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Abstract: An interesting new application domain for handheld devices may be represented by 

Ambient Intelligence (AmI), where they can be used as intermediaries between us and our 

surrounding environment. Thus, mobile devices, which always accompany us, will behave as 

electronic butlers who assist us in our daily tasks, by interacting with the smart objects 

(everyday objects augmented with computational services) in our whereabouts. In order to 

achieve such goal, this paper proposes an AmI-enabling framework providing two main 

functions: a) facilitate the development and deployment of smart objects and b) transform 

mobile devices into universal remote controllers of those smart objects. 

Keywords: Ambient Intelligence, Pervasive Computing, Middleware, Smart Spaces 

Categories: C2.4, C2.6, D2.2, D2.6, D2.11, D2.12 

1 Introduction  

Ambient Intelligence (AmI) [Shadbolt , 03] defines an interaction model between us 

and a context-aware environment, which adapts its behaviour intelligently to our 

preferences and habits, so that our daily life is facilitated and enhanced. AmI is a new 

research discipline aiming the creation of intelligent reactive spaces that serve the 

user. In order to achieve this, AmI combines the knowledge of several related 

research fields such as Ubiquitous Computing and Communication, Context-Aware 

Computing, Artificial Intelligence and intelligent interfaces.  

Current PDAs and mobile phones are equipped with continuously increasing 

processing and storage capabilities, better and more varied communications 

mechanisms (Bluetooth [Bluetooth, 05], Wi-Fi, GPRS/UMTS) and increasingly 

capable multimedia capture and playback facilities. Moreover, they are far more 

easily programmable [Symbian, 05][Microsoft, 05] [Sun, 05a] than ever before. 

Mobile devices equipped with Bluetooth, built-in cameras, GPS receivers, 

barcode or RFID readers can be considered as sentient devices [López de Ipiña, 05] 

[Rohs, 05], since they are aware of what smart objects are in their whereabouts. A 

smart object [Beigl, 01] is an everyday object (e.g. door, classroom) or a device 

augmented with some accessible computational service. Once a mobile device 

discovers a nearby smart object, it can induce changes on its behaviour.  

We deem that mobile devices will play a key role in AmI, since they can act as 

facilitators or intermediaries between us and the environment. In other words, mobile 



devices can act as our personal electronic butlers, facilitating and enhancing our daily 

activities, and even acting on our behalf based on our profiles or preferences.    

In this paper, we describe the design and implementation of EMI
2
lets, a software 

framework to facilitate the development and deployment of AmI scenarios. 

The structure of the paper is as follows. Section 2 describes EMI
2
, a software 

architecture modelling both passive and active interaction mechanisms for AmI.  

Section 3 details the EMI
2
lets platform, a partial materialisation of the EMI

2
 

architecture, which simplifies both the creation of software representatives for 

everyday objects and their controlling proxies deployable in mobile devices. Section 4 

proves the extensibility features of the EMI
2
lets platform with the description of an 

interesting discovery plug-in based on circular barcodes developed for EMI
2
lets.  

Section 5 illustrates some example applications developed with the help of EMI
2
lets 

framework. Section 6 shows some performance results achieved by the current 

implementation of EMI
2
lets. Section 7 overviews some related work. Finally, section 

8 offers some conclusions and suggests further work.  

2 EMI
2
: an AmI architecture 

In order to make the AmI vision reality, a good starting point may be the definition of 

suitable software architectures and frameworks specially catered for it. The EMI
2
 

(Environment to Mobile Intelligent Interaction) architecture is our proposed solution.  

EMI
2
 defines a multi-agent software architecture, where agents modelling the 

different roles played by entities in AmI, communicate and cooperate to enhance and 

facilitate the user interactions with her smart environment. 

We understand by smart environment a location where the objects present within 

(smart objects) are augmented with computing services. For instance, a cinema may 

be enhanced with a mobile phone locally accessible (Bluetooth) ticket booking 

service, so preventing the user from long queuing to purchase tickets.  

