
EMI2lets: A Reflective Framework for Enabling AmI

Diego López de Ipiña, Iñaki Vázquez, Daniel García, Javier Fernández and Iván García
Faculty of Engineering
University of Deusto

Avda. de las Universidades, 24
48007 Bilbao, SPAIN

{dipina, ivazquez}@eside.deusto.es, {dgarcia, jafernan, ivgarcia}@ctme.deusto.es

Abstract

An interesting new application domain for
handheld devices may be represented by Ambient
Intelligence (AmI), where they can be used as
intermediaries between us and our surrounding
environment. Thus, the devices will behave as
electronic butlers who assist us in our daily tasks,
by interacting with the smart objects (everyday
objects augmented with computational services)
surrounding us. This paper proposes a framework
aimed to transform mobile devices into universal
remote controllers of smart objects.

1. Introduction

Ambient Intelligence (AmI) [10] defines an
interaction model between us and a context-aware
environment, which adapts its behaviour
intelligently to our preferences and habits, so that
our daily life is facilitated and enhanced.
 Current PDAs and mobile phones are
equipped with continuously increasing processing
and storage capabilities, better and more varied
communications mechanisms (Bluetooth [1], Wi-
Fi, GPRS/UMTS) and increasingly capable
multimedia capture and playback facilities.
Moreover, they are far more easily programmable
[8][5] [12] than ever before.
 Mobile devices equipped with Bluetooth,
built-in cameras, barcode or RFID readers can be
considered as sentient devices [7], since they are
aware of what smart objects are in their
whereabouts. A smart object is an everyday object
(e.g. door, classroom) or a device augmented with
some accessible computational service. Once a
mobile device discovers a nearby smart object, it
can induce changes on its behaviour.
 We deem that mobile devices will play a key
role in AmI, since they can act as facilitators or
intermediaries between us and the environment. In
other words, mobile devices can act as our

personal electronic butlers, facilitating and
enhancing our daily activities, and even acting on
our behalf based on our profiles or preferences.
 In this paper, we describe the design and
implementation of EMI2lets, a software
framework to facilitate the development and
deployment of AmI scenarios.

2. EMI2: an AmI architecture

In order to make the AmI vision reality, a good
starting point should be the definition of suitable
software architectures and frameworks specially
catered for it. The EMI2 (Environment to Mobile
Intelligent Interaction) architecture is our
proposed solution.

EMI2 defines a multi-agent software
architecture, where agents modelling the different
roles played by entities in AmI, communicate and
cooperate to enhance and facilitate the user
interactions with her smart environment.

We understand by smart environment a
location where the objects present within (smart
objects) are augmented with computing services.
For instance, a cinema may be enhanced with a
mobile phone locally accessible (Bluetooth) ticket
booking service, so preventing the user from long
queuing to purchase tickets.
 Figure 1 portrays the main components of the
EMI2 architecture. We distinguish three main
types of agents:
• EMI2Proxy: is an agent representing the user,

which runs on the user’s mobile device (PDA
or mobile phone). It acts on behalf of the user,
adapting/controlling the environment for him,
both explicitly, under the user’s control, or
implicitly, on its own judgement based on the
profiles, preferences and previous interactions
of the user with the environment.

• EMI2Object: is an agent representing any
device or physical object (e.g. vending
machine, door) within a smart environment

augmented with computational services, i.e.
the capacity to adapt its behaviour based on
ambient conditions or user commands.

Figure 1. The EMI2 Architecture

• EMI2BehaviourRepository: is an agent where
knowledge and intelligence are combined to
support sensible adaptation. EMI2Objects may
require the assistance of an external
EMI2BehaviourRepository to coordinate their
own adaptation according to the user’s
preferences, behaviour patterns or even the
explicit commands received from an
EMI2Proxy. The user’s mobile device can also
be powered with an internal
EMI2BehaviourRepository.

2.1. Active and passive mechanisms

A concrete agent can influence the environment,
and thus, its constituent agents’ state, via active
(explicit interaction) or passive (implicit
interaction) methods.

Active methods are those in which the agent
explicitly commands other agents to change their
state or perform an action. For example, when a
user enters a building, a sensor identifies him and
commands the lift to be ready at the ground floor.
When the user stands by his office door his mobile
phone commands the electric lock to open.

