
A Middleware for the Deployment of AmI Spaces

Diego López de Ipiña1, Iñaki Vázquez1, Daniel Garcia1, Javier Fernández1, and
Iván García1

1 University of Deusto, Faculty of Engineering, Avda. Universidades 28,
48007 Bilbao, Spain

{dipina, ivazquez}@eside.deusto.es,
{dgarcia, jafernan, ivgarcia}@ctme.deusto.es

Abstract. The latest mobile devices are offering more multimedia features,
better communication capabilities (Bluetooth, Wi-Fi, GPRS/UMTS) and are
more easily programmable than ever before. So far, those devices have been
used mainly for communication, entertainment, and as electronic assistants. A
radically different application domain for them may be represented by Ambient
Intelligence (AmI), where mobile devices can be used as intermediaries
between us and our surroundings. This paper proposes a middleware with a
two-fold objective: (1) to simplify the creation and deployment of physical
spaces hosting smart objects and (2) to transform mobile devices into universal
remote controllers of those objects.

1 Introduction

Ambient Intelligence (AmI) [1] defines an interaction model between us and a
context-aware environment, which adapts its behaviour intelligently to our
preferences and habits, so that our life is facilitated and enhanced.

Current PDAs and mobile phones are equipped with interesting processing and
storage capabilities, varied communications mechanisms (Bluetooth [2], Wi-Fi,
GPRS/UMTS) and increasingly capable multimedia capture and playback facilities.
Moreover, they are far more easily programmable (Compact.NET [3], J2ME [4] or
Symbian [5]), i.e. extensible, than ever before.

Mobile devices equipped with Bluetooth, built-in cameras, barcode or RFID
readers can be considered as sentient devices [6], since they are aware of what smart
objects are within an AmI space. We understand by AmI space or environment, a
location, either indoors or outdoors, where the objects present within (smart objects)
are augmented with computing services. A smart object is an everyday object (door,
classroom, parking booth) or a device augmented with some accessible computational
service. Once a mobile device discovers a nearby smart object, it can operate over it.

We deem that mobile devices will play a key role within AmI, since they are
always with us and can act as facilitators or intermediaries between us and the
environment. In other words, mobile devices can act as our personal electronic
butlers, facilitating and enhancing our daily activities, and even acting on our behalf
based on our profiles or preferences.

2 Diego López de Ipiña1, Iñaki VázquezP1P, Daniel GarciaP1P, Javier FernándezP1P,
and Iván GarcíaP1P

In this paper, we describe the design and implementation of EMI2lets, a
middleware to facilitate the development and deployment of mobile context-aware
applications for AmI spaces. This software provides the software infrastructure to (1)
convert physical environments into AmI spaces and (2) transform mobile devices into
remote controllers of the smart objects in those spaces.

2 EMI2: an AmI Architecture

Regardless of the continuous progress achieved in all the related research topics
which contribute to the AmI vision, we are still far away from its materialisation. A
good starting point to solve this may be the definition of suitable software
architectures and frameworks specially catered for AmI. The EMI2 (Environment to
Mobile Intelligent Interaction) architecture is our proposed solution.

EMI2 defines a multi-agent software architecture, where agents of different types,
modelling the different roles played by entities in AmI, communicate and cooperate to
fulfil a common goal, i.e. to enhance and facilitate the user interactions with her AmI
Space. For instance, a cinema may be enhanced with a Bluetooth mobile phone
accessible ticket booking service, so preventing the user from long queuing to
purchase tickets. Similarly, the door of our office may be augmented with an access
control service which demands the user to enter a PIN in her mobile to be given
access.

Fig. 1. The EMI2 Architecture

Fig. 1 portrays the main components of the EMI2 architecture. We distinguish three

main types of agents:
• EMI2Proxy: is an agent representing the user, which runs on the user’s mobile

device (PDA or mobile phone). It acts on behalf of the user, adapting/controlling
the environment for him, both explicitly, under the user’s control, or implicitly, on
its own judgement based on the profiles, preferences and previous interactions.

