
EMI
2
lets: A Reflective Framework for Enabling AmI

Diego López de Ipiña, Juan Ignacio Vázquez, Daniel García,

Javier Fernández, Iván García, David Sainz and Aitor Almeida
(Faculty of Engineering

University of Deusto

Avda. de las Universidades, 24

48007 Bilbao, SPAIN

{dipina, ivazquez}@eside.deusto.es, {dsainz, aalmeida}@tecnologico.deusto.es)

Abstract: An interesting new application domain for handheld devices may be represented by

Ambient Intelligence (AmI), where they can be used as intermediaries between us and our

surrounding environment. Thus, mobile devices, which always accompany us, will behave as

electronic butlers who assist us in our daily tasks, by interacting with the smart objects

(everyday objects augmented with computational services) in our whereabouts. In order to

achieve such goal, this paper proposes an AmI-enabling framework providing two main

functions: a) facilitate the development and deployment of smart objects and b) transform

mobile devices into universal remote controllers of those smart objects.

Keywords: Ambient Intelligence, Pervasive Computing, Middleware, Smart Spaces

Categories: C2.4, C2.6, D2.2, D2.6, D2.11, D2.12

1 Introduction

Ambient Intelligence (AmI) [Shadbolt , 03] defines an interaction model between us

and a context-aware environment, which adapts its behaviour intelligently to our

preferences and habits, so that our daily life is facilitated and enhanced. AmI is a new

research discipline aiming the creation of intelligent reactive spaces that serve the

user. In order to achieve this, AmI combines the knowledge of several related

research fields such as Ubiquitous Computing and Communication, Context-Aware

Computing, Artificial Intelligence and intelligent interfaces.

Current PDAs and mobile phones are equipped with continuously increasing

processing and storage capabilities, better and more varied communications

mechanisms (Bluetooth [Bluetooth, 05], Wi-Fi, GPRS/UMTS) and increasingly

capable multimedia capture and playback facilities. Moreover, they are far more

easily programmable [Symbian, 05][Microsoft, 05] [Sun, 05a] than ever before.

Mobile devices equipped with Bluetooth, built-in cameras, GPS receivers,

barcode or RFID readers can be considered as sentient devices [López de Ipiña, 05]

[Rohs, 05], since they are aware of what smart objects are in their whereabouts. A

smart object [Beigl, 01] is an everyday object (e.g. door, classroom) or a device

augmented with some accessible computational service. Once a mobile device

discovers a nearby smart object, it can induce changes on its behaviour.

We deem that mobile devices will play a key role in AmI, since they can act as

facilitators or intermediaries between us and the environment. In other words, mobile

devices can act as our personal electronic butlers, facilitating and enhancing our daily

activities, and even acting on our behalf based on our profiles or preferences.

In this paper, we describe the design and implementation of EMI
2
lets, a software

framework to facilitate the development and deployment of AmI scenarios.

The structure of the paper is as follows. Section 2 describes EMI
2
, a software

architecture modelling both passive and active interaction mechanisms for AmI.

Section 3 details the EMI
2
lets platform, a partial materialisation of the EMI

2

architecture, which simplifies both the creation of software representatives for

everyday objects and their controlling proxies deployable in mobile devices. Section 4

proves the extensibility features of the EMI
2
lets platform with the description of an

interesting discovery plug-in based on circular barcodes developed for EMI
2
lets.

Section 5 illustrates some example applications developed with the help of EMI
2
lets

framework. Section 6 shows some performance results achieved by the current

implementation of EMI
2
lets. Section 7 overviews some related work. Finally, section

8 offers some conclusions and suggests further work.

2 EMI
2
: an AmI architecture

In order to make the AmI vision reality, a good starting point may be the definition of

suitable software architectures and frameworks specially catered for it. The EMI
2

(Environment to Mobile Intelligent Interaction) architecture is our proposed solution.

EMI
2
 defines a multi-agent software architecture, where agents modelling the

different roles played by entities in AmI, communicate and cooperate to enhance and

facilitate the user interactions with her smart environment.

We understand by smart environment a location where the objects present within

(smart objects) are augmented with computing services. For instance, a cinema may

be enhanced with a mobile phone locally accessible (Bluetooth) ticket booking

service, so preventing the user from long queuing to purchase tickets.

Figure 1 portrays the main components of the EMI
2
 architecture. We distinguish

three main types of agents:

• EMI
2
Proxy: is an agent representing the user, which runs on the user’s mobile

device (PDA or mobile phone). It acts on behalf of the user, adapting/controlling

the environment for him, both explicitly, under the user’s control, or implicitly,

on its own judgement based on the profiles, preferences and previous interactions

of the user with the environment.

