
TIE-00448-2007

1

Addressing Software Impact in the Design of
Remote Labs

Javier Garcia-Zubia, Member IEEE, Pablo Orduña, Member IEEE, Diego Lopez-de-Ipiña, Gustavo R.
Alves

Abstract—Remote Laboratories or WebLabs constitute a first
order didactic resource in engineering faculties. However, in
many cases they lack a proper software design, both in the client
and server side, which degrades their quality and academic
usefulness. This work presents the main characteristics of a
Remote Lab, analyses the software technologies to implement the
client and server sides in a WebLab, and correlates these
technologies with the characteristics to facilitate the selection of a
technology to implement a WebLab. The results obtained suggest
the adoption of a SOLA (Service-Oriented Lab Architecture)-
based approach for the design of future Remote Labs so that
client agnostic remote laboratories and remote laboratory
composition are enabled. The experience with the real Remote
Lab, WebLab-Deusto, is presented.

Index Terms— eLearning, Remote Labs, Web Services, SOA

I. INTRODUCTION
he shifting of paradigms in education from a “faculty-

centric” to a “student-centric” teaching approach [1] is in
line with the Bologna Declaration and remarks the “learning
by doing” using laboratories [2]. Currently, Remote Labs or
WebLabs have clearly shown their academic usefulness [3]
[4] [5], not only to substitute the real physical laboratories but
rather to complement and power them, although it has also
been pointed that Remote Labs might not always be as good
[6]. Anyway, the first Remote Labs [7] or WebLabs [8] [9]
were organised and promoted by a laboratory or department,
but their success has motivated the universities themselves to
manage them. This change supposes an acknowledgement of
the importance of WebLabs, but it also introduces new
challenging requirements (security, accessibility, universality
and so on) which often are disregarded in the original design,
but they are essential to constitute truly professional services.

A WebLab has to manage three different objectives:
educational, organisational and technological. Although there
are several actors involved in the development and provision
of WebLabs, due to its implicit association with education and
the institutions that host them, technology plays a central role
in all that happens in a WebLab [10]. The paper will be

focused on the technological issues, and in particular on the
importance of software in the design process of WebLabs.

 Copyright © 2009 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained for the
IEEE by sending a request to pubs-permissions@ieee.org

A common wrong approach is to design first a prototype
which works –it works!– and then worry about adding new
features. Unfortunately, this is not a valid approach since
oftentimes there is a need to redo the whole application again.
This is something bearable by a computer scientist but not so
obviously affordable by other type of engineers.

For example, in the remarkable work [11] more than 100
articles around WebLabs are examined. However, in only one
of them [12] software is given proper importance. All the
other works focus on hardware and academic aspects. In the
only software-related paper, the importance of adopting
cutting edge web-related technologies (Web 2.0 and Web
Services/SOA, Services Oriented Architecture) to produce
better quality remote labs is stressed.

In the same way, the International Journal on Online
Engineering (http://www.ijoe.org) was created in 2005, and
since then eight issues have been published in the field of
Remote Labs and Remote Engineering. Analysing the 67
papers published, none of them is related with the analysis of
the different software strategies that can be used in a Remote
Lab.

Recently, in December 2007, [13] explains how a service
oriented approach can be applied to a remote lab for robotics.

In conclusion, very few researchers work on the software
aspects of remote labs. However, many remote lab researchers
coincide in pointing out the increasing importance of adding
universality, accessibility, security or capability combination
capacities to their WebLabs [14]. This is only possible if there
is a bigger focus on software, both on the client and server
side of WebLabs. In consequence, this work analyses the
relative importance of these two different software sides and
also conjectures about the benefits of adopting a SOLA
(Service-Oriented Lab Architectures) approach in the design
of future remote WebLabs.

Sections 2 and 3 analyse several technologies for
implementing the client and the server, respectively, justifying
the choice of AJAX and Python in each case. This selection is
established correlating the technologies with the main
characteristics of a WebLab, seeing that some characteristics
only can be reached using specific technologies. Section 4
describes the SOLA architecture, proposed for the
development of future WebLabs. In the section 5, the

T

TIE-00448-2007

2

experience and the usefulness of the real Remote Lab,
WebLab-Deusto, is presented.

II. CLIENT SIDE
The client-side in a Remote Laboratory is the software that

the user of such laboratory employs. Depending on the
experiment, this client software may need to send a file to the
Remote Laboratory server, show a real-time video of what is
happening in the actual Laboratory, present a file with the
results of the experiment, allow the interaction and tele-
control with the equipment of an experiment, or provide other
functionalities.

An essential feature of such clients should be not to set
unnecessary restrictions on the user. Thus, providing all the
functionalities through a universal web application (a web
application that, while being capable to match Remote
Laboratories requirements, it can be accessed by the users
wherever they are, under different hardware and software
platforms) may be a much better option than providing a
standalone application which requires a lot of software to be
installed.

This section is organised to select the most suitable client
technology to implement a Remote Lab. The four subsections
present the client technologies, the main characteristics of a
Remote Lab and the criteria to choose among the five
technologies analysed: Java applets, Adobe Flash, AJAX,
HTML and ActiveX.

A. Classification of technologies
A wide range of technologies can be applied to the

development of Remote Laboratories clients, from the lightest
web-based ones to the heaviest standalone desktop-based
ones. Hence, client applications could be classified into two
groups:
 Desktop clients: those run in the user's desktop computer.
 Web based clients: those accessed by a browser in the

user's desktop computer.
A desktop application is very flexible and powerful, it can

be developed in many languages (C, C++, Java, .NET, Delphi,
Python...) and over different platforms, and it may have few
restrictions. However, those applications are less portable and
more intrusive than the web based applications, they are just
regular applications that the user launches, many are
programmed for one concrete operating system, and usually
demand an installation process. Anyway the quality of a
desktop application depends on itself. The most remarkable
feature of desktop applications is the flexibility they provide:
they are usually more flexible and powerful than web-based
applications. Since, in principle, they do not usually have
restrictions, the designer can explore some novel possibilities,
such as making use of 3D graphics or integrating them in the
user's desktop. This is something web applications usually can
not provide.