A Middleware for the Deployment of AmI Spaces 3

• EMI2Object: is an agent representing any device or physical object (vending
machine, door, ticket box) within a smart environment augmented with
computational services, i.e. the capacity to adapt its behaviour based on ambient
conditions or user commands. An EMI2Object cooperates with other EMI2 agents.

• EMI2BehaviourRepository: is an agent where knowledge and intelligence are
combined to support sensible adaptation. EMI2Objects may require the assistance
of an external EMI2BehaviourRepository to coordinate their own adaptation
according to the user’s preferences, behaviour patterns or even the explicit
commands received from an EMI2Proxy. The user’s mobile device can also be
powered with an internal EMI2BehaviourRepository.

2.1 Active and Passive Mechanisms

A concrete agent can influence the environment, and thus, its constituent agents’ state,
via active (explicit interaction) or passive (implicit interaction) methods.

Active methods are those in which the agent explicitly commands other agents to
change their state or perform an action. For example, when a user enters a building, a
sensor identifies him and commands the lift to be ready at the ground floor. When the
user stands by his office door his mobile phone commands the electric lock to open.
Active methods can be implemented with any distributed computing technology
capable of issuing commands, which will be transported in a local context by bearers
such as Bluetooth or Wi-Fi and in a global context by GPRS/UMTS.

Passive methods are those in which an agent disseminates certain information
(profiles, preferences), expecting that other agents change their state or perform an
action at their discretion to create a more adapted environment. Using passive
methods an agent does not command the target agents to do anything concrete, it
simply publishes/broadcasts information preferences expecting the others to react
changing their state in a positive way. Passive mechanisms are less intrusive than
active methods, but they are less predictable and significantly more complex.

2.2 Active Influence over EMI2Objects

In this paper we want to concentrate on the design and implementation of a
middleware to provide universal active influence capabilities to our mobile devices
over the surrounding smart objects in our environment.

The minimum features such a middleware has to provide are: (1) a mechanism to
discover through ad-hoc or wireless networking the computing services exported by
surrounding smart objects, and (2) a mechanism to interact with those discovered
services, so that the objects they represent adapt to the user’s preferences and
commands.

The current state of the art in discovery and interaction platforms falls into three
categories [9]. Firstly, solutions in which discovery protocols are supported by mobile
code, e.g. Jini [10]. After discovery, the service (either a proxy or the full service) is
downloaded onto the mobile device where it then operates. Secondly, solutions where
the discovery protocols are integrated with specific interaction protocols, which are

4 Diego López de Ipiña1, Iñaki VázquezP1P, Daniel GarciaP1P, Javier FernándezP1P,
and Iván GarcíaP1P

used to invoke the service after the service has been discovered. A good example of
this is Universal Plug and Play (UPnP) [11]. Finally, there are interaction independent
discovery protocols such as the Service Location Protocol [12].

In what follows we explain the design and implementation of AmI-enabling
middleware which addresses the service discovery and interaction aspects required for
active influence (explicit invocation) on EMI2Objects.

3 The EMI2lets Platform

EMI2lets is the result of mapping the EMI2 architecture into a software development
plaftorm to enable AmI scenarios. This platform is specially suited for active
interaction mechanisms. However, it has been designed so that passive mechanisms
may be incorporated in the future.

EMI2lets is a development platform for AmI which addresses the intelligent
discovery and interaction among EMI2Objects and EMI2Proxies. EMI2lets follows a
Jini-like mechanism by which once a service is discovered, a proxy of it (an EMI2let)
is downloaded into the user’s device (EMI2Proxy). An EMI2let is a mobile component
transferred from a smart object to a nearby handheld device, which offers a graphical
interface for the user to interact over that smart object.