• EMI
2
Object or smart object: is an agent representing any device or physical

object (e.g. vending machine, door) within a smart environment augmented with

computational services, i.e. the capacity to adapt its behaviour based on ambient

conditions or user commands.

• EMI
2
BehaviourRepository: is an agent where knowledge and intelligence are

combined to support sensible adaptation. EMI
2
Objects may require the assistance

of an external EMI
2
BehaviourRepository to coordinate their own adaptation

according to the user’s preferences, behaviour patterns or even the explicit

commands received from an EMI
2
Proxy. The user’s mobile device can also be

powered with an internal EMI
2
BehaviourRepository.

Figure 1: The EMI
2
 architecture

2.1 Active and passive mechanisms

A concrete agent can influence the environment, and thus, its constituent agents’ state,

via active (explicit interaction) or passive (implicit interaction) methods.

Active methods are those in which the agent explicitly commands other agents to

change their state or perform an action. For example, when a user enters a building, a

sensor identifies him and commands the lift to be ready at the ground floor. When the

user stands by his office door his mobile phone commands the electric lock to open.

Passive methods are those in which an agent disseminates certain information

(profiles, preferences), expecting that other agents change their state or perform an

action at their discretion to create a more adapted environment. Using passive

methods an agent does not command the target agents to do anything concrete, it

simply publishes information preferences expecting the others to react changing their

state in a positive way. Passive mechanisms are less intrusive than active methods, but

they are less predictable and significantly more complex to implement.

In passive methods, the particular set of information to disseminate by the agent

is dependant on the configuration of the environment in which is going to be

published. Therefore, a discovery and negotiation process must take place among the

entities in an environment in order to achieve an adapted behaviour for the users

present within. In previous work, we have tackled these passive influence [Vázquez,

04] and context negotiation [Vázquez, 05] issues.

2.2 Active influence over Smart Objects

The purpose of this paper is to design and implement a middleware to provide

universal active influence capabilities to our mobile devices over the surrounding

smart objects.

The two minimum requirements such middleware must address are: (1) a

mechanism to discover through ad-hoc or wireless networking the computing services

exported by surrounding smart objects, and (2) a mechanism to interact with those

discovered services, so that the represented objects adapt to the user’s commands.

The current state of the art in discovery and interaction platforms falls into three

categories [Grace, 05] [Zhu 05]. Firstly, solutions in which discovery protocols are

supported by mobile code, e.g. Jini [Sun, 05b]. After discovery, the service (either a

proxy or the full service) is downloaded onto the mobile device where it then

operates. Secondly, solutions where the discovery protocols are integrated with

specific interaction protocols, which are used to invoke the service after the service

has been discovered, e.g. Universal Plug and Play (UPnP) [UPnP, 05]. Finally,

interaction independent discovery protocols such as the SLP [Czerwinski, 99].

One of the following communication mechanisms is normally used to interact

with a discovered service: remote method invocation, publish-subscribe or

asynchronous messaging. For the purpose of this work we will concentrate on the

remote method invocation paradigm, since it accommodates to the most popular

mechanisms for distributed computing such as CORBA or Web Services.

In what follows we explain the design and implementation of an AmI-enabling

middleware which addresses the service discovery and interaction aspects required for

active influence (explicit invocation) on smart objects.

3 The EMI
2
lets platform

EMI
2
lets is the result of mapping the EMI

2
 architecture into a .NET-based software

development platform to enable AmI scenarios. It is specially suited for active

interaction mechanisms. However, it has been designed so that passive mechanisms

may be incorporated in the future.

EMI
2
lets is a .NET-based development platform for AmI which addresses the

intelligent discovery and interaction among EMI
2
Objects and EMI

2
Proxies. EMI

2
lets

follows a Jini-like mechanism by which once a service is discovered, a proxy of it (an

EMI
2
let) is downloaded into the user’s device (EMI

2
Proxy). An EMI

2
let is a mobile

component transferred from a smart object to a nearby handheld device, which

normally offers a graphical interface to interact or influence the behaviour of a

surrounding smart object.

The EMI
2
lets platform addresses three main aspects:

• Mobility, seamlessly to the user it encounters all the services available as he

moves and selects the best possible mechanism to communicate with them. The

EMI
2
let platform selects the communication means with best trade-off between

performance and cost. For example, if Wi-Fi and Bluetooth are available, the

former is chosen, however if GPRS/UMTS and Bluetooth are available, the latter

is chosen.