Passive methods are those in which an agent
disseminates certain information (profiles,
preferences), expecting that other agents change
their state or perform an action at their discretion
to create a more adapted environment. Using
passive methods an agent does not command the
target agents to do anything concrete, it simply
publishes information preferences expecting the
others to react changing their state in a positive
way. Passive mechanisms are less intrusive than
active methods, but they are less predictable and
significantly more complex to implement.

In passive methods, the particular set of
information to disseminate by the agent is
dependant on the configuration of the
environment in which is going to be published.
Therefore, a discovery and negotiation process
must take place among the entities in an
environment in order to achieve an adapted
behaviour for the users present within. In previous
work, we have tackled these passive influence
[14] and context negotiation [15] issues.

2.2. Active influence over EMI2Objects

The purpose of this paper is to design and
implement a middleware to provide universal
active influence capabilities to our mobile devices
over the surrounding smart objects.

The two minimum features such middleware
addresses are: (1) a mechanism to discover
through ad-hoc or wireless networking the
computing services exported by surrounding smart
objects, and (2) a mechanism to interact with
those discovered services, so that the represented
objects adapt to the user’s commands.

The current state of the art in discovery and
interaction platforms falls into three categories
[4]. Firstly, solutions in which discovery protocols
are supported by mobile code, e.g. Jini [1]. After
discovery, the service (either a proxy or the full
service) is downloaded onto the mobile device
where it then operates. Secondly, solutions where
the discovery protocols are integrated with
specific interaction protocols, which are used to
invoke the service after the service has been
discovered, e.g. Universal Plug and Play (UPnP)
[13]. Finally, interaction independent discovery
protocols such as the SLP [3].

One of the following communication
mechanisms is normally used to interact with a
discovered service: remote method invocation,
publish-subscribe or asynchronous messaging. For
the purpose of this work we will concentrate on
the remote method invocation paradigm, since it
accommodates to the most popular mechanisms
for distributed computing such as CORBA or Web
Services.

In what follows we explain the design and
implementation of an AmI-enabling middleware
which addresses the service discovery and
interaction aspects required for active influence
(explicit invocation) on EMI2Objects.

3. The EMI2lets platform

EMI2lets is the result of mapping the EMI2
architecture into a software development platform
to enable AmI scenarios. It is specially suited for
active interaction mechanisms. However, it has
been designed so that passive mechanisms may be
incorporated in the future.
 EMI2lets is a development platform for AmI
which addresses the intelligent discovery and
interaction among EMI2Objects and EMI2Proxies.
EMI2lets follows a Jini-like mechanism by which
once a service is discovered, a proxy of it (an
EMI2let) is downloaded into the user’s device
(EMI2Proxy). An EMI2let is a mobile component
transferred from a smart object to a nearby
handheld device, which normally offers a
graphical interface to interact or influence the
behaviour of a surrounding smart object.

The EMI2lets platform addresses three main
aspects:
• Mobility, seamlessly to the user it encounters

all the services available as he moves and
selects the best possible mechanism to
communicate with them. The EMI2let
platform selects the communication means
with best trade-off between performance and
cost. For example, if Wi-Fi and Bluetooth are
available, the former is chosen, however if
GPRS/UMTS and Bluetooth are available, the
latter is chosen.

• Interoperability, the EMI2lets, i.e. the
software components downloaded from
EMI2Objects to EMI2Proxies, are agnostic of
the target device type, e.g. PC, a PDA or a
mobile phone.

• AmI is the application domain that has driven
the design of EMI2lets. This platform provides
the infrastructure and software tools required
to ease the development and deployment of
mobile context-aware applications.

 The objectives established for the design and
implementation of the EMI2lets platform are:
• Transform mobile devices into remote

universal controllers of the smart objects in an
AmI environment.

• Enable both local (Bluetooth, Wi-Fi) and
global access (GPRS/UMTS) to the smart
objects in an AmI environment, seamlessly
adapting to the most suitable underlying
communication mechanisms

• Develop extensible middleware independent
of a particular discovery or interaction
mechanism. Abstract the programmer from
the several available or emerging discovery
(Bluetooth SDP or wireless UPnP discovery)
and interaction mechanisms (RPC or
publish/subscribe).

• Make use of commonly available hardware
and software in mobile devices, without
demanding the creation of proprietary
hardware, or software protocols.

• Generate software representatives (proxies) of
smart objects which can be run in any
platform, following a “write once run in any
device type” philosophy. For instance, the
same EMI2let should be able to run in a
mobile phone, a PDA or a PC.