The EMI2lets platform addresses three main aspects:
• Mobility, seamlessly to the user it encounters all the services available as he moves

and selects the best possible mechanism to communicate with them. In other
words, the EMI2let platform ensures that an EMI2Proxy is always using the
communication means with best trade-off between performance and cost. For
example, if Wi-Fi and Bluetooth are available, the former is chosen.

• Interoperability, the EMI2lets are agnostic of the target device type, e.g. PC, a PDA
or a mobile phone.

• AmI is the application domain that has driven the design of EMI2lets. This platform
provides the infrastructure and software tools required to ease the development and
deployment of mobile context-aware application.
The objectives established for the design and implementation of the EMI2lets

platform are:
• Transform mobile devices (mobile phones and PDAs) into remote universal

controllers of the smart objects located within an AmI space.
• Enable both local (Bluetooth, Wi-Fi) and global access (GPRS/UMTS) to the smart

objects in an AmI space, seamlessly adapting to the most suitable underlying
communication mechanisms

• Develop middleware independent of a particular discovery or interaction
mechanism. Abstract the programmer from the several available discovery
(Bluetooth SDP or wireless UPnP discovery) and interaction mechanisms (RPC or
publish/subscribe). Allow this middleware to easily adapt to newly emerging
discovery (e.g. RFID identification) and interactions means.

• Make use of commonly available hardware and software features in mobile
devices, without demanding the creation of proprietary hardware, or software.

A Middleware for the Deployment of AmI Spaces 5

• Generate software representatives (proxies) of smart objects which can be run in
any platform, following a “write once run in any device type” philosophy. For
instance, the same EMI2let should be able to run in a mobile, a PDA or a PC.

3.1 The EMI2lets Vision

Fig. 2 shows a possible deployment of an EMI2let-aware environment. A group of
devices running the EMI2let Player and hosting the EMI2let runtime can discover and
interact with the software representatives (EMI2lets) of surrounding EMI2Objects. An
EMI2Object may be equipped with enough hardware resources to host an EMI2let
Server, or alternatively a group of EMI2lets associated to different EMI2Objects may
all be hosted within an autonomous version of an EMI2let Server. The EMI2let Server
acts as a repository of EMI2Objects. It publishes the services offered by the hosted
EMI2Objects, transfers them on demand to the requesting EMI2let Players, and,
optionally acts as running environment for the EMI2let server-side facets.

Fig. 2. The EMI2lets in action.

Some EMI2lets may directly communicate with their associated EMI2Objects in
order to issue adaptation commands. However, often a specialised piece of software
may need to be developed which is far too complex to be implemented in the
embedded hardware with which a smart object is equipped. For those cases, it will be
more convenient to delegate those cumbersome computing tasks to the server-side
(back-end) counterpart of an EMI2let. The EMI2let on the hand-held device will
communicate with its server-side counterpart in the EMI2let Server by means of the
EMI2Protocol. For example, a light-controlling EMI2let could communicate with its
EMI2let server-side, which would issue X10 commands over the power line.

3.2 Internal Architecture

The EMI2lets platform consists of the following elements:
1. A programming framework defining a set of classes and rules that every EMI2let

component must follow.

6 Diego López de Ipiña1, Iñaki VázquezP1P, Daniel GarciaP1P, Javier FernándezP1P,
and Iván GarcíaP1P

2. An integrated development environment, named EMI2let Designer, which
simplifies the development of EMI2lets, both its client- and (optional) server-side.

3. A runtime environment installed on EMI2let-aware devices for executing
downloaded code.

4. An EMI2let Player to discover, download, verify and control the execution life of a
downloaded EMI2let. A version of the player is available for each device type
which may act as host of EMI2lets, e.g. PDA, mobile phone or PC.