• Interoperability, the EMI
2
lets, i.e. the software components downloaded from

smart objects to EMI
2
Proxies, are agnostic to the target device type, e.g. PC, a

PDA or a mobile phone.

• AmI is the application domain that has driven the design of EMI
2
lets. This

platform provides the infrastructure and software tools required to ease the

development and deployment of mobile context-aware applications.

The objectives established for the design and implementation of the EMI
2
lets

platform are:

• Transform mobile devices into remote universal controllers of the smart objects

in an AmI environment.

• Enable both local (Bluetooth, Wi-Fi) and global access (GPRS/UMTS) to the

smart objects in an AmI environment, seamlessly adapting to the most suitable

underlying communication mechanisms

• Develop extensible middleware independent of a particular discovery or

interaction mechanism. Abstract the programmer from the several available or

emerging discovery (Bluetooth SDP or wireless UPnP discovery) and interaction

mechanisms (RPC or publish/subscribe).

• Make use of commonly available hardware and software in mobile devices,

without demanding the creation of proprietary hardware, or software protocols.

• Generate software representatives (proxies) of smart objects which can be run in

any platform, following a “write once run in any device type” philosophy. For

instance, the same EMI
2
let should be able to run in a mobile phone, a PDA or a

PC.

3.1 The EMI2lets vision

Figure 2 shows a possible deployment of an EMI
2
lets-powered environment. A group

of handheld devices running the EMI
2
let Player and hosting the EMI

2
let runtime can

discover and interact with the software representatives (EMI
2
lets) of surrounding

EMI
2
Objects. An EMI

2
Object may be equipped with enough hardware resources to

host an EMI
2
let Server, or alternatively a group of EMI

2
lets associated to different

EMI
2
Objects may all be hosted within an autonomous version of an EMI

2
let Server.

The EMI
2
let Server acts as a repository of EMI

2
Objects. It publishes the services

offered by the hosted EMI
2
Objects, transfers them on demand to the requesting

EMI
2
let Players, and, optionally acts as running environment for the EMI

2
let server-

side facets.

Some EMI
2
lets may directly communicate with their associated EMI

2
Objects in

order to issue adaptation commands. However, often a specialised piece of software

may need to be developed which is far too complex to be implemented in the

embedded hardware with which a smart object may be augmented. For those cases, it

will be more convenient to delegate those cumbersome and heavy computing tasks to

the server-side (back-end) counterpart of an EMI
2
let. The EMI

2
let on the hand-held

device will communicate with its server-side counterpart in the EMI
2
let Server by

means of the EMI
2
Protocol. For example, a light-controlling EMI

2
let could

communicate with its EMI
2
let server-side, which would issue X10 commands over

the power line.

Figure 2: EMI
2
lets possible configuration

3.2 Internal architecture

The EMI
2
lets platform consists of the following elements:

1. A programming framework defining a set of classes and rules that every EMI
2
let

component must follow.

2. An integrated development environment, named EMI
2
let Designer, which

simplifies the development of EMI
2
lets, both its client- and (optional) server-side.

3. A runtime environment installed on EMI
2
let-aware devices for executing

downloaded code.

4. An EMI
2
let Player to discover, download, verify and control the execution of a

EMI
2
let. A version of the player is available for each device type which can host

EMI
2
lets, e.g. PDA, mobile phone or PC.

5. An EMI
2
let Server which acts as a repository of EMI

2
lets and as running

environment of EMI
2
lets server-sides.

In order to achieve the previously mentioned design objectives, we have created

the layered software architecture shown in Figure 3. Programmers only deal with the

first layer, the EMI
2
let Abstract Programming Model API, to develop the software

counterparts of smart objects. This layer offers a set of generic interfaces (abstract

classes) covering the main functional blocks of a mobile sentient application:

1. Discovery interface to undertake the search for available EMI
2
lets independently

of the discovery mechanisms used underneath.

2. Interaction interface to issue commands over the services discovered.

3. Presentation interface to specify the graphical controls and events that represent

the look and feel of an EMI
2
let.

4. Persistency interface to store EMI
2
let-related data in the target device.

The EMI
2
let Abstract-to-Concrete Mapping layer translates the invocations over

the generic interfaces to the appropriate available mechanisms both in the mobile

device and the EMI
2
Objects in the environment. The discovery, interaction,

presentation and persistency abstractions encapsulate the concrete discovery,

interaction, presentation or persistency models used. They provide an API for

performing service discovery and interaction, graphical interface generation and data

persistence independent of the actual implementation of that API in the target device.

