previously

described EMI
2
lets running in a PDA and a mobile

phone, respectively. The EMI
2
lets shown allow a user to

control from his mobile device a robot, a lamp or a PTZ

security camera. Something remarkable about the

EMI
2
lets platform is that in the development of those

EMI
2
lets we have written the code only once,

independently of the target device where they will run.

This is due to the “write once run in any device type”

philosophy followed by our system.

6. EMI
2
LETS PERFORMANCE RESULTS

In order to asses the performance of our current

implementation of the EMI
2
lets platform we have

carried out two tests on a TSM 500 PDA with

Bluetooth, Wi-Fi and GPRS support:

1. A comparative measurement illustrating the

different latencies experienced during an EMI
2
let

discovery, download and communication with its

server-side, bearing in mind the nature of the

communication channel used (Wi-Fi, Bluetooth or

GPRS).

2. A comparative measurement to determine the

average data rate achieved depending on whether

we use Bluetooth, Wi-Fi or GPRS to transfer data

between an EMI
2
let and its server-side.

Figure 10 shows that the discovery process based on

UPnP over Wi-Fi is much faster than connecting

directly to the IP address and port number of an EMI
2
let

Server to enquire about its installed EMI
2
lets over

GPRS or undertaking Bluetooth discovery. However,

once the Bluetooth discovery has concluded the

download of an EMI
2
let code and the exchange of

information between an EMI
2
let and its server-side is

much better than through GPRS and only worse to Wi-

Fi which has a much better transfer rate.

Figure 10:EMI
2
lets communication costs.

Figure 11 shows the effective data transfer rates

obtained over the three wireless communication

mechanisms we have used in EMI
2
lets. Obviously, the

data transfer rate obtained through Wi-Fi is the best,

whereas Bluetooth offers the second best behaviour.

Figure 11: Effective data transfer rate in EMI
2
lets.

7. RELATED WORK

The EMI
2
lets platform presents some resemblance to the

Smoblets software framework proposed by Siegemund

and Krauer (20). Both frameworks offer the possibility

to download into a mobile device the software

representatives of objects located in a smart space.

However, Smoblets are thought to operate when they

are only within range of the smart object they represent,

whereas EMI
2
lets can remain at the user’s terminal,

even when he is far away from the smart object. This

allows the user to control that smart object anytime and

anywhere, both using local (Bluetooth) and global

(GPRS) communication mechanisms. Furthermore, the

main application of Smoblets is to transform mobile

devices into execution platforms for code downloaded

from smart items with limited processing resources,

whereas EMI
2
lets are mainly thought to transform

mobile devices into hosts of smart object proxies, which

simplify their remote control.

The EMI
2
lets framework’s layered software architecture

has been inspired by the ReMMoC framework (12).

However, EMI
2
lets does not only address the service

discovery and interaction issues of mobile context-

aware applications. It also tackles the graphical

presentation and persistency aspects commonly used in

those applications. Moreover, as main innovation, the

code generated for an EMI
2
let is independent of the

target platform type where it will be run (PC, PDA or

mobile phone). This is due to the fact that our layered

software architecture follows a “write once run in any

device type” philosophy.

The Pebbles project, Myers (21), is exploring how

handheld devices, such as PDAs and mobile phones, can

be used when they are communicating with a "regular"

personal computer (PC), with other handhelds, and with

computerized appliances such as telephones, radios,

microwave ovens, automobiles, and factory equipment.

Pebbles shares with EMI
2
lets the goal of transforming

handheld devices into universal remote controllers.

Moreover, it adopts a similar architecture where a

player in the handheld device communicates with

server-side intermediaries to control the operation of the

underlying smart objects.