5. An EMI2let Server which acts as repository of EMI2lets and as running
environment of EMI2lets server-sides.

EMI2let Abstract Programming Model API

Abstract-to-Concrete Mapping

Fig. 3. EMI2lets Internal Architecture

In order to achieve the design objectives previously listed, we have created the
layered software architecture shown in Fig. 3. Programmers only deal with the first
layer, the EMI2let Abstract Programming Model API, to develop the software
counterparts of smart objects. This layer offers a set of generic interfaces (abstract
classes) covering the main functional blocks of a mobile sentient application:
1. Discovery interface to undertake the search for available EMI2lets independently of

the discovery mechanisms used underneath.
2. Interaction interface to issue commands over the services discovered.
3. Presentation interface to specify the graphical controls and events that represent

the look and feel of an EMI2let.
4. Persistency interface to store EMI2let-related data in the target device.

The EMI2let Abstract-to-Concrete Mapping layer translates the invocations over
the generic interfaces to the appropriate available mechanisms both in the mobile
device and the EMI2Objects in the environment. The discovery, interaction,
presentation and persistency abstractions encapsulate the concrete discovery,
interaction, presentation or persistency models used. They implement an API for
performing service discovery and interaction, graphical interface generation and data
persistence independent of the actual implementation in the target device.

On deployment the code generated through these abstract interfaces is linked to the
concrete implementations of the classes used which are part of the EMI2let runtime in
the target device.

In the process of associating a generic invocation to an actual one, the EMI2let
Abstract-to-Concrete Mapping will be responsible of selecting the actual mapping (or

EMI2Protocol over
Bluetooth
RFCOMM

SOAP over Wi-Fi,
GPRS/UMTS or

Internet

TRIP-based
Service Discovery

UPnP Service
Discovery

RFID-based
Service Discovery

Bluetooth Service
Discovery (SDP)

Interaction
Mapping

Discovery
Mapping

Presentation
Mapping

Persistence
Mapping

…

A Middleware for the Deployment of AmI Spaces 7

group of mappings) which best matches the invocation type. For example, if a
downloaded EMI2let is installed on a device where both Bluetooth and GPRS
communication are available, the abstract-to-concrete layer will have to choose one of
those mechanisms to issue commands. Thus, if the mobile device is still within
Bluetooth range of the EMI2let server-side, then it will translate the invocation into an
EMI2Protocol message transported over Bluetooth RFCOMM. Otherwise, it will
invoke via GPRS the generic web service (with methods corresponding to the
EMI2Protocol commands) implemented by every EMI2let server-side.

Similarly, if a mobile device is Bluetooth and Wi-Fi capable, it will use both
Bluetooth SDP and UPnP service discovery to concurrently search for smart objects
in its surroundings.

With regards to the presentation abstraction, we have defined a minimum set of
graphical controls with which we can generate the graphical interface of an EMI2let.
Some examples of the classes defined are: EMI2Panel, EMI2Button or
EMI2TextBox. This enables us to create EMI2let graphical interfaces agnostic of the
target mobile device. Thus, when a programmer creates an EMI2Button, it is
translated into a button control in a PC or a PDA, but into a menu option in a mobile
phone.

The modus operandi of the plug-ins associated to any of the four available
functional mapping is ruled by an XML configuration file, which states whether a
plug-in may be run concurrently with other plug-ins of the same type or in isolation.
In the latter case, a priority is assigned to each plug-in which will determine which of
the plug-ins to select when several of them are available. We plan to establish a more
sophisticated and flexible plug-in configuration model in due time.

Both the Abstract-to-Concrete Mappings and the Functional Mapping layers and
plug-ins will be linked to the arriving EMI2let in an EMI2let Player.

3.3 Implementation

Reflection is paramount in the EMI2lets platform. It enables an EMI2let Player to
verify that the code arriving as part of an EMI2let complies with the EMI2lets
framework and can be trusted. Every EMI2let downloaded is signed with a private key
only shared by the EMI2let designer and the player.