Figure 3: EMI
2
lets internal architecture

On deployment the code developed by means of the mentioned API abstract

interfaces (Abstract Programming Model) is late bound to the concrete

implementations of those interfaces (Concrete Mappings) which are part of the

EMI
2
let runtime in the target device.

In the process of associating a generic invocation to an actual one, the EMI
2
let

Abstract-to-Concrete Mapping will be responsible for selecting the actual mapping

(or group of mappings) which best matches the invocation type. For example, if a

downloaded EMI
2
let is installed on a device where both Bluetooth and GPRS

communication are available, the abstract-to-concrete layer will have to choose one of

those mechanisms to issue commands. Thus, if the mobile device is still within

Bluetooth range of the EMI
2
2let server-side, then it will translate the invocation into

an EMI
2
Protocol message transported over Bluetooth RFCOMM. Otherwise, it will

invoke via GPRS the generic web service (with methods corresponding to the

EMI
2
Protocol commands) implemented by an EMI

2
let back-end.

With regards to the presentation abstraction, we have defined a minimum set of

graphical controls with which the graphical interface of an EMI
2
let is generated.

Some examples are: EMI2Panel, EMI2Button or EMI2TextBox. This enables

us to create EMI
2
let graphical interfaces agnostic of the target mobile device. Thus,

when a programmer creates an EMI2Button, it is translated into a button control in

a PC or a PDA, but into a menu option in a mobile phone.

The operation of the functional mapping plug-ins is ruled by an XML

configuration file, which states whether a plug-in may be run concurrently with other

plug-ins of the same type or in isolation. In the latter case, a priority is assigned to

each plug-in which will determine which of the plug-ins to select when several of

them are available. Both the Abstract-to-Concrete Mappings and the Functional

Mapping layers and plug-ins will be linked to the arriving EMI
2
let in an EMI

2
let

Player, running in any of the four supported device types (see Figure 4).

Figure 4: EMI
2
let Players in the PC, Windows Mobile and Web platforms

3.3 Reflection

The use of Reflection is paramount in the EMI
2
lets platform. It enables an EMI

2
let

Player to verify that the code arriving as part of an EMI
2
let complies with the

EMI
2
lets framework, and most importantly, is a piece of code which can be trusted.

Every EMI
2
let downloaded is signed with a private key only shared by the EMI

2
let

designer and the player.

After verification, the player can start the EMI
2
let by invoking the methods

defined in the EMI2let base class, extended by every EMI
2
let. The methods defined

by this class follow similar signatures to those found in a J2ME [Sun, 05a] MIDlet

class:

• start, starts or resumes the execution of a downloaded EMI
2
let.

• pause, pauses its execution.

• destroy, destroys it.

In addition, the EMI2let class includes some EMI
2
lets-specific methods such

as:

• getUUID, returns the unique identifier of an EMI
2
let, under which state related

to an EMI
2
let can be persisted.

• setProperty/getProperty, sets or gets the properties associated to a

EMI
2
let. For instance, the EMI2let.Durable property is set to true when an

EMI
2
let has to be cached in the player, so that it can be executed again in the

future. Otherwise, an EMI
2
let is removed from the player either when its

execution is completed or it is out of range, cannot access, the EMI
2
Object it

represents.

• notifyDisconnected, offers an EMI
2
let the possibility of being aware when

the controlled EMI
2
Object cannot be accessed.

• getAddresses, enables the EMI
2
let-hosting player to retrieve the EMI

2
let

server-side addresses. For instance, an EMI
2
let back-end may be accessed both

through a Bluetooth address or a url pointing to a web service.

3.4 The EMI2lets implementation

The most noticeable part of our implementation is the assembly fusion undertaken at

the player side merging the arriving EMI
2
let assembly with the EMI

2
let library

installed in each target device. This library represents the player’s runtime, i.e. the

abstract-to-concrete layer and the four mappings implementation with their

corresponding plug-in modules. In other words, the assembly code downloaded is

linked dynamically (late bound) with the runtime installed in the target device. The

.NET’s System.Reflection namespace has provided us the support to enable

this.

Figure 5: EMI
2
let lifecycle.

Figure 5 illustrates the life cycle of an EMI
2
let from its development to its

deployment. In our approach active .NET code developed on a PC through the

EMI
2
let Designer (see Figure 6) is uploaded into an EMI

2
let Server, from where it is

later downloaded and executed in the context of an EMI
2
let Player. After its execution

an EMI
2
let is cached or removed from the Player.

