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Abstract— Dynamic mobile environments are characterized by 

integrating a set of devices (sensors, actuators, intelligent 

terminals) whose availability continuously changes. In 

addition, these devices are heterogeneous in their technology, 

access protocols and in the format of the exchanged data. This 

paper proposes an architecture that allows continuous and 

ubiquitous access to capabilities, i.e. the functionality provided 

by these devices, to solve some of the problems associated to 

dynamic mobile environments. Focusing on the issue of 

continuous capability invocation, this work uses a set of 

software engineering patterns for defining the communication 

architecture, which support the most common types of 

resource access. Finally, a contribution to resource access 

management is described, through the implementation of two 

algorithms and their evaluation through two different use 

cases. 
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I.  INTRODUCTION 

Uniform access to resources and devices is one of the 
most discussed topics in ubiquitous computing related work. 
This is demonstrated by the large amount of work on 
communication middleware available today [7] [8]. These 
middleware solutions often face the problem of device 
interoperability, due to the wide heterogeneous nature of 
existing devices. 

This work covers the design and validation of a solution 
for continuous capability access whilst service execution is 
taking place in ubiquitous environments. In this paper, we 
propose a resource access middleware that integrates a set of 
access technologies and communication paradigms, which 
are commonly used and requested by available capabilities. 

The presented middleware contributions are part of the 
mIO! project, which aims at the provision and consumption 
of prosumer services in a mobile environment. For further 
information about the prosumer concept and the mIO! 
architecture the reader is referred to our previous work [1]. 

A. Mobile prosumer environment 

In our view, the user is placed in the centre of the device 
environment. Using their smartphone, users can design their 
services by selecting an appropriate set of components from 
a catalogue and, with the help of a creation tool, connect and 
configure them. The generated service is able to use the 
available functionalities which are offered by surrounding 
entities. Users, while moving, will interact with close 

elements and the middleware will try to guarantee that the 
service execution is maintained even though the used 
elements may change or disappear. 

Mobile prosumer environments establish some 
requirements that determine the design of the proposed 
architecture. Focusing on non-expert users, a high level of 
abstraction is required in order to enable users to create their 
own services in an easy way. Besides, the architecture needs 
to adapt to changes in the availability of resources and 
services, as well as to provide a communication 
infrastructure for uniform resource access. 

The provision of a higher level of abstraction for 
prosumer users leads to the following concepts: Service, as a 
unit supplied and consumed by the prosumer, Component, 
which represents a basic and functional unit used by a 
service, and Capability, which is the implementation of the 
functionality defined by a component and provided by some 
element (hardware or software). It is also necessary to 
introduce the concept of Orchestration, which manages the 
interaction between the different components of a service, 
Resolution, which manages the association of capabilities to 
components and, finally, Invocation, which provides a 
uniform access to the infrastructure capabilities. 

Based on the requirements of the mobile prosumer 
environment, the service must present a logical structure 
defined by different layers, described in the next Section.  
Section III analyses the communication paradigms currently 
used in communication middleware. Section IV describes the 
overall architecture, which has been designed using various 
design patterns in order to meet the requirements imposed by 
the ubiquitous environment and the studied communication 
paradigms. Section V and VI describe the integration 
between the resolution and capability invocation processes 
while Section VII makes a contribution to the problem of 
resource and connection management. Finally, the paper 
concludes with a validation of the designed system, related 
work and some conclusions of the proposed solution. 

II. SERVICE LOGICAL MODEL 

A service can be defined in many ways, depending on the 
state of the life cycle in which the service is. We define the 
logical structure of a service by different levels: the service 
level, the component level and the capability level. To 
facilitate the understanding of these concepts we present the 
example of a simple prosumer service, called Sport Tracker, 
which aims to access the location information of a user and 
to represent it on a map along with information about his 



heartbeat. This service consists of three components: a Map 
provider, a Location provider and a Pulse provider. These 
components provide an interface that must be dynamically 
bound so services can execute them. For example, the 
Location component needs to be resolved into a GPS device 
or a GPS capability (e.g. offered by a mobile phone) in order 
to obtain the information about the user's location. 

Fig. 1 shows the proposed service logical model, adapted 
to this simple example service. The three-level model is 
explained below: 

First level is the service level, where services are seen as 
abstract resources with the capability of performing tasks 
where the different internally used components remain 
hidden. Service behaviour and orchestration logic are 
described by a Service Description Language (SDL) 
document.  

Continuing with the component level, the service is split 
into different logical units called components, which provide 
a higher level abstraction to make the creation process easier, 
and are implemented by an available capability depending on 
the service execution conditions. In order to make a step 
towards the new mobile prosumer environment, developers 
must implement and publish a big number of different 
components, which cover all the creation possibilities that a 
user could wish.  