3.1. The EMI2lets vision

Figure 2 shows a possible deployment of an
EMI2lets-powered environment. A group of
handheld devices running the EMI2let Player and
hosting the EMI2let runtime can discover and
interact with the software representatives
(EMI2lets) of surrounding EMI2Objects. An
EMI2Object may be equipped with enough
hardware resources to host an EMI2let Server, or
alternatively a group of EMI2lets associated to
different EMI2Objects may all be hosted within an
autonomous version of an EMI2let Server.
 The EMI2let Server acts as a repository of
EMI2Objects. It publishes the services offered by
the hosted EMI2Objects, transfers them on
demand to the requesting EMI2let Players, and,
optionally acts as running environment for the
EMI2let server-side facets.

Some EMI2lets may directly communicate
with their associated EMI2Objects in order to
issue adaptation commands. However, often a
specialised piece of software may need to be
developed which is far too complex to be
implemented in the embedded hardware with
which a smart object may be augmented. For
those cases, it will be more convenient to delegate
those cumbersome and heavy computing tasks to
the server-side (back-end) counterpart of an
EMI2let. The EMI2let on the hand-held device will
communicate with its server-side counterpart in
the EMI2let Server by means of the EMI2Protocol.
For example, a light-controlling EMI2let could

communicate with its EMI2let server-side, which
would issue X10 commands over the power line.

Figure 2. EMI2lets possible configuration.

3.2. Internal architecture

The EMI2lets platform consists of the following
elements:
1. A programming framework defining a set of

classes and rules that every EMI2let component
must follow.

2. An integrated development environment,
named EMI2let Designer, which simplifies the
development of EMI2lets, both its client- and
(optional) server-side.

3. A runtime environment installed on EMI2let-
aware devices for executing downloaded code.

4. An EMI2let Player to discover, download,
verify and control the execution of a EMI2let. A
version of the player is available for each
device type which can host EMI2lets, e.g. PDA,
mobile phone or PC.

5. An EMI2let Server which acts as repository of
EMI2lets and as running environment of
EMI2lets server-sides.

 In order to achieve the previously mentioned
design objectives, we have created the layered
software architecture shown in Figure 3.
Programmers only deal with the first layer, the
EMI2let Abstract Programming Model API, to
develop the software counterparts of smart
objects. This layer offers a set of generic
interfaces (abstract classes) covering the main
functional blocks of a mobile sentient application:
1. Discovery interface to undertake the search for

available EMI2lets independently of the
discovery mechanisms used underneath.

2. Interaction interface to issue commands over
the services discovered.

3. Presentation interface to specify the graphical
controls and events that represent the look and
feel of an EMI2let.

4. Persistency interface to store EMI2let-related
data in the target device.

Figure 3. EMI2lets Internal Architecture

 The EMI2let Abstract-to-Concrete Mapping
layer translates the invocations over the generic
interfaces to the appropriate available mechanisms
both in the mobile device and the EMI2Objects in
the environment. The discovery, interaction,
presentation and persistency abstractions
encapsulate the concrete discovery, interaction,
presentation or persistency models used. They
implement an API for performing service
discovery and interaction, graphical interface
generation and data persistence independent of the
actual implementation in the target device.
 On deployment the code generated through
these abstract interfaces is linked to the concrete
implementations of the classes used which are part
of the EMI2let runtime in the target device.

In the process of associating a generic
invocation to an actual one, the EMI2let Abstract-
to-Concrete Mapping will be responsible of
selecting the actual mapping (or group of
mappings) which best matches the invocation
type. For example, if a downloaded EMI2let is
installed on a device where both Bluetooth and
GPRS communication are available, the abstract-
to-concrete layer will have to choose one of those
mechanisms to issue commands. Thus, if the
mobile device is still within Bluetooth range of
the EMI2let server-side, then it will translate the
invocation into an EMI2Protocol message
transported over Bluetooth RFCOMM. Otherwise,
it will invoke via GPRS the generic web service
(with methods corresponding to the EMI2Protocol
commands) implemented by an EMI2let back-end.