Figure 1 portrays the main components of the EMI
2
 architecture. We distinguish 

three main types of agents: 

• EMI
2
Proxy: is an agent representing the user, which runs on the user’s mobile 

device (PDA or mobile phone). It acts on behalf of the user, adapting/controlling 

the environment for him, both explicitly, under the user’s control, or implicitly, 

on its own judgement based on the profiles, preferences and previous interactions 

of the user with the environment. 

• EMI
2
Object or smart object: is an agent representing any device or physical 

object (e.g. vending machine, door) within a smart environment augmented with 

computational services, i.e. the capacity to adapt its behaviour based on ambient 

conditions or user commands. 

• EMI
2
BehaviourRepository: is an agent where knowledge and intelligence are 

combined to support sensible adaptation. EMI
2
Objects may require the assistance 

of an external EMI
2
BehaviourRepository to coordinate their own adaptation 

according to the user’s preferences, behaviour patterns or even the explicit 

commands received from an EMI
2
Proxy. The user’s mobile device can also be 

powered with an internal EMI
2
BehaviourRepository. 



 

 

Figure 1: The EMI
2
 architecture 

2.1 Active and passive mechanisms 

A concrete agent can influence the environment, and thus, its constituent agents’ state, 

via active (explicit interaction) or passive (implicit interaction) methods.  

Active methods are those in which the agent explicitly commands other agents to 

change their state or perform an action. For example, when a user enters a building, a 

sensor identifies him and commands the lift to be ready at the ground floor. When the 

user stands by his office door his mobile phone commands the electric lock to open. 

Passive methods are those in which an agent disseminates certain information 

(profiles, preferences), expecting that other agents change their state or perform an 

action at their discretion to create a more adapted environment. Using passive 

methods an agent does not command the target agents to do anything concrete, it 

simply publishes information preferences expecting the others to react changing their 

state in a positive way. Passive mechanisms are less intrusive than active methods, but 

they are less predictable and significantly more complex to implement. 

In passive methods, the particular set of information to disseminate by the agent 

is dependant on the configuration of the environment in which is going to be 

published. Therefore, a discovery and negotiation process must take place among the 

entities in an environment in order to achieve an adapted behaviour for the users 

present within. In previous work, we have tackled these passive influence [Vázquez, 

04] and context negotiation [Vázquez, 05] issues. 

2.2 Active influence over Smart Objects 

The purpose of this paper is to design and implement a middleware to provide 

universal active influence capabilities to our mobile devices over the surrounding 

smart objects.  

The two minimum requirements such middleware must address are: (1) a 

mechanism to discover through ad-hoc or wireless networking the computing services 

exported by surrounding smart objects, and (2) a mechanism to interact with those 

discovered services, so that the represented objects adapt to the user’s commands.  



The current state of the art in discovery and interaction platforms falls into three 

categories [Grace, 05] [Zhu 05]. Firstly, solutions in which discovery protocols are 

supported by mobile code, e.g. Jini [Sun, 05b]. After discovery, the service (either a 

proxy or the full service) is downloaded onto the mobile device where it then 

operates. Secondly, solutions where the discovery protocols are integrated with 

specific interaction protocols, which are used to invoke the service after the service 

has been discovered, e.g. Universal Plug and Play (UPnP) [UPnP, 05]. Finally, 

interaction independent discovery protocols such as the SLP [Czerwinski, 99].  

One of the following communication mechanisms is normally used to interact 

with a discovered service: remote method invocation, publish-subscribe or 

asynchronous messaging. For the purpose of this work we will concentrate on the 

remote method invocation paradigm, since it accommodates to the most popular 

mechanisms for distributed computing such as CORBA or Web Services.  

In what follows we explain the design and implementation of an AmI-enabling 

middleware which addresses the service discovery and interaction aspects required for 

active influence (explicit invocation) on smart objects.  

3 The EMI
2
lets platform 

EMI
2
lets is the result of mapping the EMI

2
 architecture into a .NET-based software 

development platform to enable AmI scenarios. It is specially suited for active 

interaction mechanisms. However, it has been designed so that passive mechanisms 

may be incorporated in the future.  