However, the main difference is that Pebbles defines a

Personal Universal Controller (PUC) Specification

Language through which the device parameters that can

be controlled are specified. The PUC language does not

only specify these control parameters but also a protocol

for transmitting changes to the state of these parameters

between the appliance and the controller. Essentially,

the player in Pebbles has to interpret the PUC

specification published by a device in order to generate

its interface, i.e. applies an XSLT-like transformation to

obtain from the XML representation of the controlling

parameters a set of graphical controls. Unfortunately,

Pebbles focuses all its work on the presentation and

interaction process and has not solved the important

service discovery issues that EMI
2
lets has addressed.

Moreover, in EMI
2
lets is the designer of a smart object

the one who decides which will be the best look and feel

of the graphical interface to control the smart object,

whereas in Pebbles that decision is left to the player

itself.

The Obje software architecture, Edwards et al. (22), is

an interconnection technology that enables digital

devices and services to interoperate over both wired and

wireless networks – even when they know almost

nothing about one another. Their goal is to be able of

simply plug new device types into the network and all

existing peers on the network will be able to use them.

Similarly to EMI
2
lets, Obje is agnostic to the underlying

discovery and communication mechanisms. It also

defines four simple abstractions that remain constant

and all peers on the network understand: a) connect to

another device, b) provide metadata about itself, c) be

controlled, and d) provide references to other devices. In

addition, it defines a messaging protocol over TCP/IP

that every Obje-enabled device must implement.

The main difference between EMI
2
lets and Obje is that

whereas in the former is the developer of a smart object

the one who decides what the user interface presented to

the end user will look like and what functionality it will

have access to, in the Obje case the responsibility for

determining appropriate interactions shifts from the

developer to the end user. In other words, the

programming on each device in Obje only tells the

device how to interact with peers using the abstract

mechanisms previously mentioned. The authors of Obje

argue such semantic ignorance is necessary for open-

ended interoperability. However, this flexible approach

implies that they will need to provide tools that let end-

users compose and configure devices within a space.

Our approach in EMI
2
lets is much simpler and almost as

flexible. The smart object developer decides the best

and richest multiplatform (PC, PDA and mobile phone)

user interface to control an object. Through EMI
2
lets the

end-user can directly operate with its surrounding

objects. As a second drawback, Obje only runs on the

PC platform and provides the capability for the end user

to integrate different components within a smart space

but does not make the smart objects embedded in AmI

spaces readily available for the end-user to control as

EMI
2
lets does.

Other authors (19) have also used TRIP tags to encode

addresses of smart objects. Our data encoding strategy,

using the same number of rings as them, achieves better

error correction capabilities (from 2 to 3 bits) and has a

bigger encoding capacity (from 63 to 66 bits).

8. CONCLUSION AND FURTHER WORK

This work has described the design and implementation

of the EMI
2
lets middleware platform which simplifies

the development and deployment of smart objects and

their discovery and control from mobile devices.

EMI
2
lets is aimed at enhancing our mobile devices and

everyday objects in the environment with universal

active influence capabilities and computer accessible

computing services, respectively. The main features of

this platform are:

• Transforms mobile devices into universal remote

controllers of smart objects.

• Enables both local and global access of those smart

objects, i.e. anywhere and at anytime.

• Is independent and extensible to the underlying

service discovery and interaction, graphical

representation and persistence mechanisms.

• Enables AmI using conventional readily-available

hardware and software tools.

• Follows a “write once run in any device type”

software development philosophy.

We are currently working in an implementation of

EMI
2
lets for the Java platform based on the OSGi

standard (OSGi Alliance (23)).

In future work we want to add more sophisticated

service discovery and context negotiation features

between EMI
2
let Players and Servers. For example, we

want to make a user representing EMI
2
let Player to only

“see” (discover) those services that adjust to his profile,

preferences and current context, rather than all the

available services at that area. Moreover, we would like

to enhance the EMI
2
let Players with smart object

orchestration capabilities, so that the services offered by

several smart objects can be composed. Finally, we

would like to introduce mechanisms to enable the

cooperation of smart objects, for instance, through the

incorporation of distribution shared tuple space or the

adoption of semantic web technologies.