The present work will focus mostly on web applications
since they provide two more essential features that desktop
applications do not offer, i.e. more portability and less

intrusiveness. Under this point of view client development
technologies can be classified into two categories:
 Intrusive applications. Regular desktop applications and

some forms of web-based applications are intrusive, since
they require complete access privileges. For instance, they
usually can access the client hard disk, read any file in the
computer or open as many connections to the outside
world as a user can. Anyway a desktop application built
in Java or .NET might be non-intrusive, but they are not
common.

 Non-intrusive applications. Those which warranty the
user that the application is not going to access any system
resources which may damage the hosting machine. This
way, the user can safely run the application without
worrying about security or privacy, because the
application will not be able to read the information from
any file of the hard disk that the user does not explicitly
choose, it will not be able to introduce any kind of virus
in the system, and so forth.

The main problem with intrusive applications is security.
Applied to a Remote Laboratory developed and hosted by a
University, the students will download the client application
from the server of the Remote Laboratory, having to trust the
following agents:
• The Remote Laboratory development team
• The server where the client software and experiments are

hosted has not been tampered with.
• The network they are using to download the application is

secure enough.
If any of these aspects fail, someone may in fact be

breaking into the students' computers and perhaps, as a side
effect, the University will have some responsibility in that.
Consequently, non-intrusive applications are obviously clearly
preferred in security terms.

Figure 1. Technologies classification in the client side

TIE-00448-2007

3

Considering Fig. 1, it can be said that the more powerful and
intrusive a technology is, the less universal it becomes.

In Table I experts from different universities have ordered
ten characteristics: 1 is associated to the main characteristic
and 10 to the least. Obviously the priorities are different for
each center, and even for each researcher, but universality is
better considered than power.

In Table I the opinion of the IT Services of the University of
Deusto must be highlighted, because if the WebLab aims to be
offered by the university, it has to fulfil the requirements
imposed by the IT services, as Moodle does, for example. In
other case the WebLab will fail to be a professional
educational tool.

The characteristics analysed in Table 1 are:
• Cross-platform. The WebLab can be accessed by all the

O.S.: Windows, Linux, Mac OS, etc.
• Security. The WebLab uses https, does not need

permissions on the firewalls, only needs the 80 & 443
ports opened, etc.

• Web browsers. The WebLab can be accessed by all the
web browsers: Explorer, Mozilla, Opera, Safari, etc.

• Intrusivity. The user does not give permissions to the
WebLab client application: hard disk access, execution
of native code, etc.

• Interaction. The WebLab needs to implement the
maximum of interaction with the user.

• Installation. The WebLab runs without any previous
installation in the client side: plug-in, JVM, Flash Player,
etc.

• Devices. The WebLab can be accessed by all the devices:
PC, PDA, mobile phone, etc.

• Bandwith. The WebLab needs the maximum bandwith
efficiency.

• Audio&Video. The WebLab needs the maximum of
audio & video power.

• Power. The WebLab is very complex and needs a
powerful tool to be implemented.

TABLE I.

OPINION OF THE EXPERTS ABOUT THE CHARACTERISTICS OF REMOTE LABS (1)
 E(2) E (3) E (4) E (5) E (6) E (7) E (8) E (9) Total
Cross-platform 2 4 3 1 2 1 1 1 15
Security 1 2 5 3 5 2 2 3 23
Web browsers 3 5 4 2 3 3 4 2 26
Intrusivity 4 1 8 4 1 10 5 5 38
Interaction 6 7 2 7 6 4 3 6 41
Installation 5 3 9 6 4 5 7 4 43
Devices 10 6 10 5 7 9 6 7 60
Bandwith 8 9 1 8 9 7 9 10 61
Audio&Video 9 8 6 9 8 6 8 8 62
Power 7 10 7 10 10 8 10 9 71
(1) E: Experts
(2) IT Services of the University of Deusto.
(3) Deusto: Javier Garcia-Zubia at the University of Deusto (Spain), coordinator of
WebLab-Deusto.
(4) BTH: Ingvar Gustavsson at Blekinge Institute of Technology (Sweden), coordinator
of the VISIR project.
(5) Artec: Dieter Müller at Artec-Lab at the University of Bremen, coordinator of (1)
MARVEL project.
(6) ISEP: Gustavo Alves at Instituto Superior da Engenharia of Porto (Portugal),
coordinator of Rex-Net project.
(7) Genoa: Andrea Bagnasco at the University of Genoa (Italy), coordinator of isiLAB.

(8) MIT: Jesús A. del Álamo is the coordinator of iLAB at the M.I.T. (EE.UU.)
(9) EPFL: Denis Gillet is responsible of the Remote Lab at the EPFL.

The rest of this section analyses the different client

technologies available to select one of them. It also justifies
why some advanced features should be left out in order to
promote a higher degree of universality.

B. Choosing communication technologies
Another problem is choosing the technology that will make

the communications between the client and server possible.
The main question is that in Remote Laboratories, the client
and the server can be located in different networks, trying to
cross through firewalls and proxies, and non HTTP-based
protocols might find it impossible to cross them. Inside this
group of non HTTP-based technologies it is possible to find
versatile technologies as CORBA, Java RMI [15], .NET
Remoting, or even TCP/IP sockets [16], while Web Services
would be placed in the HTTP-based technologies group.

In fact, some Remote Laboratories have been built on top of
CORBA [17] [18]. The problem is that these technologies are
restricted to local networks, and its use is not easily applied to
the Internet. A designer who uses these non HTTP-based
technologies must assume several security considerations
since the deployment of the Remote Laboratory will demand
modifications in the firewall configuration.

This is why Web Services are in general a more suitable
technology for the implementation of Remote Laboratories
[19] [14]. The main drawback of Web Services is
performance: non HTTP-based technologies tend to be faster
than Web Services, which might be important in real time
applications.

C. List of client technologies
Different client technologies are described below before

being analysed in detail.

Desktop applications: Desktop applications are mostly
intrusive applications, because they are based in a particular
protocol, security, etc., for example [20]. Thus, these
applications cannot be analysed in general and they will not be
taken into account in the next sections.