EMI
2
lets is a .NET-based development platform for AmI which addresses the 

intelligent discovery and interaction among EMI
2
Objects and EMI

2
Proxies. EMI

2
lets 

follows a Jini-like mechanism by which once a service is discovered, a proxy of it (an 

EMI
2
let) is downloaded into the user’s device (EMI

2
Proxy). An EMI

2
let is a mobile 

component transferred from a smart object to a nearby handheld device, which 

normally offers a graphical interface to interact or influence the behaviour of a 

surrounding smart object.  

The EMI
2
lets platform addresses three main aspects:  

• Mobility, seamlessly to the user it encounters all the services available as he 

moves and selects the best possible mechanism to communicate with them. The 

EMI
2
let platform selects the communication means with best trade-off between 

performance and cost. For example, if Wi-Fi and Bluetooth are available, the 

former is chosen, however if GPRS/UMTS and Bluetooth are available, the latter 

is chosen.  

• Interoperability, the EMI
2
lets, i.e. the software components downloaded from 

smart objects to EMI
2
Proxies, are agnostic to the target device type, e.g. PC, a 

PDA or a mobile phone. 

• AmI is the application domain that has driven the design of EMI
2
lets. This 

platform provides the infrastructure and software tools required to ease the 

development and deployment of mobile context-aware applications.  

The objectives established for the design and implementation of the EMI
2
lets 

platform are: 



• Transform mobile devices into remote universal controllers of the smart objects 

in an AmI environment. 

• Enable both local (Bluetooth, Wi-Fi) and global access (GPRS/UMTS) to the 

smart objects in an AmI environment, seamlessly adapting to the most suitable 

underlying communication mechanisms 

• Develop extensible middleware independent of a particular discovery or 

interaction mechanism. Abstract the programmer from the several available or 

emerging discovery (Bluetooth SDP or wireless UPnP discovery) and interaction 

mechanisms (RPC or publish/subscribe). 

• Make use of commonly available hardware and software in mobile devices, 

without demanding the creation of proprietary hardware, or software protocols.   

• Generate software representatives (proxies) of smart objects which can be run in 

any platform, following a “write once run in any device type” philosophy. For 

instance, the same EMI
2
let should be able to run in a mobile phone, a PDA or a 

PC. 

3.1 The EMI2lets vision 

Figure 2 shows a possible deployment of an EMI
2
lets-powered environment. A group 

of handheld devices running the EMI
2
let Player and hosting the EMI

2
let runtime can 

discover and interact with the software representatives (EMI
2
lets) of surrounding 

EMI
2
Objects. An EMI

2
Object may be equipped with enough hardware resources to 

host an EMI
2
let Server, or alternatively a group of EMI

2
lets associated to different 

EMI
2
Objects may all be hosted within an autonomous version of an EMI

2
let Server. 

The EMI
2
let Server acts as a repository of EMI

2
Objects. It publishes the services 

offered by the hosted EMI
2
Objects, transfers them on demand to the requesting 

EMI
2
let Players, and, optionally acts as running environment for the EMI

2
let server-

side facets.  

Some EMI
2
lets may directly communicate with their associated EMI

2
Objects in 

order to issue adaptation commands. However, often a specialised piece of software 

may need to be developed which is far too complex to be implemented in the 

embedded hardware with which a smart object may be augmented. For those cases, it 

will be more convenient to delegate those cumbersome and heavy computing tasks to 

the server-side (back-end) counterpart of an EMI
2
let. The EMI

2
let on the hand-held 

device will communicate with its server-side counterpart in the EMI
2
let Server by 

means of the EMI
2
Protocol. For example, a light-controlling EMI

2
let could 

communicate with its EMI
2
let server-side, which would issue X10 commands over 

the power line. 



 

Figure 2: EMI
2
lets possible configuration 

3.2 Internal architecture 

The EMI
2
lets platform consists of the following elements: 

1. A programming framework defining a set of classes and rules that every EMI
2
let 

component must follow. 