The orchestration process manages the interaction 
between components, i.e., how the components are 
interconnected to compose services, how are the components 
managed and the data interchanged inside the architecture 
and how the components obtain the appropriate capability to 
implement their functionality. This process takes place 
during creation time and is performed by the creation 
subsystem. 

Finally, in the capability level a service is seen as a set 
of capabilities which offer the functionalities that are 
demanded by the service. The capabilities generally access to 
local (in-device), nearby or remote resources and are 
designed to achieve the components’ objectives. The 
division between the component and the capability models is 
made for two reasons. First, orchestration logic is decoupled 
from implementation. This way, a component can be 
resolved into different capabilities depending on the service 
execution conditions and the preferences given by users in 
the creation process. Second, components are defined as 

functionalities that are easy to understand for non-expert 
users in order to help them to create simple services. 

The resolution process assigns, during execution time, 
each component to the best available capability that can 
implement it. This process takes place in the harmonization 
subsystem. Finding the optimal capability depends on 
multiple factors, for example, the configuration options 
established by the user during creation time or component 
requirements. 

In the Sport Tracker’s example scenario, the Pulse 
component always calls the Bluetooth sensor capability 
whereas the Map component can choose a map provider 
based on user preferences or service restrictions.  

The capability invocation process, which is the main 
topic of this work, is the one responsible for requesting and 
obtaining all the required resources. An effective 
coordination between the resolution and the invocation 
processes will enable mobile continuous service execution in 
dynamic environments. In these environments, the 
capabilities can appear and disappear at any time and the 
wide variety of sensors, actuators and other devices makes 
necessary to design different mechanisms for the access and 
invocation of heterogeneous capabilities. This process takes 
place in the Capability Middleware and is explained in 
section IV, along with the Creation, Execution and 
Harmonization subsystems. 

III. COMMUNICATION PARADIGMS IN CAPABILITY ACCESS  

Most mobile middleware solutions for resource access 
include only one communication paradigm, ignoring the fact 
that the scenarios in such environments are extremely varied. 
Therefore, we designed a capability access middleware that 
includes several communication paradigms, classified under 
three criteria: 

 
- Coordination Mechanism: Differentiates between 

synchronous or asynchronous communication models. 
- Notification Model: determines if consumers explicitly 

retrieve new messages or are notified when new 
messages are produced (synchronous or asynchronous 
notification). 

- Connection Orientation: many middleware platforms 
employ the notion of message as a fundamental building 
block (Message-oriented Middleware). Other 
middlewares use the concept of session to communicate 
with resources [9], providing channel and transaction 
management [6]. A connection oriented middleware 
uses sessions instead of single message interchange as 
the most natural method of communication.  

 
The studied paradigms are described below. Table 1 

shows the features of these paradigms according to defined 
criteria and the requirements that they impose on the design 
of system’s architecture, presented in the next section. 

Request-Reply model: a synchronous model is adopted in 
situations that require the communicating entities to be 
connected simultaneously. The sending entity delegates the 
control to the receiving entity, which performs some 
processing and responds, allowing the first to continue its 
execution. 

Figure 1.  Service Logical Parts. 



QP2P (Queue-based Point-to-point Paradigm): 
distributed queues are used for sending and receiving 
messages. Using this model, messages are obtained in a 
predefined order based on queue type (FIFO, LIFO, etc). 
Producers and consumers are fully decoupled. 

Tuple Spaces: this paradigm provides a distributed shared 
memory for the exchange of tuples between various entities. 
Like QP2P, Tuple Spaces uses an indirect model, mediated 
by a Tuple Space Service, but in this case the consumer gets 
messages (tuples) by requesting them directly to this service. 

Publish-Subscribe: communicating entities exchange 
messages by publishing events and subscribing to them. An 
intermediate service called Event Channel [13] registers the 
subscriptions and forwards the events published. In pub-sub 
systems, message delivery depends fully on the actions of 
the receivers, which frequently are unknown to the senders.  

IV. OVERALL ARCHITECTURE FOR SERVICE 

ORCHESTRATION, RESOLUTION AND INVOCATION 

The service provision and consumption platform 
described in this paper consists of a set of subsystems (Fig. 
2), which perform the functions of orchestration, resolution 
and capability invocation. The design of these subsystems is 
affected by the communication paradigms that address the 
capability access, which relate to the need for external 
services to manage deployed tuples and 
publication/subscription records (4a) and the environmental 
requirements for mobile prosumer users, stated in the 
introduction section.  

Design patterns are used to address the requirements of 
the prosumer environment in an elegant and effective way 
[10]. The application of these patterns can impact the ability 
of systems to achieve their quality attribute goals, and, 
therefore, they affect the system architecture and help to 
address key issues that are resolved in the following sections. 
The proposed subsystems are: 

Creation Environment (1): provides mechanisms for 
service creation and composition by non-expert users 
through component interconnection and customization. 
Therefore, this environment performs the service 
orchestration process, resulting in the generation of the SDL 
document (1a), which describes the set of components 
required for the service to run properly, in addition to a 
number of restrictions that will be used by the harmonizer for 
optimal component resolution into capabilities. 