After verification, the player can start the EMI2let by invoking the methods defined
in the EMI2let base class, from which every EMI2let must inherit. The methods
defined by this class closely resemble the ones provided by a J2ME 3 MIDlet class:
• start, starts or resumes the execution of a downloaded EMI2let.
• pause, pauses its execution.
• destroy, destroys it.

In addition, the EMI2let class includes some EMI2let-specific methods such as:
• getUUID, returns the unique identifier of an EMI2let.
• setProperty/getProperty, sets or gets the properties associated to a

EMI2let. For instance, the EMI2let.Durable property is set to true when an
EMI2let has to be cached in the player after its execution. Thus, it can be executed

8 Diego López de Ipiña1, Iñaki VázquezP1P, Daniel GarciaP1P, Javier FernándezP1P,
and Iván GarcíaP1P

again in the future. Otherwise, an EMI2let is wiped out from the Player either when
its execution is completed or it is out of range of the EMI2Object it represents.

• notifyDisconnected, offers an EMI2let the possibility of being aware of
when the EMI2Object that it controls cannot be accessed any longer.

• getAddresses, enables the EMI2let-hosting player to retrieve the addresses at which the
EMI2let server-side is available. For instance, an EMI2let server-side may be accessible
both through a Bluetooth address or a url pointing to a web service.

Our first reference implementation has used Microsoft .NET, a platform that fully
supports reflection through the System.Reflection namespace. Moreover, the
.NET platform addresses software development for all the client hardware platforms
considered in EMI2lets, namely PC, PDA and mobile phone. As a least common
multiple for the definition of the presentation controls of an EMI2let, we have chosen
the Compact.NET framework graphical controls, which represent a superset of the
ones in the SmartPhone framework and a subset of the standard .NET desktop-
oriented ones.

The most noticeable part of our implementation is the assembly fusion undertaken
at the player side merging the arriving EMI2let assembly with the EMI2let library
installed in each target device. This library represents the player’s runtime, i.e. the
abstract-to-concrete layer and the interaction, discovery, presentation and persistency
mappings implementation with their corresponding plug-in modules. In other words,
the assembly code downloaded is linked dynamically (late bound) with the runtime
installed in the target device.

4 An EMI2lets Application

The Parking EMI2let, see Fig. 4, is an example application developed with EMI2lets
middleware. It shows how a physical object in an outdoors space can be augmented
with AmI features. This application is meant to be deployed in any street parking
booth, where we can purchase tickets to park our car for a limited period of time.
Often, we have to keep returning to the parking place to renew the ticket so that the
local police force does not issue a fine for parking time expiration. Thanks to the
EMI2lets platform a user could discover, download (from the ticket booth) and install
a parking EMI2let which would help him solve this situation. With the downloaded
EMI2let the user could purchase parking tickets via Bluetooth while in the parking,
and remotely via GPRS when the EMI2let warns her (at her office) that its parking
ticket is about to expire. This scenario shows one of the biggest virtues of EMI2lets,
their capability to enact an action over an EMI2Object both locally, while in the
environment, or remotely, far away from the environment.

Other EMI2lets developed have allowed us to perform as diverse tasks as ordering
food in a busy restaurant from our mobile phone, controlling the electronic devices
and lights of a room, offering a voice synthesized bus arrival notification for blind
people or provide subtitles on the mobile phones of people attending to an opera.

A Middleware for the Deployment of AmI Spaces 9

Fig. 4. Parking example for PDA(left) and PC(right).

5 Related Work

The EMI2lets platform presents some resemblance to the Smoblets software
framework proposed by [14]. Both frameworks download into a mobile device the
software representatives of objects located in a smart space. However, Smoblets only
operate when they are within range of the smart object they represent. On the
contrary, EMI2lets can remain at the user’s terminal, even when he is far away from
the smart object. This allows the user to control that smart object anytime and
anywhere, both using local (Bluetooth) and global (GPRS) communication
mechanisms. Furthermore, the main application of Smoblets is to transform mobile
devices into execution platforms for code downloaded from smart items with limited
processing resources, whereas EMI2lets are mainly thought to transform mobile
devices into hosts of smart object proxies, which simplify their remote control.