ActiveX: Java and ActiveX are probably the most powerful
systems in terms of flexibility among the web applications
technologies, but ActiveX only runs under Microsoft Internet
Explorer and its applications are intrusive applications
(although they ask the client to confirm for permissions to
access system resources). These facts make ActiveX-based
applications closer to desktop applications than to pure web
applications.
 Anyway, an unarguable fact is that Microsoft Internet
Explorer and Microsoft Windows are widely used (76.33% in
http://www.thecounter.com, on December 2008), making
ActiveX suitable for developing applications (including
Remote Laboratories) with a high index of availability.

TIE-00448-2007

4

LabVIEW: A person knowledgeable in LabVIEW can create a
remote accessible VI by simply pushing in "Web Publishing
Tool". He is not required to understand web technologies in
order to do so. There is a lot of literature specifically referred
to this approach, especially in the fields of control engineering
and electronics [21] [22] [23] [24].

However the remote control in LabVIEW is based on
Microsoft ActiveX, so from a technological point of view
LabVIEW is the same as ActiveX.

Java applets: Java is a well-known technology for designing
WebLabs [25] [26] [27] [28] [29] because it is a powerful
platform to develop Rich Internet Applications (RIA).

In order to use Java, the client needs to have the Java
Runtime Environment (JRE) installed. The good point of the
JRE is that it can be installed in many Operating Systems, and
it can be embedded in multiple web browsers. The bad point
of the JRE is its availability: there are different versions of it,
and if the designer develops the Java client (known as Java
applets) for JRE 1.5, it will not run in the client’s machine if it
has JRE 1.4 installed.

Another availability problem is that, since Java applets are
not such a popular technology anymore(1), so the user of the
application will have to download the JRE and install it before
running the application. This can be a real problem if the
client is in a restricted computer (such as a cybercafé, or
probably the computers of the University, where he does not
count with administrator privileges).1

An interesting point of Java is that when an applet is
running, it runs in a sandbox: it is not, by default, an intrusive
application. It does not have access to the hard disk, it cannot
establish connections to other computers (except for the server
which provided the applet), and so on. The problem is that
when the experiment requires the user to send a file, the
sandbox can not handle the request as it implies accessing the
hard disk. In this situation the designer has to choose between
sending the file in other technology (like basic HTML), or
avoiding the sandbox (turning the applet into an intrusive
application). Another solution is to develop a mixed
application (using both technologies), but, although it is
possible to call Java applets' methods from Javascript and
Javascript functions from Java, this is not usual because, in
general, Java is discarded and a more modern technology is
used. It is better to choose another technology, or, if there are
key reasons to use Java, then just escape from the sandbox or
sign the Java applet. However, if the WebLab needs an
automatic recognition of the applet certificate, the signing
organisation –the University– must pay for a certification
made by a certification authority.

Adobe Flash: Adobe Flash (formerly called Macromedia
Flash until December 2005) is now the leading technology for

1 For instance, Steve Jobs in the presentation of iPhone commented “Nobody
uses Java applets anymore”, January 2007,
http://pogue.blogs.nytimes.com/2007/01/13/ultimate-iphone-faqs-list-part-2/

RIAs (Rich Internet Applications). The user of an Adobe
Flash has to install the Adobe Flash Player, which will
interpret byte-code found in files in the SWF format. Once the
Adobe Flash Player is installed, the applications made in
Adobe Flash will be a non-intrusive cross-platform
applications with many capabilities: video, real time video,
audio, development in ActionScript, access to web services,
and even access to files in a non-intrusive way (when
accessing a file, the user chooses the file). The potential
Adobe Flash has for graphics and animations, as well as to
access web services, providing a non-intrusive approach
makes it suitable for developing Remote Laboratories [30].

The use of Adobe Flash is widely spread, and it is available
under many platforms (Microsoft Windows, Linux, Mac OS).
Anyway, this availability is relative, because today no version
is supported under 64 bit architectures, which is quite a big
drawback. Also, version 7 has been the only one supported
under Linux until mid-january 2007.

AJAX: AJAX [31] is the combination of several existing web
technologies (XHTML, Javascript, CSS, DOM...) with a new
component: XMLHttpRequest. This component allows calling
asynchronously XML Web Services from Javascript. This is
why AJAX is actually an acronym for Asynchronous
Javascript And XML.

The big point of AJAX is that all the components, except
for XMLHttpRequest, are standards that the web browsers
already support. So, if any web browser implements this new
component, AJAX applications will automatically work in
that web browser.

This is a very interesting issue, since this makes AJAX the
most portable platform of the ones explained up to this point
that supports interactivity with the server, even in a Remote
Lab [32] [33]. There are many implementations of this set of
technologies, under most platform and architectures since
wherever there is a web browser, AJAX applications are
going to run. This way, even web browsers for Mobile
Devices, such as the Opera mobile web browser in many
mobile devices, the latest versions of Microsoft Internet
Explorer for Windows CE, or the new Open Source Web
browser that Nokia includes in many of their devices support
AJAX. So, with no extra effort at all, AJAX applications will
run even in mobile devices [34].

Big companies as Google or Yahoo started releasing their
new advanced web applications in AJAX, like Google Maps,
Google Mail or Flickr. Since then, many platforms for AJAX
development were released, so AJAX now is being used in
many web applications.

AJAX itself does not provide video or audio capabilities
[35]. For small videos with no sound where a slow frame rate
may do the job, refreshing an image could be enough, and this
way, many Remote Laboratories could be completely based
on AJAX, but so far only WebLab-Deusto has been
implemented [14]. Anyway, if the Remote Lab needs high-
resolution video and audio capabilities the application must
integrate a specific function based in Adobe Flash, for

TIE-00448-2007

5

example.

Traditional HTML applications: Traditional HTML
applications are web applications which only use the classic
well known web standards such as XHTML, HTML, CSS,
etc. It does not have by default any capability of interaction
with the server, video, or audio. Anyway, if the web page
follows web standards, it will work under any standard
compliant web browser.