4 An EMI
2
let discovery plug-in

In order to prove the extensibility features of the EMI
2
lets platform, an interesting

example of an EMI
2
lets plug-in developed is described. This plug-in accommodates

to the discovery abstraction of EMI
2
lets and it is based on the TRIP [López de Ipiña,

02] tag-based visual system.

A factor that limits the use of Bluetooth as an underlying networking technology

for publicly accessible mobile services is that its device discovery model takes a

significant (sometimes unbearable) amount of time. The discovery process in

Bluetooth is divided into two main phases: (1) device discovery and (2) service

discovery in the devices discovered. In an error-free environment, the device

discovery phase must last for 10.24s if it is to discover all the devices [Bluetooth, 05].

In order to reduce the delay in service discovery, we propose a tag-based service

selection, which bypasses the slow Bluetooth Device Discovery process, similar to

[Scott, 05].

Figure 6: EMI
2
let Designer.

The TRIP visual tags are circular barcodes (ringcodes) with 4 data-rings and 20

sectors. A visual tag, large enough to be detected by a mobile device tag reading

software, is shown in Figure 7. The ringcode is divided into:

• One sync-sector used to specify the beginning of the data encoded in a tag.

• Two checksum-sectors used to encode a 8-bit checksum, which detects decoding

errors and corrects three bit errors, and

• Seventeen data-sectors which encode 66 bits of information.

The information in a TRIP tag is encoded in anti-clockwise fashion from the sync

sector. The sync-sector differs from the rest by presenting black in its four data rings

sections. Each sector encodes a hexadecimal digit comprising the values 0 to D. The E

hexadecimal number is only permitted in the sync sector. Given the 17 data encoding

sectors, the range of valid IDs is from 0 to 1517-1 (98526125335693359375 ≈ 2
66

).

The TRIP tags were designed to work well with the low-resolution fixed-focal-

length cameras found on conventional CCTV systems. Consequently, they are also

suitable for the low-quality built-in cameras of mobile devices [López de Ipiña, 05].

In fact, TRIP ringcodes are more reliably recognized than linear (UPC) barcodes,

which demand far higher image resolutions. TRIP works reliably with 160x120 pixel

images taken at a distance of 5-30cm from the tags which label the EMI
2
Objects in an

environment.

We have implemented the TRIP tag reading software both for Java J2ME and

Compact.NET mobile devices. Both implementations work reliably, although further

work on their performance is required. Currently, our J2ME implementation for a

Nokia 6630 processes 1 fps and a Compact.NET implementation for a TSM 500

Pocket PC 2 fps.

Figure 7: A tag encoding 66 bits of data.

4.1 Encoding EMI2lets’ addresses

We have applied TRIP tags to encode the Bluetooth address of an EMI
2
let Server and

an identifier to select an EMI
2
Object in the server. Likewise, we have also used those

tags to encode tiny urls (see http://tinyurl.com) which point to an EMI
2
Object in an

EMI
2
let Server. The tiny url server is currently generating 6 character-long identifiers,

whilst we can encode up to 8 characters. The scheme followed to encode an EMI
2
let

address in a TRIP ringcode is:

• Two bits have been allocated to encode the address type, i.e. whether it is a

Bluetooth (00) or an Internet tiny url (01) address.

• For Bluetooth, 48 bits are dedicated to encode the BD_ADDRESS of an EMI
2
let

Server, and the remaining 16 bits to encode a unique identifier to select a specific

EMI
2
let.

• For Internet, we have used the 66 bits available to encode a tiny url, containing

the address of an EMI
2
let. For example, the tiny url identifier 8ggaj maps to the

url http://wap.deusto.es.

Noticeably, the TRIP visual tags do not only improve service discovery but they

also serve to call user’s attention about the smart objects available in his

surroundings.

5 EMI
2
lets applications

We have developed EMI
2
lets targeted to the following application domains: a)

accessibility, b) home/office automation, c) industry, and d) public spaces.

In the domain of accessibility we have developed EMI
2
lets which associated to a

bus stop offer a voice synthesized bus arrival notification for blind people or provide

subtitles on the mobile phones of people attending to a conference. These applications

demonstrated how simple it is to transform a physical space (bus stop or conference

hall) into a more accessible environment thanks to the EMI
2
lets platform.

In the home and office automation domain some EMI
2
lets have been created that

enable to control the lights, a music system (in fact the Windows Media Player in a

PC) or a Pan/Tilt/Zoom security camera at a home or office, from mobile devices.