2. An integrated development environment, named EMI
2
let Designer, which 

simplifies the development of EMI
2
lets, both its client- and (optional) server-side. 

3. A runtime environment installed on EMI
2
let-aware devices for executing 

downloaded code.  

4. An EMI
2
let Player to discover, download, verify and control the execution of a 

EMI
2
let. A version of the player is available for each device type which can host 

EMI
2
lets, e.g. PDA, mobile phone or PC. 

5. An EMI
2
let Server which acts as a repository of EMI

2
lets and as running 

environment of EMI
2
lets server-sides. 

In order to achieve the previously mentioned design objectives, we have created 

the layered software architecture shown in Figure 3. Programmers only deal with the 

first layer, the EMI
2
let Abstract Programming Model API, to develop the software 

counterparts of smart objects. This layer offers a set of generic interfaces (abstract 

classes) covering the main functional blocks of a mobile sentient application: 

1. Discovery interface to undertake the search for available EMI
2
lets independently 

of the discovery mechanisms used underneath.  

2. Interaction interface to issue commands over the services discovered.  

3. Presentation interface to specify the graphical controls and events that represent 

the look and feel of an EMI
2
let. 

4. Persistency interface to store EMI
2
let-related data in the target device. 

The EMI
2
let Abstract-to-Concrete Mapping layer translates the invocations over 

the generic interfaces to the appropriate available mechanisms both in the mobile 

device and the EMI
2
Objects in the environment. The discovery, interaction, 



presentation and persistency abstractions encapsulate the concrete discovery, 

interaction, presentation or persistency models used. They provide an API for 

performing service discovery and interaction, graphical interface generation and data 

persistence independent of the actual implementation of that API in the target device. 

 

Figure 3: EMI
2
lets internal architecture 

On deployment the code developed by means of the mentioned API abstract 

interfaces (Abstract Programming Model) is late bound to the concrete 

implementations of those interfaces (Concrete Mappings) which are part of the 

EMI
2
let runtime in the target device. 

In the process of associating a generic invocation to an actual one, the EMI
2
let 

Abstract-to-Concrete Mapping will be responsible for selecting the actual mapping 

(or group of mappings) which best matches the invocation type. For example, if a 

downloaded EMI
2
let is installed on a device where both Bluetooth and GPRS 

communication are available, the abstract-to-concrete layer will have to choose one of 

those mechanisms to issue commands. Thus, if the mobile device is still within 

Bluetooth range of the EMI
2
2let server-side, then it will translate the invocation into 

an EMI
2
Protocol message transported over Bluetooth RFCOMM. Otherwise, it will 

invoke via GPRS the generic web service (with methods corresponding to the 

EMI
2
Protocol commands) implemented by an EMI

2
let back-end.  

With regards to the presentation abstraction, we have defined a minimum set of 

graphical controls with which the graphical interface of an EMI
2
let is generated. 

Some examples are: EMI2Panel, EMI2Button or EMI2TextBox. This enables 

us to create EMI
2
let graphical interfaces agnostic of the target mobile device. Thus, 

when a programmer creates an EMI2Button, it is translated into a button control in 

a PC or a PDA, but into a menu option in a mobile phone.  

The operation of the functional mapping plug-ins is ruled by an XML 

configuration file, which states whether a plug-in may be run concurrently with other 

plug-ins of the same type or in isolation. In the latter case, a priority is assigned to 



each plug-in which will determine which of the plug-ins to select when several of 

them are available.  Both the Abstract-to-Concrete Mappings and the Functional 

Mapping layers and plug-ins will be linked to the arriving EMI
2
let in an EMI

2
let 

Player, running in any of the four supported device types (see Figure 4). 

 

Figure 4: EMI
2
let Players in the PC, Windows Mobile and Web platforms 

3.3 Reflection 

The use of Reflection is paramount in the EMI
2
lets platform. It enables an EMI

2
let 

Player to verify that the code arriving as part of an EMI
2
let complies with the 

EMI
2
lets framework, and most importantly, is a piece of code which can be trusted. 