EMI2let Abstract Programming Model API

Abstract-to-Concrete Mapping

EMI2Protocol over
Bluetooth
RFCOMM

SOAP over Wi-Fi,
GPRS/UMTS or

Internet

TRIP-based
Service Discovery

UPnP Service
Discovery

RFID-based
Service Discovery

Bluetooth Service
Discovery (SDP)

Interaction
Mapping

Discovery
Mapping

Presentation
Mapping

Persistence
Mapping

…

With regards to the presentation abstraction,

we have defined a minimum set of graphical
controls with which generate the graphical
interface of an EMI2let. Some examples are:
EMI2Panel, EMI2Button or EMI2TextBox.
This enables us to create EMI2let graphical
interfaces agnostic of the target mobile device.
Thus, when a programmer creates an
EMI2Button, it is translated into a button
control in a PC or a PDA, but into a menu option
in a mobile phone.

The operation of the functional mapping plug-
ins is ruled by an XML configuration file, which
states whether a plug-in may be run concurrently
with other plug-ins of the same type or in
isolation. In the latter case, a priority is assigned
to each plug-in which will determine which of the
plug-ins to select when several of them are
available. Both the Abstract-to-Concrete
Mappings and the Functional Mapping layers and
plug-ins will be linked to the arriving EMI2let in
an EMI2let Player (see Figure 4).

Figure 4. EMI2let Player.

3.3. Reflection

The use of Reflection is paramount in the
EMI2lets platform. It enables an EMI2let Player to
verify that the code arriving as part of an EMI2let
complies with the EMI2lets framework, and most
importantly, is a piece of code which can be
trusted. Every EMI2let downloaded is signed with
a private key only shared by the EMI2let designer
and the player.
 After verification, the player can start the
EMI2let by invoking the methods defined in the
EMI2let base class, extended by every EMI2let.
The methods defined by this class follow similar
signatures to a J2ME [5] MIDlet class:

• start, starts or resumes the execution of a
downloaded EMI2let.

• pause, pauses its execution.
• destroy, destroys it.
In addition, the EMI2let class includes some
EMI2lets-specific methods such as:
• getUUID, returns the unique identifier of an

EMI2let, under which state related to an
EMI2let can be persisted.

• setProperty/getProperty, sets or
gets the properties associated to a EMI2let. For
instance, the EMI2let.Durable property
is set to true when an EMI2let has to be
cached in the player, so that it can be executed
again in the future. Otherwise, an EMI2let is
wiped out from the player either when its
execution is completed or it is out of range,
cannot access, the EMI2Object it represents.

• notifyDisconnected, offers an EMI2let
the possibility of being aware when the
controlled EMI2Object cannot be accessed.

• getAddresses, enables the EMI2let-
hosting player to retrieve the EMI2let server-
side addresses. For instance, an EMI2let back-
end may be accessed both through a Bluetooth
address or a url pointing to a web service.

3.4. The EMI2lets implementation

The most noticeable part of our implementation is
the assembly fusion undertaken at the player side
merging the arriving EMI2let assembly with
EMI2let library installed in each target device.
This library represents the player’s runtime, i.e.
the abstract-to-concrete layer and the four
mappings implementation with their
corresponding plug-in modules. In other words,
the assembly code downloaded is linked
dynamically (late bound) with the runtime
installed in the target device. The .NET’s
System.Reflection namespace has provided
us the support to enable this.

Figure 5. EMI2let lifecycle.

 Figure 5 illustrates the life cycle of an EMI2let
from its development to its deployment. In our
approach active .NET code developed on a PC

Develop
EMI2let on PC

Upload to
EMI2let Server

Download
EMI2let to

Player

Link and
Execute on

EMI2letPlayer

Cache or
Remove
EMI2let

through the EMI2let Designer (see Figure 6) is
uploaded into an EMI2let Server, from where it is
later downloaded and executed in the context of
an EMI2let Player. After its execution an EMI2let
is cached or removed from the Player.

4. An EMI2let discovery plug-in

As an example of an EMI2lets plug-in, a novel
service discovery mechanism based on the TRIP
[6] tag-based visual system is described.
 A factor that limits the use of Bluetooth as an
underlying networking technology for publicly
accessible mobile services is that its device
discovery model takes a significant (sometimes
unbearable) time. The discovery process in
Bluetooth is divided into two main phases: (1)
device discovery and (2) service discovery in the
devices discovered. In an error-free environment,
the device discovery phase must last for 10.24s if
it is to discover all the devices [1].
 In order to improve the delay in service
discovery, we propose a tag-based service
selection, which bypasses the slow Bluetooth
Device Discovery process, similar to [9].