As far as the industry domain is concerned we have developed an EMI
2
let which

allows us to control from our mobile device a robot equipped with a communications

module supporting both Bluetooth and GPRS. When co-located with the robot our

EMI
2
let uses the Bluetooth communication channel. When we are far away from the

location of the robot, the EMI
2
let uses the GPRS channel to communicate with the

robot. The communication channel choice is undertaken by the EMI
2
lets runtime

autonomously.

Finally, on what we call the “public space” domain, we have created EMI
2
lets

which allow us to control a parking booth, order food in a restaurant or review the

departure time and gate of a plane in an airport. Those EMI
2
lets show how a physical

object in an outdoors space can be augmented with AmI features. For example, the

Parking EMI
2
let is meant to be deployed in any street parking booth, where we can

purchase tickets to park our car for a limited period of time. Often, we have to keep

returning to the parking place to renew the ticket so that the local police force does

not issue a fine for parking time expiration. Thanks to the EMI
2
lets platform a user

could discover, download (from the ticket booth) and install a parking EMI
2
let which

would help him solve this situation. With the downloaded EMI
2
let the user could

purchase parking tickets via Bluetooth while in the parking, and remotely via GPRS

when the EMI
2
let warns her (at her office) that its parking ticket is about to expire.

This scenario shows one of the biggest virtues of EMI
2
lets, its capability to enact an

action over an EMI
2
Object both locally, while in the environment, or remotely, far

away from the environment.

Figure 8: EMI
2
lets running on a PDA.

Figure 8 and Figure 9 show three of the previously described EMI
2
lets in action

running in a PDA and a mobile phone, respectively. The EMI
2
lets shown allow a user

to control from his mobile device a robot, a lamp or a PTZ security camera.

Something remarkable about the EMI
2
lets platform is that in the development of those

EMI
2
lets we have written the code only once, independently of the target device

where they will run. This is due to the “write once run in any device type” philosophy

followed by our system.

Figure 9: EMI
2
lets running on a mobile phone.

6 EMI
2
lets Performance Results

In order to asses the performance of our current implementation of the EMI
2
lets

platform we have carried out two tests on a TSM 500 PDA with Bluetooth, Wi-Fi and

GPRS support:

1. A comparative measurement illustrating the different latencies experienced

during an EMI
2
let discovery, download and communication with its server-side,

bearing in mind the nature of the communication channel used (Wi-Fi, Bluetooth

or GPRS).

2. A comparative measurement to determine the average data rate achieved

depending on whether we use Bluetooth, Wi-Fi or GPRS to transfer data between

an EMI
2
let and its server-side.

Figure 10 shows that the discovery process based on UPnP over Wi-Fi is much

faster than connecting directly to the IP address and port number of an EMI
2
let Server

to enquire about its installed EMI
2
lets over GPRS or undertaking Bluetooth

discovery. However, once the Bluetooth discovery has concluded the download of an

EMI
2
let code and the exchange of information between an EMI

2
let and its server-side

is much better than through GPRS and only worse to Wi-Fi which has a much better

transfer rate.

Figure 11 shows the effective data transfer rates obtained over the three wireless

communication mechanisms we have used in EMI
2
lets. Obviously, the data transfer

rate obtained through Wi-Fi is the best, whereas Bluetooth offers the second best

behaviour.

Figure 10:EMI
2
lets communication costs.

Figure 11: Effective data transfer rate in EMI
2
lets.

7 Related work

The EMI
2
lets platform presents some resemblance to the Smoblets software

framework proposed by [Siegemund, 04]. Both frameworks offer the possibility to

download into a mobile device the software representatives of objects located in a

smart space. However, Smoblets are thought to operate when they are only within

range of the smart object they represent, whereas EMI
2
lets can remain at the user’s

terminal, even when he is far away from the smart object. This allows the user to

control that smart object anytime and anywhere, both using local (Bluetooth) and

global (GPRS) communication mechanisms. Furthermore, the main application of

Smoblets is to transform mobile devices into execution platforms for code

downloaded from smart items with limited processing resources, whereas EMI
2
lets

are mainly thought to transform mobile devices into hosts of smart object proxies,

which simplify their remote control.