Furthermore, there is much work placed on web
accessibility (based on web standards), making possible to
develop an accessible web application that will allow disabled
people to use the web page [32] [36] –there are laws to
regulate the accessibility of some information services; for
Spain see [37] and [38]–. This is something quite difficult to
do with all the previously mentioned technologies, except for
Adobe Flash which provides, since Flash Player version 6,
accessibility functions for developers to use.

JavaFX and Microsoft Silverlight: Since 2007, both Sun
Microsystems and Microsoft have developed two new
platforms, JavaFX and Microsoft Silverlight, as direct
competitors to Adobe Flash for RIA development.

These technologies are too new to be analysed in this study,
although it can be stated that the marks given to them will be
similar to the ones given to Adobe Flash. For example,
Microsoft Silverlight has been released from the beginning
under both Microsoft Windows and Mac OS X, and under
different web browsers.

D. Choosing a technology for the client
The question to address after explaining these technologies

is: Which technology is most appropriate to develop a Remote
Laboratory client? A possible answer will always depend
upon the criteria favored by the designer placing the question,
e.g. a traditional HTML application is better than an AJAX
application, and an AJAX application is better than an Adobe
Flash application, and an Adobe Flash application is better
than a Java applet, if he/she favors characteristics such as
“Availability”, “Portability” or “Accessibility”, or rather the
opposite answer if he/she favors other characteristics such as
“Network protocols”, “Bandwidth efficiency”, or “Price”.

Tables II, III, IV and V summarize the possibilities of the
technologies for designing the client. The characteristics
analysed in the tables are seventeen and they have been
selected using the experience gathered in Remote Labs since
2001 in the design, development and use of the WebLab of
the University of Deusto [14] [20] [34]
(http://weblab.deusto.es). WebLab-Deusto has evolved in four
versions: desktop application (v0.1), Java applet based web
applications (v1.0) and two AJAX based web application
(v2.0, v3.0). These reflections were discussed in the
International Meeting on Professional Remote Laboratories in
2006 [39].

The seventeen characteristics have been grouped in four
issues: Universality, Security, Power and Development. In the
rest of the section each characteristic is associated with a mark

in the range 1-5.

1. Universality: Is the client accessible without any
restriction?
Paradigm: In which grade does the technology match the
current paradigm for new rich applications?
Cross platform: Does the application run under different
Operating Systems?
Availability: How often is the technology available in the
client system?
Accessibility: How accessible is the technology for disabled
people?
Acceptance by Web Browsers: Is the technology part of the
Web Browser?

TABLE II.
ANALYSIS OF THE CLIENT SIDE TECHNOLOGIES IN TERMS OF UNIVERSALITY
Characteristic Technology
Paradigm (1) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Cross-platform (2) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Availability (3) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Accessibility (4) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Acceptance by Java Applets
Web Browsers (5) Adobe Flash
 AJAX
 HTML
 ActiveX
Universality Java Applets 11
 Adobe Flash 16
 AJAX 22
 HTML 24
 ActiveX 14

1. The use of Java Applets and ActiveX is decreasing in RIA.
2. ActiveX only runs under Windows, Flash is not supported by 64 bit architecture and
Sun does not support Java in all the architectures, i.e. PowerPC.
3. Flash Player is now more commonly found than JVM. AJAX and HTML are
integrated in the Web Browsers, while ActiveX is integrated only in Internet Explorer,
which is not mandatory although it is available in more than 76.33% of the computers.
4. Flash provides some accessibility features, while the rest do not. HTML directly
provides support for accessibility.
5. AJAX and HTML are intrinsically implemented by the Web Browser, while Java
Applets and Adobe Flash must be installed as a plug-in for the Web Browser. ActiveX is
only part of the browser in Microsoft Internet Explorer.

2. Security/Standards: Is the client secure and/or based on
standards?
Intrusiveness: Are permissions asked to the user for accessing
the hard disk, establishing connections, and so on?
Standardization: In which grade is the technology based on

TIE-00448-2007

6

standards?
Installation required: Does the application require software
installation such as virtual machines or players?
Network protocols: What network protocols are available in
the technology?

TABLE III.

ANALYSIS OF THE CLIENT SIDE TECHNOLOGIES IN TERMS OF SECURITY
Characteristic Technology
Intrusiveness (1) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Standardization (2) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Installation required (3) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Network protocols (4) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Security/ Standards Java Applets 16
 Adobe Flash 16
 AJAX 18
 HTML 17
 ActiveX 13

1. In Java Applets, if the developer tries to work out of the sandbox, the application
would be intrusive. Otherwise it would not.
2. The format of the files used by Adobe Flash is not publicly available, in contrast to the
format of the Java Applet files.
3. Java Applets and Adobe Flash are plugins. While the former needs to install the whole
JVM, the latter only needs a thinner runtime. ActiveX does not require any installation
and it is available in more than 95% of the computers, but it only runs under Microsoft
Windows.
4. AJAX adds basic network capabilities to HTML through the XMLHttpRequest object.
Java applets, Adobe Flash and ActiveX can establish binary sockets with the server.
Usually, Remote Laboratories implemented using binary sockets do have problems with
firewalls and proxies.

3. Power: How powerful can the client become?
Audio and video: How powerful are the audio and video
capabilities provided with this technology?
Bandwidth efficiency: How good is the technology in terms of
bandwith efficiency?
Flexibility: Have the technology capabilities for developing
applications under different contexts?
Mobile devices: How suitable is the technology for being used
in PC, PDA, cellular phones, etc?

TABLE IV.

ANALYSIS OF THE CLIENT SIDE TECHNOLOGIES IN TERMS OF POWER
Characteristic Technology
Audio and video Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Bandwidth Java Applets
efficiency (1) Adobe Flash

 AJAX
 HTML
 ActiveX
Flexibility (2) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Mobile devices (3) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Power Java Applets 14
 Adobe Flash 17
 AJAX 12
 HTML 8
 ActiveX 17

1. The use of binary sockets might improve the network efficiency, although its use can
introduce problems with firewalls and proxies.
2. The capabilities provided by Windows to ActiveX are more powerful and flexible than
the ones provided by the JRE or by the Flash Player. The capabilities provided by a Web
Browser for AJAX or HTML are even less powerful.
3. Any device with a Web Browser (like the Opera web browser, Nokia OSS Web
Browser, etc.) will support both AJAX and HTML Remote Labs. The solution provided
by Adobe (Flash Lite) is not suitable for a wide range of mobile devices.