Every EMI
2
let downloaded is signed with a private key only shared by the EMI

2
let 

designer and the player.  

After verification, the player can start the EMI
2
let by invoking the methods 

defined in the EMI2let base class, extended by every EMI
2
let. The methods defined 

by this class follow similar signatures to those found in a J2ME [Sun, 05a] MIDlet 

class:  

• start, starts or resumes the execution of a downloaded EMI
2
let. 

• pause, pauses its execution. 

• destroy, destroys it. 

In addition, the EMI2let class includes some EMI
2
lets-specific methods such 

as:  

• getUUID, returns the unique identifier of an EMI
2
let, under which state related 

to an  EMI
2
let can be persisted. 

• setProperty/getProperty, sets or gets the properties associated to a 

EMI
2
let. For instance, the EMI2let.Durable property is set to true when an 

EMI
2
let has to be cached in the player, so that it can be executed again in the 

future. Otherwise, an EMI
2
let is removed from the player either when its 

execution is completed or it is out of range, cannot access, the EMI
2
Object it 

represents. 

• notifyDisconnected, offers an EMI
2
let the possibility of being aware when 

the controlled EMI
2
Object cannot be accessed.  



• getAddresses, enables the EMI
2
let-hosting player to retrieve the EMI

2
let 

server-side addresses. For instance, an EMI
2
let back-end may be accessed both 

through a Bluetooth address or a url pointing to a web service. 

3.4 The EMI2lets implementation 

The most noticeable part of our implementation is the assembly fusion undertaken at 

the player side merging the arriving EMI
2
let assembly with the EMI

2
let library 

installed in each target device. This library represents the player’s runtime, i.e. the 

abstract-to-concrete layer and the four mappings implementation with their 

corresponding plug-in modules. In other words, the assembly code downloaded is 

linked dynamically (late bound) with the runtime installed in the target device.  The 

.NET’s System.Reflection namespace has provided us the support to enable 

this.  
 

 

Figure 5: EMI
2
let lifecycle. 

Figure 5 illustrates the life cycle of an EMI
2
let from its development to its 

deployment. In our approach active .NET code developed on a PC through the 

EMI
2
let Designer (see Figure 6) is uploaded into an EMI

2
let Server, from where it is 

later downloaded and executed in the context of an EMI
2
let Player. After its execution 

an EMI
2
let is cached or removed from the Player.  

4 An EMI
2
let discovery plug-in 

In order to prove the extensibility features of the EMI
2
lets platform, an interesting 

example of an EMI
2
lets plug-in developed is described. This plug-in accommodates 

to the discovery abstraction of EMI
2
lets and it is based on the TRIP [López de Ipiña, 

02] tag-based visual system. 

A factor that limits the use of Bluetooth as an underlying networking technology 

for publicly accessible mobile services is that its device discovery model takes a 

significant (sometimes unbearable) amount of time. The discovery process in 

Bluetooth is divided into two main phases: (1) device discovery and (2) service 

discovery in the devices discovered. In an error-free environment, the device 

discovery phase must last for 10.24s if it is to discover all the devices [Bluetooth, 05].  



In order to reduce the delay in service discovery, we propose a tag-based service 

selection, which bypasses the slow Bluetooth Device Discovery process, similar to 

[Scott, 05].  

  

 

Figure 6: EMI
2
let Designer. 

The TRIP visual tags are circular barcodes (ringcodes) with 4 data-rings and 20 

sectors. A visual tag, large enough to be detected by a mobile device tag reading 

software, is shown in Figure 7. The ringcode is divided into:  

• One sync-sector used to specify the beginning of the data encoded in a tag. 

• Two checksum-sectors used to encode a 8-bit checksum, which detects decoding 

errors and corrects three bit errors, and  

• Seventeen data-sectors which encode 66 bits of information.  

The information in a TRIP tag is encoded in anti-clockwise fashion from the sync 

sector. The sync-sector differs from the rest by presenting black in its four data rings 

sections. Each sector encodes a hexadecimal digit comprising the values 0 to D. The E 

hexadecimal number is only permitted in the sync sector. Given the 17 data encoding 

sectors, the range of valid IDs is from 0 to 1517-1 (98526125335693359375 ≈ 2
66

). 