The TRIP visual tags are circular barcodes
(ringcodes) with 4 data-rings and 20 sectors. A
visual tag, large enough to be detected by a
mobile device tag reading software, is shown in
Figure 7. The ringcode is divided into:
• One sync-sector used to specify the beginning

of the data encoded in a tag.
• Two checksum-sectors used to encode a 8-bit

checksum, which detects decoding errors and
corrects three bit errors, and

• Seventeen data-sectors which encode 66 bits
of information.

 The information in a TRIP tag is encoded in
anti-clockwise fashion from the sync sector. The
sync-sector differs from the rest by presenting
black in its four data rings sections. Each sector
encodes a hexadecimal digit comprising the
values 0 to D. The E hexadecimal number is only
permitted in the sync sector. Given the 17 data
encoding sectors, the range of valid IDs is from 0
to 1517-1 (98526125335693359375 ≈ 266).

The TRIP tags were designed to work well
with the low-resolution fixed-focal-length
cameras found on conventional CCTV systems.
Consequently, they are also suitable for the low-
quality built-in cameras of mobile devices [7]. In

fact, TRIP ringcodes are more reliably recognized
than linear (UPC) barcodes, which demand far
higher image resolutions. TRIP works reliably
with 160x120 pixel images taken at a distance of
5-30cm from the tags which label the
EMI2Objects in an environment.

Figure 6. EMI2let Designer.

We have implemented the TRIP tag reading
software both for Java J2ME and Compact.NET
mobile devices. Both implementations work
reliably, although further work on their
performance is required. Currently, our J2ME
implementation for a Nokia 6630 processes 1 fps
and a Compact.NET implementation for a TSM
500 Pocket PC 2 fps.

Figure 7. A tag encoding 66 bits of data.

4.1. Encoding EMI2lets’ addresses

We have applied TRIP tags to encode the
Bluetooth address of an EMI2let Server and an
identifier to select an EMI2Object in the server.
Likewise, we have also used those tags to encode
tiny urls (see http://tinyurl.com) which point to an
EMI2Object in an EMI2let Server. The tiny url
server is currently generating 6 character-long
identifiers, whilst we can encode up to 8
characters. The scheme followed to encode an
EMI2let address in a TRIP ringcode is:

• Two bits have been allocated to encode the

address type, i.e. whether it is a Bluetooth
(00) or an Internet tiny url (01) address.

• For Bluetooth, 48 bits are dedicated to encode
the BD_ADDRESS of an EMI2let Server, and
the remaining 16 bits to encode a unique
identifier to select a specific EMI2let.

• For Internet, we have used the 66 bits
available to encode a tiny url, containing the
address of an EMI2let. For example, the tiny
url identifier 8ggaj maps to the url
http://wap.deusto.es.

 Noticeably, the TRIP visual tags do not only
improve service discovery but they also serve to
call the user attention about the smart objects
available in an environment.

5. EMI2lets applications

The Restaurant EMI2let, see Figure 8, can be used
to make more efficient the food ordering process
in a busy restaurant. While waiting in a restaurant,
a mobile device running the EMI2let player could
discover, download and execute that EMI2let. By
means of it, the user could perform his order and
automatically know the amount he will have to
pay. This same application could be used the
following day, when the user is at home, to
request a take-away delivery from the same
restaurant.

Figure 8. Restaurant example

 Other EMI2lets developed have allowed us to
perform as diverse tasks as buying a parking ticket
while on the parking via Bluetooth and later
renewing it via GPRS from our office, controlling
the electronic devices and lights of a room,
offering a voice synthesized bus arrival
notification for blind people or providing subtitles
on mobile phones for deaf people attending a
conference.

In conclusion, the EMI2lets platform
transforms our mobile phone or PDA into a
universal remote controller which enables us to

obtain extra information and change the behaviour
of everyday objects, independently of whether we
are currently in an object’s local environment or
remotely from it.

6. Related work

The EMI2lets platform presents some resemblance
to the Smoblets software framework proposed by
[11]. Both frameworks offer the possibility to
download into a mobile device the software
representatives of objects located in a smart space.
However, Smoblets are thought to operate when
they are only within range of the smart object they
represent, whereas EMI2lets can remain at the
user’s terminal, even when he is far away from the
smart object. This allows the user to control that
smart object anytime and anywhere, both using
local (Bluetooth) and global (GPRS)
communication mechanisms. Furthermore, the
main application of Smoblets is to transform
mobile devices into execution platforms for code
downloaded from smart items with limited
processing resources, whereas EMI2lets are
mainly thought to transform mobile devices into
hosts of smart object proxies, which simplify their
remote control.