4. Development: What facilities does the technology offer for
client developments?
Development tools: Are there powerful tools for working with
the technology?
Price: What is the cost of the tool for users and developers?
Providers: How independent are the users and developers
from a single provider?
Network of developers: How big is the network of developers
using the technology?

TABLE V.

ANALYSIS OF THE CLIENT SIDE TECHNOLOGIES IN TERMS OF DEVELOPMENT
Characteristic Technology
Development tools (1) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Price (2) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Providers (3) Java Applets
 Adobe Flash
 AJAX
 HTML
 ActiveX
Network of Java Applets
developers (4) Adobe Flash
 AJAX
 HTML
 ActiveX
Development Java Applets 18
 Adobe Flash 13
 AJAX 20
 HTML 20
 ActiveX 12

1. There are many tools for developing RIA with HTML, AJAX and Java Applets. The
problem with Flash development is that it is coupled to the editor provided by Adobe.

TIE-00448-2007

7

2. The user does not need to pay for the Adobe Flash player, but the developers will have
to pay if using the editor provided by Adobe to create the Remote Laboratory, although
there are free alternatives. ActiveX is free for both users and developers, but it requires
Microsoft Windows, which is not free.
3. There is only one provider for both Adobe Flash and ActiveX (Adobe and Microsoft),
while we can find more providers for Java Applets (Sun Microsystems, IBM, etc.) and
even more for AJAX and HTML (Microsoft, Mozilla, Opera, Apple, Nokia, etc.).
4. There is a big network of developers sharing knowledge and resources for each
technology.

The Fig. 2 resumes the marks obtained in the Tables II-V.

Figure 2. Comparison between different client technologies

Analysing numerically the results of Fig. 2:

• AJAX is numerically the most valued technology.
• Looking at the most important aspects, AJAX is also

more valued (see Table VI).
• If the application needs audio or high quality video, at

least Adobe Flash is required.
• If interaction is required, as usual in Remote Labs,

traditional HTML must be discarded.
• Java Applets are similar to Adobe Flash in most of the

issues, but they lose in terms of availability.
• ActiveX is not recommendable for Remote Laboratories

development because it does not provide anything useful
that the other technologies can not provide, and it
presents problems in terms of availability in different
platforms

For a specific WebLab, the designers can select the
requirements of their WebLab in the Tables II-V and analyse
them, or perhaps add new characteristics to the table or weight
them up/down. The marks shown in the tables are clear and
important, but the conclusion behind them is that the
technology selected for the client will establish some
irreversible limits in the WebLab.

Table VI shows the comparison between Adobe Flash and
AJAX for the development of WebLab-Deusto. The most
suitable technology for the WebLab-Deusto requirements is
AJAX.

TABLE VI.
ANALYSIS OF THE CLIENT SIDE TECHNOLOGIES FOR WEBLAB-DEUSTO

Adobe Flash AJAX
 Paradigm
 Cross-platform
 Acceptance by Web Browsers
 Intrusivity
 Installation required
 Audio and video
 Mobile devices
 Development tools

28 Marks 36

Anyway, among all the technologies considered, the
approach that is experiencing a faster growth is, by far, the
AJAX approach. More and more, especially inside the so
called Web 2.0, new Internet applications are using AJAX as
the technical engine of the client software. The advantages it
provides in terms of availability, independence from a unique
provider, fast load speed and integration inside traditional web
pages, make it very suitable to be seen as the first technology
to use when interaction in a web page is needed. The main
drawback of AJAX for Remote Laboratories development is
that it does not directly provide audio or high quality video
capabilities, which can be provided by adding an Adobe Flash
application or Java applet which supports this. Since both
Adobe Flash and Java applets are interoperable with AJAX,
the integration of these technologies in an AJAX application
can become trivial. Google Mail, for instance, is a complete
AJAX application which supports online conversations, and it
uses a little Adobe Flash application for playing sounds each
time someone sends a message. Everything in Google Mail,
except for these sounds, will work on a web browser without
Adobe Flash.

III. SERVER SIDE
Although a very important part of the Remote Laboratory is

the client and the technologies associated to it, the biggest part
of the project is, for sure, the server side, but a good design of
the server side does not depend so clearly on the technology
used The characteristics associated to the client can not be
applied to the server:
• If the WebLab uses Web Services for the communication,

the client technology will be independent from the
technology used in the server. Thus, it is possible to
implement the client of a Remote Laboratory in AJAX,
Adobe Flash, etc., while the server side is implemented in
any server technology.

• The technology in the client side forces every single user
to assume dependencies in terms of plug-in, cross-
platform, web browser, etc., but the dependencies forced
by the technology in the server side only have to be
assumed by the system administrator, and their effects do
not affect to the final users.

• The requirements in terms of security are very different
between the server and the client. The server must control
the authentication, authorization, integrity and privacy of
the communication and must avoid attacks. These issues
can be reached with all the technologies. The security of

TIE-00448-2007

8

the server depends more on the architecture than in the
technology.

• All the servers are intrinsically intrusive, and this is not a
problem because it only affects to the servers.

• In the client side five main technologies were analysed,
but in the server side there are many: Python, .NET, Java,
Perl, C++, PHP, Visual Basic, Ruby, etc. and all of them
can be used to implement a Remote Lab with any client
technology. Moreover, it is common to integrate different
technologies in the server side (Java+Oracle,
PHP+Apache+MySQL, etc), what it is not usual in the
client side.

Summarizing, universality is mainly related with the client
and security on the server side can be implemented with all
the technologies. The analysis will be focused on the power of
the development tools.

The Table VII summarizes the analysis of three server
technologies: Java, .NET and Python, the first two are the
most popular server technologies –Indrusiak et al, [40], use
Java, iLab-MIT use .NET-, and Python is a dynamically typed
language used for quick prototyping. The main conclusion of
the Table VII is that all the technologies are suitable for
Remote Labs. The final decision falls on the research group.