The EMI
2
lets framework’s layered software architecture has been inspired by the

ReMMoC framework [Grace, 05]. However, EMI
2
lets does not only address the

service discovery and interaction issues of mobile context-aware applications. It also

tackles the graphical presentation and persistency aspects commonly used in those

applications. Moreover, as main innovation, the code generated for an EMI
2
let is

independent of the target platform type where it will be run (PC, PDA or mobile

phone). This is due to the fact that our layered software architecture follows a “write

once run in any device type” philosophy.

The Pebbles project [Myers, 01] is exploring how handheld devices, such as

PDAs and mobile phones, can be used when they are communicating with a "regular"

personal computer (PC), with other handhelds, and with computerized appliances

such as telephones, radios, microwave ovens, automobiles, and factory equipment.

Pebbles shares with EMI
2
lets the goal of transforming handheld devices into universal

remote controllers. Moreover, it adopts a similar architecture where a player in the

handheld device communicates with server-side intermediaries to control the

operation of the underlying smart objects. However, the main difference is that

Pebbles defines a Personal Universal Controller (PUC) Specification Language

through which the device parameters that can be controlled are specified. The PUC

language does not only specifies these control parameters but also a protocol for

transmitting changes to the state of these parameters between the appliance and the

controller. Essentially, the player in Pebbles has to interpret the PUC specification

published by a device in order to generate its interface, i.e. applies an XSLT-like

transformation to obtain from the XML representation of the controlling parameters a

set of graphical controls. Unfortunately, Pebbles focuses all its work on the

presentation and interaction process and has not solved the important service

discovery issues that EMI
2
lets has addressed. Moreover, in EMI

2
lets is the designer of

a smart object the one who decides which will be the best look and feel of the

graphical interface to control the smart object, whereas in Pebbles that decision is left

to the player itself.

The Obje software architecture [Edwards, 05] is an interconnection technology

that enables digital devices and services to interoperate over both wired and wireless

networks – even when they know almost nothing about one another. Their goal is to

be able of simply plug new device types into the network and all existing peers on the

network will be able to use them. Similarly to EMI
2
lets, Obje is agnostic to the

underlying discovery and communication mechanisms. It also defines four simple

abstractions that remain constant and all peers on the network understand: a) connect

to another device, b) provide metadata about itself, c) be controlled, and d) provide

references to other devices. In addition, it defines a messaging protocol over TCP/IP

that every Obje-enabled device must implement. The main difference between

EMI
2
lets and Obje is that whereas in the former is the developer of a smart object the

one who decides what the user interface presented to the end user will look like and

what functionality it will have access to, in the Obje case the responsibility for

determining appropriate interactions shifts from the developer to the end user. In other

words, the programming on each device in Obje only tells the device how to interact

with peers using the abstract mechanisms previously mentioned. The authors of Obje

argue such semantic ignorance is necessary for open-ended interoperability. However,

this flexible approach implies that they will need to provide tools that let end-users

compose and configure devices within a space. Our approach in EMI
2
lets is much

simpler and almost as flexible. The smart object developer decides the best and

richest multiplatform (PC, PDA and mobile phone) user interface to control an object.

Through EMI
2
lets the end-user can directly operate with its surrounding objects. As a

second drawback, Obje only runs on the PC platform and provides the capability for

the end user to integrate different components within a smart space but does not make

the smart objects embedded in AmI spaces readily available for the end-user to

control as EMI
2
lets does.

Other authors [Scott, 05] have also used TRIP tags to encode addresses of smart

objects. Our data encoding strategy, using the same number of rings as them, achieves

better error correction capabilities (from 2 to 3 bits) and has a bigger encoding

capacity (from 63 to 66 bits).

8 Conclusion and further work

This work has described the design and implementation of a novel reflective

framework which provides universal active influence capabilities to mobile devices

over the smart objects in an environment. This framework presents the following

features:

• Transforms mobile devices into universal remote controllers of smart objects.

• Enables both local and global access of those smart objects, i.e. anywhere and at

anytime.

• Independent and extensible to the underlying service discovery and interaction,

graphical representation and persistence mechanisms.

• Enables AmI using conventional readily-available hardware and software tools.

• EMI
2
lets are developed following a “write once run in any device type”

philosophy.

In future work we want to add more sophisticated service discovery and context

negotiation features between EMI
2
let Players and Servers, following the WebProfiles

model described in [Lassila, 03]. In addition, we want to enable the cooperation of

EMI
2
Objects, for instance, through the incorporation of distribution shared tuple

space.

Acknowledgements

This work has been financed by a 2004-05 SAIOTEK grant from the Basque

Government and the Cátedra de Telefónica Móviles España at the University of

Deusto (http://www.ctme.deusto.es).