The EMI2lets framework’s layered software
architecture has been inspired by the ReMMoC
framework [4]. However, EMI2lets does not only
address the service discovery and interaction
issues of mobile context-aware applications. It
also tackles the graphical presentation and
persistency aspects commonly used in those
applications. Moreover, as main innovation, the
code generated for an EMI2let is independent of
the target platform type where it will be run (PC,
PDA or mobile phone). This is due to the fact that
our layered software architecture follows a “write
once run in any device type” philosophy.

Other authors [9] have also used TRIP tags to
encode addresses of smart objects. Our data
encoding strategy, using the same number of rings
as them, achieves better error correction
capabilities (from 2 to 3 bits) and has a bigger
encoding capacity (from 63 to 66 bits).

7. Conclusion and further work

This work has described the design and
implementation of a novel reflective framework

which provides universal active influence
capabilities to mobile devices over the smart
objects in an environment. This framework
presents the following features:
• Transforms mobile devices into universal

remote controllers of smart objects.
• Enables both local and global access of those

smart objects, i.e. anywhere and at anytime.
• Independent and extensible to the underlying

service discovery and interaction, graphical
representation and persistence mechanisms.

• Enables AmI using conventional readily-
available hardware and software tools.

• EMI2lets are developed following a “write
once run in any device type” philosophy.

 In future work we want to add more
sophisticated service discovery and context
negotiation features between EMI2let Players and
Servers, following the WebProfiles model
described in [15]. In addition, we want to enable
the cooperation of EMI2Objects, for instance,
through the incorporation of distribution shared
tuple space.

Acknowledgements

This work has been financed by a 2004-05
SAIOTEK grant from the Basque Government
and the Cátedra de Telefónica Móviles España at
the University of Deusto
(http://www.ctme.deusto.es).

References

[1] Arnold K., O’Sullivan B. et al. The Jini
Specification, Addison Wesley, 1999.

[2] Bluetooth Specification version 1.1.
http://www.bluetooth.com

[3] Czerwinski S., Zhao B. et al. An architecture
for a Secure Service Discovery Service. In
Proceedings of MobiCom’99, August 1999.

[4] Grace P., Blair G. S. and Samuel S. A
Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile
Environments, Mobile Computing and
Communications Review, vol. 9, no. 1, pp. 2-
14, January 2005.

[5] Java 2 Platform, Micro Edition (J2ME),
http://java.sun.com/j2me/, Sun Microsystems,
Inc, 2005

[6] López de Ipiña, D., Mendonça P. and Hopper
A. TRIP: a Low-cost Vision-based Location
System for Ubiquitous Computing, Personal
and Ubiquitous Computing, vol. 6, no. 3, pp.
206-219, May 2002.

[7] López de Ipiña D., Vázquez I. and Sainz D.
Interacting with our Environment through
Sentient Mobile Phones. Proceedings of
IWUC-2005, May 2005, pp. 19-28, ISBN
972-8865-24-4.

[8] Mobile Developer Center,
http://msdn.microsoft.com/mobility/,
Microsoft Coorporation, 2005

[9] Scott D., Sharp R., Madhavapeddy A. and
Upton E. Using Visual Tags to Bypass
Bluetooth Device Discovery, ACM Mobile
Computing and Communications Review,
vol.9, no.1, pp 41-52, January 2005.

[10] Shadbolt N. Ambient Intelligence. IEEE
Intelligent Systems, vol. 2, no.3, July/August
2003.

[11] Siegemund, F. and Krauer T. Integrating
Handhelds into Environments of Cooperating
Smart Everyday Objects

[12] Symbian OS – the mobile operating System,
http://www.symbian.com/, Symbian Ltd.,
2005

[13] The Universal Plug and Play Forum,
http://www.upnp.org/, 2005.

[14] Vázquez, J.I., López de Ipiña, D. An
Interaction Model for Passively Influencing
the Environment, Adjunct Proceedings of
EUSAI. Eindhoven, The Netherlands.
November 2004.

[15] Vázquez, J.I. and López de Ipiña D. An
HTTP-based Context Negotiation Model for
Realizing the User-Aware Web. IWI 2005.
Chiba, Japan. May 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