TABLE VII.

ANALYSIS OF THE SERVER-SIDE TECHNOLOGIES
Characteristic Technology
Cross-platform Python
 .NET (1)
 Java
Development tools Python
 .NET
 Java
Development speed Python (2)
 .NET
 Java
Network of developers Python
 .NET
 Java
Robustness Python (2)
 .NET
 Java
Web Services libraries Python
 .NET
 Java
Language functionalities Python (3)
 .NET
 Java
Price Python
 .NET (1)
 Java (4)
Marks Python 32
 .NET 30
 Java 33

(1) If the Remote Laboratory works under Mono, license costs will be decremented and
it will be able to be used under different platforms. In this case the mark will be 5.
(2) As Python is a dynamically typed programming language it is oriented to rapid
although less robust development.
(3) Python provides high functionalities included in the language itself. The same
functionalities must be programmed by the developers in Java or .NET.
(4) It depends on the tools and the framework used.

The chosen technology for the WebLab-Deusto

development has been Python, because: a) it is a very
powerful dynamically typed programming language, which
has a strong open source community in its background, b) it
allows very fast development, being very suitable for rapid
prototyping and c) it is being used internally in Google,
Yahoo, Industrial Light & Magic, NASA, and others
important companies demonstrating its practicality.

IV. SOLA: SERVICE-ORIENTED LAB ARCHITECTURES
A final important aspect regarding the importance of

software for the design of better Remote Labs is not just the
software technology itself but the paradigm adopted for the
design and implementation of a Remote Lab. Lately, it has
become commonplace adopting a service-oriented
architecture, SOA, in the design of novel distributed
applications [41], as it has been done in related European
projects such as SOCRADES
(http://www.socrades.eu/Home/default.html). The main
feature of such approach is that it enables reuse and fosters
modularity, composability, componentization, and
interoperability, by promoting the cooperation of loosely
coupled collections of unrelated web services. Other
remarkable benefits of the SOA approach are its compliance
to standards (both common and industry-specific) and the
capacity of identifying and categorizing services in order to
ease searching and composition of them [42].

WebLabs are good candidates to be designed following the
SOA approach. After all they are not more than a software
service whose implementation is based on actual hardware.
However, their functionality can easily be abstracted as a set
of remotely accessible methods. Thus, it could be beneficial
adopting a Service Oriented Lab Architecture (SOLA), i.e. an
adaptation of the commonly known Service Oriented
Architecture (SOA) to the Remote Lab domain, in the design
of future Remote Labs. Consequently, in those newly
designed labs the functionality offered for a given Remote
Lab would be seen as a set of web services. Some of those
services when referring to the same type of functionality
should offer a compatible or identical interface in order to
foster cooperation among different Remote Labs. Thus, SOLA
is a an emerging standard, refining the SOA concept for
standard enterprise services, for connecting distributed
Remote Labs to the Service Oriented Architecture (SOA) in
the enterprise. An important distinctive feature of the SOLA
approach is that the default SOA functionality needs to be
coupled with event-driven, real-time (strict performance
guarantees) and distributed service scheduling features in
order to enable a feasible cooperation between the distributed
functional blocks of Remote Labs that may be assembled to
compose sophisticated, and previously infeasible within a
single organisation, Remote Lab experiments.

Adapting and exporting the functionality of a Remote Lab
as a set of Web Services would allow developers to design
and implement client applications (desktop or web-based) that
combine the functionality of several WebLabs through web

TIE-00448-2007

9

service composition. Thus, the creation of very sophisticated
experiments would be able by concatenating the outputs of
one hardware experiment as inputs of another one, and so
consequently, independently of who offered such services as
long as clients had access rights to them. Therefore, another
important aspect of the SOLA approach apart from the event-
driven, real-time and scheduling demands aforementioned is
the need to put in place a security and trust mechanism among
the different SOA-aware Remote Lab.

In conclusion, the adoption of a SOLA-approach would
decouple the client and server parts of a Remote Lab. Then,
the server-side would be completely agnostic to the clients
consuming its functionality. It would only provide a common
WSDL API accessible through a distributed communication
standard such as SOAP, which will be used by third party
client applications to mash-up the functionality of previously
unrelated WebLabs.

V. WEBLAB-DEUSTO EXPERIENCE
The University of Deusto has implemented the WebLab-

Deusto, http://weblab.deusto.es, as a web service using SOAP,
AJAX and Python [13]. Only one other project [32] has been
found using an AJAX approach too. WebLab-Deusto has four
different versions:
• v 0.1 Desktop application implemented in C. 2001.
• v 1.0 Web application implemented in Java. 2004.
• v 2.0 Web Application implemented in AJAX. 2005.
• v 3.0 Web application implemented in AJAX. 2007.

WebLab-Deusto is now being used in three subjects of the
Faculty of Engineering: Programmable Logic, Electronics
Design and Electronics Instrumentation by two hundred
students per year since 2003. The questionnaire of Table VIII
shows the acceptance of WebLab-Deusto by the students of
Programmable Logic and Electronics Design. The minimum
mark is 1 and the maximum is 5.

TABLE VIII.

WEBLAB-DEUSTO ACADEMIC RESULTS
Questions (1) (2) (3) (4) (5) (6)
1. Has WebLab helped you with the
subject?

4.6 3.8 3.75 4.1 3.8 3.7

2. Did you feel that you were in a better
position by having been in the WebLab
group?

4.7 3.9 3.7 3.9 3.7 3.8

3. Do you think it is a good idea if this
WebLab experiment is extended to all the
students?

4.7 4.2 4.1 4.6 4.1 4.1

4. Is it easy to use? 4.4 3.9 3.9 4.4 3.7 4.2
5. What is the quality of the WebCam like? 3.2 2.7 2.5 2.4 3 3.3
6. Did you feel at ease managing the
inputs?