References

[Beigl, 01] M. Beigl, H.W. Gellersen, A. Schmidt, MediaCups: Experience with Design and

Use of Computer-Augmented Everyday Objects., Computer Networks, Special Issue on

Pervasive Computing, Vol. 25, No. 4, March 2001 401–409.

[Bluetooth, 05] Bluetooth Specification version 1.1, December 2005,

http://www.bluetooth.com

[Czerwinski, 99] S. Czerwinski, B. Zhao et al., An architecture for a Secure Service Discovery

Service. Proceedings of MobiCom’99, 1999

[Edwards, 05] W.K. Edwards, M. W. Newman, J.Z. Sedivy, T.F Smith, Bringing Network

Effects to Pervasive Spaces. IEEE Pervasive Computing – Mobile and Ubiquitous Systems,

Vol. 4, No. 1, July-September 2005 15-17

[Grace, 05] P. Grace, G.S. Blair and S. Samuel, A Reflective Framework for Discovery and

Interaction in Heterogeneous Mobile Environments. Mobile Computing and Communications

Review, ACM SIGMOBILE, Vol. 9, No. 1, January 2005 2-14

[Lassila, 03] O. Lassila and M. Adler, Semantic Gadgets: Device and Information

Interoperability in Kalle Lyytinen & Yongjin Yoo (eds.): "Ubiquitous Computing

Environment", Case Western Reserve University, October 2003

[López de Ipiña, 02] D. López de Ipiña, P. Mendonça and A. Hopper, TRIP: a Low-cost

Vision-based Location System for Ubiquitous Computing, in Personal and Ubiquitous

Computing, Vol. 6, No. 3, May 2002 206-219

[López de Ipiña, 05] D. López de Ipiña, J.I. Vázquez and D. Sainz, Interacting with our

Environment through Sentient Mobile Phones, Proceedings of 2nd International Workshop in

Ubiquitous Computing (IWUC-2005), ICEIS 2005, ISBN 972-8865-24-4, May 2005 19-28

[Microsoft, 05] Microsoft Corporation, Mobile Developer Center,

http://msdn.microsoft.com/mobility/, December 2005

[Myers, 01] B.A. Myers, Using Hand-Held Devices and PCs Together. Communications of the

ACM, Vol. 44, No. 11, November 2001 34 – 41

[Rohs, 05] M. Rohs, P. Zweifel, A Conceptual Framework for Camera Phone-based Interaction

Techniques, Pervasive Computing: Third International Conference, PERVASIVE 2005,

Lecture Notes in Computer Science (LNCS) No. 3468, Springer-Verlag, Munich, Germany,

2005

[Scott, 05] D. Scott et al., Using Visual Tags to Bypass Bluetooth Device Discovery, ACM

Mobile Computing and Communications Review, Vol.9, No.1, January 2005 41-52

[Shadbolt , 03] N. Shadbolt, Ambient Intelligence, IEEE Intelligent Systems, Vol. 2, No.3,

July/August 2003

[Siegemund, 04] F. Siegemund, and T. Krauer, Integrating Handhelds into Environments of

Cooperating Smart Everyday Objects, Proceedings of the 2nd European Symposium on

Ambient Intelligence. Eindhoven, The Netherlands, November 2004

[Sun, 05a] Sun Microsystems, Inc, Java 2 Platform, Micro Edition (J2ME),

http://java.sun.com/j2me/, December 2005

[Sun, 05b] Sun Microsystems, Inc., Jini Specifications Archive - v2.1,

http://java.sun.com/products/jini/2_1index.html, December 2005

[Symbian, 05] Symbian Ltd., Symbian OS – the mobile operating System, December 2005,

http://www.symbian.com/

[UPnP, 05] The Universal Plug and Play Forum, December 2005, http://www.upnp.org/

[Vazquez, 04] J.I. Vázquez, D. López de Ipiña, An Interaction Model for Passively Influencing

the Environment, Adjunct Proceedings of the 2nd European Symposium on Ambient

Intelligence, Eindhoven, The Netherlands, November 2004

[Vazquez, 05] J.I. Vázquez, and D. López de Ipiña, An HTTP-based Context Negotiation

Model for Realizing the User-Aware Web, 1st International Workshop on Innovations In Web

Infrastructure (IWI 2005), Chiba, Japan, May 2005

[Zhu 05] F. Zhu, M.W. Mutka, L.M. Ni., Service Discovery in Pervasive Computing

Environments. IEEE Pervasive Computing, Vol. 4, No. 4, October 2005 81-90