Execution Environment (2): is responsible for 
processing the SDL document and generating the graphical 
visualization of the service. This environment starts the 

process of component resolution, which is carried out by the 
harmonizer subsystem. 

Harmonizer (3): its main function is to make the 
matchmaking between the component to execute and a 
compatible capability (3a) from those available at the 
capability repository (3b). The aim of the Harmonizer is to 
select the best capability for each component grounded on 
different sources of information (user profile, customization 
options in components, context information, capability 
definition and so on). 

Capability Access Middleware (4): performs capability 
discovery and invocation tasks and manages the events 
received, providing a uniform interface to the Harmonizer 
for data access (4b). To deal with asynchronous 
communication we have chosen to use the Proactor pattern 
[17], that uses the inversion control mechanism (in callback 
methods, 3c) to decouple application-independent 
asynchrony mechanisms from application-specific 
functionality. Callback methods are invoked when an event 
appears, such as a message arrival to the Access Middleware 
through a connection to a capability and perform application-
specific processing. The component resolution process as 
well as the synchronous and asynchronous invocation 
management is further explained in Section IV. 

An important requirement to be considered in 

TABLE I.  COMMUNICATION PARADIGMS AND FEATURES 
 

Paradigm Coordination 
mechanism 

Notification 
model 

Connection 
Orientation 

Connection 
initiated by 

Design requisites 

Request 
/Reply 

Synchronous Synchronous  Consumer 
(Middleware) 

Client-server model 

QP2P Asynchronous Synchronous  Producer/ 
Consumer  

Message are retrieved in a 
predefined order 

Tuple 
Spaces 

Asynchronous Synchronous   Intermediated by a tuple space 
service 

Publish-
Subscribe 

Asynchronous Asynchronous  Event Channel 
Service 

Event channel service must be 
external 

 

 
 

Figure 2.   Overall Architecture. 

 



environments with a large amount of heterogeneous 
capabilities is how to provide mechanisms for effective reuse 
of communication technologies during resource accessing. 
The Capability Access Middleware represents the 
fundamental level of reusability and follows the 
Acceptor/Connector pattern [17], which decouples the 
connection among tasks from the processing performed once 
the connection was carried out. This is achieved using 
various connection drivers (4c). In Section V we develop the 
key aspects of event and connection management. 

An access middleware for mobile environments is 
characterized, from the ubiquitous computing point of view, 
by the large number of connections and disconnections that 
occur in a continuously changing environment and the 
appearance and disappearance of new capabilities. Proper 
management of resources is needed for efficient capability 
access. This management is facilitated by the use of the 
Monitor Object pattern [17] (4d) which synchronizes method 
execution to ensure that only one method runs within an 
object at a time. It also allows an object's methods to 
cooperatively schedule their execution sequences. 

Section VII describes resource management in detail and 
the optimization algorithms we have defined for the 
Middleware. 

V. CONTINUOUS COMPONENT RESOLUTION IN MOBILE 

ENVIRONMENTS 

The Harmonizer subsystem provides a continuous 
component resolution process. The resolution is carried out 
using capabilities that are available in the user's current 
context. These can be capabilities which are accessible in the 
own mobile device (e.g. GPS device) or by proximity (e.g. 
printers, screens, etc.) or capabilities which are globally 
accessible using telecommunication networks (e.g. 3G, 
GSM, etc). Since these capabilities may disappear, the 
resolution process not only takes place at the beginning of 
each capability usage but also occurs when the Harmonizer 
determines that a change of capability is appropriate or 
necessary (e.g. a user with a GPS device enters an indoor 
environment). This subsystem also incorporates other 
advanced features, such as the suspension of running 
services and the detection of those new available capabilities 
that impeded a service execution. 

The selection of the optimal capability for each 
component is done taking into account the user’s preferences 
(e.g. higher priority for cheapest or closest devices) and 
component and capability descriptions, expressed using a 
XML language (see [1] for more details). A set of conditions 
can be defined to act as restrictions over a property, using 
comparison operators (i.e. ==, >=, <=, =, !=). These 
conditions are converted to other query languages like 
SPARQL or SQL to perform the matching process. 

Once the resolution process has finished, the Harmonizer 
is responsible for transmitting any component invocation 

performed by the execution subsystem to the Capability 
Middleware and returning the execution results to the 
rendering module (Fig. 2). The messages exchanged among 
the Execution, Harmonization and Capability Middleware 
subsystems are Java Objects, which encapsulate the 
transmitted parameters. The Invocation API (Fig. 3, 4b) 
contains generic methods for capability invocation, 
distinguishing between synchronous and asynchronous 
invocations. 