The TRIP tags were designed to work well with the low-resolution fixed-focal-

length cameras found on conventional CCTV systems. Consequently, they are also 

suitable for the low-quality built-in cameras of mobile devices [López de Ipiña, 05]. 

In fact, TRIP ringcodes are more reliably recognized than linear (UPC) barcodes, 

which demand far higher image resolutions. TRIP works reliably with 160x120 pixel 

images taken at a distance of 5-30cm from the tags which label the EMI
2
Objects in an 

environment. 

We have implemented the TRIP tag reading software both for Java J2ME and 

Compact.NET mobile devices. Both implementations work reliably, although further 

work on their performance is required. Currently, our J2ME implementation for a 

Nokia 6630 processes 1 fps and a Compact.NET implementation for a TSM 500 

Pocket PC 2 fps.  



 

Figure 7: A tag encoding 66 bits of data. 

4.1 Encoding EMI2lets’ addresses 

We have applied TRIP tags to encode the Bluetooth address of an EMI
2
let Server and 

an identifier to select an EMI
2
Object in the server. Likewise, we have also used those 

tags to encode tiny urls (see http://tinyurl.com) which point to an EMI
2
Object in an 

EMI
2
let Server. The tiny url server is currently generating 6 character-long identifiers, 

whilst we can encode up to 8 characters. The scheme followed to encode an EMI
2
let 

address in a TRIP ringcode is: 

• Two bits have been allocated to encode the address type, i.e. whether it is a 

Bluetooth (00) or an Internet tiny url (01) address.  

• For Bluetooth, 48 bits are dedicated to encode the BD_ADDRESS of an EMI
2
let 

Server, and the remaining 16 bits to encode a unique identifier to select a specific 

EMI
2
let. 

• For Internet, we have used the 66 bits available to encode a tiny url, containing 

the address of an EMI
2
let. For example, the tiny url identifier 8ggaj maps to the 

url http://wap.deusto.es. 

Noticeably, the TRIP visual tags do not only improve service discovery but they 

also serve to call user’s attention about the smart objects available in his 

surroundings. 

5 EMI
2
lets applications 

We have developed EMI
2
lets targeted to the following application domains: a) 

accessibility, b) home/office automation, c) industry, and d) public spaces. 

In the domain of accessibility we have developed EMI
2
lets which associated to a 

bus stop offer a voice synthesized bus arrival notification for blind people or provide 

subtitles on the mobile phones of people attending to a conference. These applications 

demonstrated how simple it is to transform a physical space (bus stop or conference 

hall) into a more accessible environment thanks to the EMI
2
lets platform.  



In the home and office automation domain some EMI
2
lets have been created that 

enable to control the lights, a music system (in fact the Windows Media Player in a 

PC) or a Pan/Tilt/Zoom security camera at a home or office, from mobile devices.  

As far as the industry domain is concerned we have developed an EMI
2
let which 

allows us to control from our mobile device a robot equipped with a communications 

module supporting both Bluetooth and GPRS. When co-located with the robot our 

EMI
2
let uses the Bluetooth communication channel. When we are far away from the 

location of the robot, the EMI
2
let uses the GPRS channel to communicate with the 

robot. The communication channel choice is undertaken by the EMI
2
lets runtime 

autonomously.  

Finally, on what we call the “public space” domain, we have created EMI
2
lets 

which allow us to control a parking booth, order food in a restaurant or review the 

departure time and gate of a plane in an airport. Those EMI
2
lets show how a physical 

object in an outdoors space can be augmented with AmI features. For example, the 

Parking EMI
2
let is meant to be deployed in any street parking booth, where we can 

purchase tickets to park our car for a limited period of time. Often, we have to keep 

returning to the parking place to renew the ticket so that the local police force does 

not issue a fine for parking time expiration. Thanks to the EMI
2
lets platform a user 

could discover, download (from the ticket booth) and install a parking EMI
2
let which 

would help him solve this situation. With the downloaded EMI
2
let the user could 

purchase parking tickets via Bluetooth while in the parking, and remotely via GPRS 

when the EMI
2
let warns her (at her office) that its parking ticket is about to expire. 