3.7 3.0 3.1 3.1 3.5 3.2

7. What do you think about the time
assigned to each connection?

3.7 3.1 2.4 2.7 3.2 4.0

8. What do you think about the
inputs/outputs implemented?

3.8 3.4 3.5 3.2 3.4 3.8

9. Being far from the prototype, have you
felt you were in control of it?

4.1 3.6 3.7 3.7 3.6 3.7

10. Would you like to use WebLab in other
subjects?

4.3 3.9 4.1 4 3.8 3.6

11. What is your global satisfaction with
WebLab?

4.7 3.7 4 3.9 3.7 3.6

 (1-3) Results in 2004/2005, 2005/2006 and 2006/2007 for the subject
"Programmable Logic".
 (4-6) Results in 2005/2006, 2006/2007 and 2007/2008 for the subject "Electronics
Design".

VI. CONCLUSIONS
Using the experience obtained developing WebLab-Deusto

since 2001, the paper has analysed different strategies to
develop a WebLab from the software point of view –server
and client sides– avoiding specifically the hardware side.

The client technologies can be classified in terms of power
and universality. It can be said that the more powerful a
technology is, the less universal it becomes. The paper
establishes that some requirements can only be reached with a
specific technology. According to Table 1, the universality of
a WebLab client is more important than its power. Using the
results of Tables II-V, the most ideal technology for Remote
Lab client development is AJAX, specially if universality is
the goal of the WebLab.

The scenario and the criteria in order to select the
technology for developing the server side is not like those
used in the client side. The option that suites better the
requirements of WebLab-Deusto is Python, because of its
rapid prototyping cycle and open source nature. However, this
fact is not such a clear result as the one considering the client-
side.

Finally it is suggested that a good future direction will be to
adopt a SOLA (Service Oriented Lab Architecture)-approach
in the design and development of loosely coupled new
WebLabs which are agnostic to the clients accessing them and
enable composition for the creation of more sophisticated
WebLab experiences.

REFERENCES
[1] Biggs, J. Teaching for quality learning at university, Open University

Press/McGraw Hill, 2003.
[2] Carlson, L., Sullivan, J.F. “Hands-on engineering: Learning by doing in

the integrated teaching and learning program” Int. J. Eng. Education,
VOL 15, Nº 1, 1999.

[3] Ertugrul, N. “New area in engineering experiments: An integrated and
interactive/learning approach , and real-time visualizations.”, Int. J. Eng.
Education, VOL 14, Nº 5, 1998.

[4] Garcia-Zubia, J. et al. "WebLab-GPIB at the University of Deusto”,
Proc. REV 2007 Remote Engineering and Virtual Instrumentation,
ISBN: 978-3-89958-278-9, 2007.

[5] Corter, J.E. et al “Remote versus hands-on labs: A comparative study”
34th ASEE/IEEE Frontiers in Education Conference, 2004.

[6] Soysal, O. "Computer integrated experimentation in electrical
engineering education over distance" Proceedings of ASEE 2000 Annual
Conference, Saint Louis, MO, June 2000.

[7] Aburdene, M.F. et al. “A proposal for a remotely shared control systems
laboratory” IEEE/ASEE 1991 Frontiers in Education Conference, 1991.

[8] Ross, R.J. et al. “WebLab! A universal and interactive teaching,
learning, and laboratory environment for the world wild web”. Proc. 28th
SIGCSE Technical Symposium on Computer Science Education, San
Jose (EE.UU.), 1997.

[9] Atkan, B. et al “Distance learning applied to control engineering
laboratories” IEEE Trans. Education, VOL 39, Nº 3, 1996.

[10] Hine, N et al. "Institutional factors governing the deplyment of remote
experiments: lessons from the REXNET project”, Proc. REV 2007

TIE-00448-2007

10

Remote Engineering and Virtual Instrumentation, ISBN: 978-3-89958-
278-9, 2007.

[11] Ma, J. and Nickerson, J.V., “Hands-on, simulated, and remote
laboratories: A comparative literature review”, ACM Computing
Surveys, Vol. 38, Nº 3, 2006

[12] Kolberg, S. y Fjeldly, T.A., “Web Services remote educational
laboratories”, Proceedings of the International Conference on
Engineering Education, Gainesville, FL 1-6, 2004.

[13] Fernandez, J.; Marin, R.; Wirz, R. “Online Competitions: An Open
Space to Improve the Learning Process” IEEE Trans. on Industrial
Electronics, VOL: 54 , Issue: 6, Dec. 2007.

[14] Garcia-Zubia et al, “Questions and answers for designing useful
WebLabs”, International Journal of Online Engineering, VOL II, Nº 3,
ISSN: 1861-2121, www.ijoe.org, Austria, 2006.

[15] Marin, R. et al. “A multimodal interface to control a robot arm via the
web: a case study on remote programming” IEEE Trans. on Industrial
Electronics, VOL: 52 , Issue: 6, Dec. 2005.

[16] Hassan, H.; Dominguez, C.; Martinez, J.M.; Perles, A., Albadalejo, J.
“Remote Laboratory Architecture for the Validation of Industrial
Control Applications” IEEE Trans. on Industrial Electronics, VOL: 54 ,
Issue: 6, Dec. 2007.

[17] He, F. et al “Object request brokers for distributed measurements”, IEEE
Comput. Appl. Power, VOL 14, Nº 1, Jan. 2001.

[18] Guimaraes, E. et al “REAL: a virtual laboratory for mobile robot
experiments” , IEEE Transactions on Education, VOL 46, Nº 1, Feb.
2003.

[19] Bagnasco, A.; Chirico, M.; Scapolla, A.M. and Amodei, E. "XML data
representation for testing automation", IEEE AUTOTESTCON
Proceedings, 2002.

[20] García-Zubía, J. et al. “Suitability and implementation of a WebLab in
engineering", 10th International Conference on Emerging Technologies
and Factory Automation, ETFA 2005, ISBN: 0-7803-9402-X, Vol II, pp:
49-56, Catania (Italia), Sep 2005.

[21] Costas-Pérez, L. et al “Optimization of an industrial sensor and data
acquisition laboratory through time sharing and remote access” IEEE
Trans. on Industrial Electronics, VOL: 55 , Issue: 6, June 2008.