ACKNOWLEDGEMENTS

This work has been financed by a 2005-06 SAIOTEK

grant from the Basque Government and the Cátedra de

Telefónica Móviles España at the University of Deusto

(http://www.ctme.deusto.es).

REFERENCES

1. Symbian, 2006, “Symbian OS – the mobile

operating System2, http://www.symbian.com/

2. Microsoft, 2006, “Mobile Developer Center”,

http://msdn.microsoft.com/mobility/

3. Sun, 2006, “Java 2 Platform, Micro Edition

(J2ME)”, http://java.sun.com/j2me/

4. Brew, 2006, “Qualcomm Brew Home”,

http://brew.qualcomm.com/brew

5. Opera, 2006, “Opera Platform™ Enabling AJAX

on phones”, http://brew.qualcomm.com/brew/

6. López-de-Ipiña D., Vázquez J.I. and Sainz D.,

2005, “Interacting with our Environment through

Sentient Mobile Phones”, IWUC-2005, ICEIS

2005, ISBN 972-8865-24-4, 19-28

7. Rohs M., Zweifel P., 2005, “A Conceptual

Framework for Camera Phone-based Interaction

Techniques, Pervasive Computing”, PERVASIVE

2005, LNCS no. 3468, Springer-Verlag

8. Beigl M., Gellersen H.W., Schmidt A., 2001,

“MediaCups: Experience with Design and Use of

Computer-Augmented Everyday Objects”,

Computer Networks, Special Issue on Pervasive

Computing, vol. 25, no. 4, 401–409

9. Shadbolt N., 2003, “Ambient Intelligence”, IEEE

Intelligent Systems, vol. 2, no.3

10. López-de-Ipiña D., Vazquez J. I., et al., 2005, “A

Reflective Middleware for Controlling Smart

Objects from Mobile Devices”., Smart Objects &

Ambient Intelligence, Grenoble, France

11. Vazquez J.I., López-de-Ipiña D., 2005, “An HTTP-

based Context Negotiation Model for Realizing the

User-Aware Web”, IWI 2005, Chiba, Japan,

12. Grace P., Blair G.S., Samuel S., 2005, “A

Reflective Framework for Discovery and

Interaction in Heterogeneous Mobile

Environments”, ACM SIGMOBILE, vol. 9, no. 1

13. Zhu F., Mutka M.W., Ni. L.M., 2005, “Service

Discovery in Pervasive Computing Environments”.

IEEE Pervasive Computing, vol. 4, no. 4, October,

81-90

14. Sun, 2006, Sun Microsystems, Inc., “Jini

Specifications Archive”, http://java.sun.com/

products/jini/2_1index.html

15. UPnP, 2005, “The Universal Plug and Play

Forum”, http://www.upnp.org/

16. Czerwinski S., Zhao B. et al., 1999, “An

architecture for a Secure Service Discovery

Service”, MobiCom’99

17. López-de-Ipiña, D., Mendonça P., Hopper A.,

2002, “TRIP: a Low-cost Vision-based Location

System for Ubiquitous Computing”, Personal and

Ubiquitous Computing, vol. 6, no. 3, 206-219

18. Bluetooth, 2005, “Bluetooth Specification version

1.1”, http://www.bluetooth.com

19. Scott D., et al., 2005, “Using Visual Tags to Bypass

Bluetooth Device Discovery”, ACM Mobile

Computing and Communications Review, vol.9,

no.1, 41-52

20. Siegemund F., Krauer T., 2004, “Integrating

Handhelds into Environments of Cooperating Smart

Everyday Objects”, EUSAI, The Netherlands

21. Myers, B.A., 2001, “Using Hand-Held Devices and

PCs Together”. Communications of the ACM, vol.

44, no. 11, 34 – 41

22. Edwards W.K., Newman M. W. et al., 2005,

“Bringing Network Effects to Pervasive Spaces”,

IEEE Pervasive Computing, vol. 4, no. 1, 15-17

23. OSGi Alliance, 2006, “The OSGi Service Platform

– Dynamic services for networked devices”,

http://www.osgi.org/