This scenario shows one of the biggest virtues of EMI
2
lets, its capability to enact an 

action over an EMI
2
Object both locally, while in the environment, or remotely, far 

away from the environment.  

 

Figure 8:  EMI
2
lets running on a PDA. 



 

Figure 8 and Figure 9 show three of the previously described EMI
2
lets in action 

running in a PDA and a mobile phone, respectively. The EMI
2
lets shown allow a user 

to control from his mobile device a robot, a lamp or a PTZ security camera. 

Something remarkable about the EMI
2
lets platform is that in the development of those 

EMI
2
lets we have written the code only once, independently of the target device 

where they will run. This is due to the “write once run in any device type” philosophy 

followed by our system. 

 

 

Figure 9: EMI
2
lets running on a mobile phone. 

6 EMI
2
lets Performance Results 

In order to asses the performance of our current implementation of the EMI
2
lets 

platform we have carried out two tests on a TSM 500 PDA with Bluetooth, Wi-Fi and 

GPRS support:  

1. A comparative measurement illustrating the different latencies experienced 

during an EMI
2
let discovery, download and communication with its server-side, 

bearing in mind the nature of the communication channel used (Wi-Fi, Bluetooth 

or GPRS). 

2. A comparative measurement to determine the average data rate achieved 

depending on whether we use Bluetooth, Wi-Fi or GPRS to transfer data between 

an EMI
2
let and its server-side. 

Figure 10 shows that the discovery process based on UPnP over Wi-Fi is much 

faster than connecting directly to the IP address and port number of an EMI
2
let Server 

to enquire about its installed EMI
2
lets over GPRS or undertaking Bluetooth 

discovery. However, once the Bluetooth discovery has concluded the download of an 

EMI
2
let code and the exchange of information between an EMI

2
let and its server-side 



is much better than through GPRS and only worse to Wi-Fi which has a much better 

transfer rate. 

Figure 11 shows the effective data transfer rates obtained over the three wireless 

communication mechanisms we have used in EMI
2
lets. Obviously, the data transfer 

rate obtained through Wi-Fi is the best, whereas Bluetooth offers the second best 

behaviour. 

 

Figure 10:EMI
2
lets communication costs. 

 

Figure 11: Effective data transfer rate in EMI
2
lets. 

7 Related work 

The EMI
2
lets platform presents some resemblance to the Smoblets software 

framework proposed by [Siegemund, 04]. Both frameworks offer the possibility to 

download into a mobile device the software representatives of objects located in a 

smart space. However, Smoblets are thought to operate when they are only within 



range of the smart object they represent, whereas EMI
2
lets can remain at the user’s 

terminal, even when he is far away from the smart object. This allows the user to 

control that smart object anytime and anywhere, both using local (Bluetooth) and 

global (GPRS) communication mechanisms. Furthermore, the main application of 

Smoblets is to transform mobile devices into execution platforms for code 

downloaded from smart items with limited processing resources, whereas EMI
2
lets 

are mainly thought to transform mobile devices into hosts of smart object proxies, 

which simplify their remote control. 

The EMI
2
lets framework’s layered software architecture has been inspired by the 

ReMMoC framework [Grace, 05]. However, EMI
2
lets does not only address the 

service discovery and interaction issues of mobile context-aware applications. It also 

tackles the graphical presentation and persistency aspects commonly used in those 

applications. Moreover, as main innovation, the code generated for an EMI
2
let is 

independent of the target platform type where it will be run (PC, PDA or mobile 

phone). This is due to the fact that our layered software architecture follows a “write 

once run in any device type” philosophy.  

The Pebbles project [Myers, 01] is exploring how handheld devices, such as 

PDAs and mobile phones, can be used when they are communicating with a "regular" 

personal computer (PC), with other handhelds, and with computerized appliances 

such as telephones, radios, microwave ovens, automobiles, and factory equipment. 