[22] Alves, G. et al. “Remote Experimentation Network - Yielding an Inter-
University Peer-to-Peer e-Service” 10th IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA’05, Catania,
Italy, Sept. 2005

[23] Hu, W. et al “Design and implementation of Web-Based control
laboratory for tests rigs in geographically diverse locations” IEEE Trans.
on Industrial Electronics, VOL: 55 , Issue: 6, June 2008.

[24] Hercog, B.; Gergic, B.; Uran, S.; Jezernik, K. “A DSP-Based Remote
Control Laboratory” IEEE Trans. on Industrial Electronics, VOL: 54 ,
Issue: 6, Dec. 2007.

[25] Davoli, F. et al “LABNET: Toward remote laboratories with unifed
access”, IEEE Trans. on Instrumentation and Measurement, VOL 55,
NO 5, October 2006.

[26] Mittal, A.; Gupta, Ch. and Gupta, A. “Addressing the bandwith
efficiency, control, and evaluation issues in software remote
laboratories” IEEE Trans. on Industrial Electronics, VOL: 55 , Issue: 6,
June 2008.

[27] Bertocco, M. et al “A client server architecture for distributed
measurement systems” IEEE Trans. Instrum. Meas., VOL 47, Nº 15,
Oct. 1998.

[28] Ferrero, A. et al “ReMLab: A Java-based remote, didactic measurement
laboratory”, IEEE Instrum. Meas. , VOL 52, Nº 3, June 2003.

[29] Sánchez, J. et al, “A Java/Matlab-Based environment for remote control
system laboratories: Illustrated with an inverted pendulum”, IEEE
Transactions on Education, Vol. 47, Nº 3, pp. 321-329, 2004.

[30] Gustavsson, I. “A remote access laboratory for electrical circuit
experiments” Int. J. Eng. Education, VOL 19, Nº 3, 2003.

[31] Paulson, L.D. "Building rich web applications with Ajax," Computer
(IEEE Computer Society), vol. 38, no. 10, Oct. 2005.

[32] Gobbo, F. and Vaccari, M. “Open standards for higher education in
robotics by immersive telelaboratories” Learning Technology Newsletter
(IEEE Computer Society), VOL 7, Nº 3, 2005.

[33] Atkinson, I.M. et al. “CIMA based remote instrument and data access:
An extension into the australian e-Science environment” 2nd IEEE
International Conference on e-Science and Grid Computing,
Netherlands, Dec 2006.

[34] Lopez-de-Ipiña, D., Garcia-Zubia, J. and Orduña, P. " Remote Control of
Web 2.0-enabled Laboratories from Mobile Devices" 2nd IEEE
International Conference on e-Science and Grid Computing, eScience
2006, Dec. 2006.

[35] Emigh, J. "New flash player rises in the Web-Video market," IEEE
Computer Society, vol. 39, no. 2, Feb. 2006.

[36] Cooper, M. “Accessibility and usability in complex web based learning
applications: Lessons from the PEARL project” Proceedings of the
Corporations, Government, Health, and World Conference on E-
Learning in Higher Education. 2002.

[37] Boletín Oficial de las Cortes Generales, 2002, Num. 68-13, 3 de julio de
2002.

[38] Boletín Oficial del Estado, 2003, Num. 289, 3 de diciembre de 2003.
[39] Gomes, L. and Garcia-Zubia, J. eds. Advances on remote laboratories

and e-learning experiences, Ed. University of Deusto, ISBN: 978-84-
9830-077-2, 2007.

[40] Indrusiak, L.S.; Glesner, M.; Reis, R. “On the Evolution of Remote
Laboratories for Prototyping Digital Electronic Systems” IEEE Trans.
on Industrial Electronics, VOL: 54 , Issue: 6, Dec. 2007.

[41] Delamer, I.M. and Lastra, J.L.M. “Service-Oriented architecture for
distributed publish/subscribe middleware in electronics production”
IEEE Trans. on Industrial Electronics, VOL: 2 , 4, Nov. 2006.

[42] Pasley, J. "How BPEL and SOA are changing web services
development," IEEE Internet Computing, VOL 09, Nº. 3, May/Jun,
2005.

Javier García-Zubia graduated in 1987, and
received the PhD. degree in computer engineering in
1996 from the Faculty of Engineering of the
University of Deusto. He is Associate Professor and
Head of Dpt. of Industrial Electronics, Control
Engineering, and Computers Architecture of the
Faculty of Engineering of the University of Deusto.
He is the responsible of the remote lab at the
University of Deusto (http://weblab.deusto.es).

Pablo Orduña is a Research Assistant at Ambient
Intelligence department of DeustoTech and a PhD
student of the University of Deusto, and his research
is focused on Remote Laboratories. He is the lead
software designer and developer of WebLab-Deusto.

Diego López-de-Ipiña is principal researcher of the
Software Systems Research Line at the Faculty of
Engineering of the University of Deusto. He received
his PhD from the University of Cambridge, U.K in
2002. His main research areas are pervasive
computing, internet of things, semantic service
middleware, and mobile-mediated human-
environment interaction. He has directed several
research projects involving the adoption of Web 2.0
to novel application areas such as industrial

electronics or mobile ubiquitous computing.

Gustavo R. Alves graduated in 1991, and received
the M.Sc., and Ph.D. degrees in electrical and
computer engineering in 1995, and 1999,
respectively, from the Faculty of Engineering,
University of Porto, Portugal. He is an Adjunct
Professor in the Department of Electrical
Engineering of the School of Engineering of the
Polytechnic Institute of Porto (IPP), since 1994. His
research interests include design for debug & test,
reconfigurable systems, and remote experimentation

in e-learning contexts.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://www.ijoe.org/
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://www.boe.es/boe/dias/2003/12/03/pdfs/A43187-43195.pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33004

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

	I. INTRODUCTION
	II. Client side
	A. Classification of technologies
	B. Choosing communication technologies
	C. List of client technologies
	D. Choosing a technology for the client

	III. Server side
	IV. SOLA: Service-Oriented Lab Architectures
	V. WebLab-Deusto Experience
	VI. Conclusions