The EMI2lets framework’s layered software architecture has been inspired by the
ReMMoC framework [9]. However, EMI2lets does not only address the service
discovery and interaction issues of mobile context-aware applications. It also tackles
the graphical presentation and persistency aspects commonly used in those
applications. Moreover, the EMI2let code generated is independent of the target
platform where it will be run (PC, PDA or mobile).

6 Conclusion

This work has described the design and implementation of a novel middleware which
provides universal active influence capabilities to mobile devices over the smart
objects in an environment. This framework presents the following features:
• Transforms mobile devices into universal remote controllers of smart objects.
• Enables both local and global access to those smart objects (anywhere/anytime).

10 Diego López de Ipiña1, Iñaki VázquezP1P, Daniel GarciaP1P, Javier
FernándezP1P, and Iván GarcíaP1P

• Independent and extensible to the underlying service discovery and interaction,
graphical representation and persistence mechanisms.

• Enables AmI spaces using conventional readily-available hardware and software.
• Follows a “write once run in any device type” philosophy for EMI2lets.

The EMI2lets middleware represents a good approach to make the AmI vision
reality. With it, we have been able of prototyping several active influence AmI
scenarios in a very simple manner.

Acknowledgements

This work has been financed by a SAIOTEK 2004-05 grant from the Basque
Government and the Cátedra de Telefónica Móviles at the University of Deusto.

References

1. Shadbolt N. (2003) Ambient Intelligence, in IEEE Intelligent Systems, vol. 2, no.3.
2. (2005) Bluetooth Specification version 1.1, http://www.bluetooth.com.
3. (2005) Mobile Developer Center, http://msdn.microsoft.com/mobility/, Microsoft

Coorporation.
4. (2005) Java 2 Platform, Micro Edition (J2ME), http://java.sun.com/j2me/, Sun

Microsystems, Inc.
5. (2005) Symbian OS – the mobile operating System, http://www.symbian.com/, Symbian

Ltd.
6. López de Ipiña D., Vázquez I. and Sainz D. (2005) Interacting with our Environment

through Sentient Mobile Phones, in Proceedings of 2nd International Workshop in
Ubiquitous Computing (IWUC-2005), ICEIS 2005, pp. 19-28, ISBN 972-8865-24-4.

7. Vázquez, J.I., López de Ipiña, D. (2004) An Interaction Model for Passively Influencing
the Environment, in Adjunct Proceedings of the 2nd European Symposium on Ambient
Intelligence, Eindhoven, The Netherlands.

8. Vázquez, J.I. and López de Ipiña D. (2005) An HTTP-based Context Negotiation Model
for Realizing the User-Aware Web, in 1st International Workshop on Innovations In Web
Infrastructure (IWI 2005), Chiba, Japan. May 2005.

9. Grace P., Blair G. S. and Samuel S. A Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile Environments, in Mobile Computing and
Communications Review, ACM SIGMOBILE, vol. 9, no. 1, pp. 2-14.

10. (1999) Arnold K., O’Sullivan B. et al. The Jini Specification, Addison Wesley.
11. (2005) The Universal Plug and Play Forum, http://www.upnp.org/.
12. Czerwinski S., Zhao B. et al. An architecture for a Secure Service Discovery Service, in

Proceedings of MobiCom’99, August 1999.
13. López de Ipiña, D., Mendonça P. and Hopper A. (2002) TRIP: a Low-cost Vision-based

Location System for Ubiquitous Computing, in Personal and Ubiquitous Computing, vol.
6, no. 3, pp. 206-219.

14. Siegemund, F. and Krauer T. (2004) Integrating Handhelds into Environments of
Cooperating Smart Everyday Objects, in Proceedings of the 2nd European Symposium on
Ambient Intelligence. Eindhoven, The Netherlands.