Pebbles shares with EMI
2
lets the goal of transforming handheld devices into universal 

remote controllers. Moreover, it adopts a similar architecture where a player in the 

handheld device communicates with server-side intermediaries to control the 

operation of the underlying smart objects. However, the main difference is that 

Pebbles defines a Personal Universal Controller (PUC) Specification Language 

through which the device parameters that can be controlled are specified. The PUC 

language does not only specifies these control parameters but also a protocol for 

transmitting changes to the state of these parameters between the appliance and the 

controller. Essentially, the player in Pebbles has to interpret the PUC specification 

published by a device in order to generate its interface, i.e. applies an XSLT-like 

transformation to obtain from the XML representation of the controlling parameters a 

set of graphical controls. Unfortunately, Pebbles focuses all its work on the 

presentation and interaction process and has not solved the important service 

discovery issues that EMI
2
lets has addressed. Moreover, in EMI

2
lets is the designer of 

a smart object the one who decides which will be the best look and feel of the 

graphical interface to control the smart object, whereas in Pebbles that decision is left 

to the player itself. 

The Obje software architecture [Edwards, 05] is an interconnection technology 

that enables digital devices and services to interoperate over both wired and wireless 

networks – even when they know almost nothing about one another. Their goal is to 

be able of simply plug new device types into the network and all existing peers on the 

network will be able to use them. Similarly to EMI
2
lets, Obje is agnostic to the 

underlying discovery and communication mechanisms. It also defines four simple 

abstractions that remain constant and all peers on the network understand: a) connect 

to another device, b) provide metadata about itself, c) be controlled, and d) provide 

references to other devices. In addition, it defines a messaging protocol over TCP/IP 

that every Obje-enabled device must implement. The main difference between 



EMI
2
lets and Obje is that whereas in the former is the developer of a smart object the 

one who decides what the user interface presented to the end user will look like and 

what functionality it will have access to, in the Obje case the responsibility for 

determining appropriate interactions shifts from the developer to the end user. In other 

words, the programming on each device in Obje only tells the device how to interact 

with peers using the abstract mechanisms previously mentioned. The authors of Obje 

argue such semantic ignorance is necessary for open-ended interoperability. However, 

this flexible approach implies that they will need to provide tools that let end-users 

compose and configure devices within a space. Our approach in EMI
2
lets is much 

simpler and almost as flexible. The smart object developer decides the best and 

richest multiplatform (PC, PDA and mobile phone) user interface to control an object. 

Through EMI
2
lets the end-user can directly operate with its surrounding objects. As a 

second drawback, Obje only runs on the PC platform and provides the capability for 

the end user to integrate different components within a smart space but does not make 

the smart objects embedded in AmI spaces readily available for the end-user to 

control as EMI
2
lets does. 

Other authors [Scott, 05] have also used TRIP tags to encode addresses of smart 

objects. Our data encoding strategy, using the same number of rings as them, achieves 

better error correction capabilities (from 2 to 3 bits) and has a bigger encoding 

capacity (from 63 to 66 bits).   

8 Conclusion and further work 

This work has described the design and implementation of a novel reflective 

framework which provides universal active influence capabilities to mobile devices 

over the smart objects in an environment. This framework presents the following 

features: 

• Transforms mobile devices into universal remote controllers of smart objects. 

• Enables both local and global access of those smart objects, i.e. anywhere and at 

anytime. 

• Independent and extensible to the underlying service discovery and interaction, 

graphical representation and persistence mechanisms.  

• Enables AmI using conventional readily-available hardware and software tools. 

• EMI
2
lets are developed following a “write once run in any device type” 

philosophy. 

In future work we want to add more sophisticated service discovery and context 

negotiation features between EMI
2
let Players and Servers, following the WebProfiles 

model described in [Lassila, 03].  In addition, we want to enable the cooperation of 

EMI
2
Objects, for instance, through the incorporation of distribution shared tuple 

space. 
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