The invokeSync method returns the result of the 
synchronous invocation through the Invocation Manager 
(Fig. 4). The capabilityId parameter indicates the selected 
capability and the invocationArgs[] parameter contains the 
name of the method to be invoked and the parameters 
required for the method to run properly. This method returns 
a Java Object as a result, which is transmitted to the 
execution environment. After the Invocation Manager 
receives the synchronous access request, it creates a 
Synchronous Operation, designed by following the 
Command design pattern [17], which encapsulates all the 
necessary information to process the request (capability 
identification, capabilityId; arguments needed to perform the 
invocation, invocationArgs[]; driver identification, driverId) 
and defines an execute() method. This method performs the 
invocation request through a Driver, which controls the 
access technology, using capabilityId and invocationArgs[]. 
After that, the Invocation Manager selects a Synchronous 
Operation Processor to perform the Synchronous Operation 
in a new thread. There exist a limited number of Operation 
Processors, according to the number of Communication 
Paradigms that this middleware supports. 

In the case of the asynchronous call (invokeAsync 
method), the common solution is to use a multi-thread 
technique to perform operations in parallel (synchronous 
multi-threading). Every requested operation is executed in a 
thread that is scheduled by a manager. It is easy to write 
code for one thread, but the synchronization among many 
threads is a challenging task [11]. Nevertheless, in our work, 
the inversion mechanism provided by the Proactor pattern is 
used. The Proactor architecture pattern demultiplexes and 
dispatches completion events that are triggered by the 
completion of asynchronous operations. These completion 
events are dispatched to concrete service handlers that 
process them. Fig. 5 shows the developed implementation of 
the Proactor pattern for asynchronous communication 
between the Harmonizer and the Capability Middleware 
subsystems. 

Object invokeSync (int capabilityId, String invocationArgs[]); 
void invokeAsync (int capabilityId,  String invocationArgs[], 
CapabilityHandler cHandler); 
void cancelAsync (int capabilityId); 

Figure 4.   Interaction diagram of synchronous invocation. 
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The Harmonizer consumes the API provided by the 
Middleware and invokes the invokeAsync (capabilityId, 
invocationArgs[], capabilityHandler) method where 
capablityHandler is the reference to an object that can 
process the asynchronous result once it is received. The 
invokeAsync method is implemented by the Invocation 
Manager, which has two different roles: on one hand it 
defines the Asynchronous Operation as in the synchronous 
case and on the other hand registers the Asynchronous 
Operation with the capabilityHandler provided by the 
Harmonizer. Thus, once the asynchronous invocation is 
completed and the result is returned, the Invocation 
Manager can retrieve the Capability Handler from the 
registry and send it the result. 

Once the registration is performed, the Invocation 
Manager selects an Asynchronous Operation Processor to 
perform the Asynchronous Operation in a new thread. When 
the operation finishes executing, a completion event is 
generated by the Asynchronous Operation Processor, which 
notifies the Invocation Manager. Then, the Invocation 
Manager dispatches to the associated capability handler, 
which processes the results of the asynchronous operation. 

When the execution environment does not wish to 
receive asynchronous invocation results from capabilities, 
either because the service is over or the service execution 
logic no longer requires asynchronous access to data, the 
Harmonizer uses the cancelAsync API method, to cancel the 
event subscription. This invocation requests the 
Asynchronous Processor that is processing the 
Asynchronous Operation to terminate the connection to the 
capability. Once the connection has been completed, the 
Invocation Manager unregisters the Asynchronous Operation 
and returns a message indicating whether everything went 
well or not. 

VI. COMMUNICATION ARCHITECTURE  

A middleware that provides a single communication 
paradigm could not cope with the variety of sensors, 
actuators, controllers and other devices that act as 
capabilities in our environment, making their use very 

limited. This middleware solution offers a set of 
communication paradigms ranging from the traditional 
synchronous model to different variations of the 
asynchronous model. 

We define a Synchronous/Asynchronous Operation 
Processor as an entity chosen by the Invocation Manager to 
perform a sync/async operation. This operation may return 
an immediate result, as in the case of synchronous invocation 
or it may generate a series of events routed toward a 
Capability Handler, which is responsible for their processing. 
The way events containing invocation results are handled 
depends on the type of communication paradigm applied; 
therefore, there must be as many Operation Processors as 
Communication Paradigms are supported by the 
Middleware. 

In the Capability Access Middleware we have 
implemented support for Request-Reply, QP2P and Publish-
Subscribe communication models. The implications on the 
proposed architecture are described below: 

 
- Request-Reply: the Operation Processor defined for this 

synchronous model runs directly the invocation 
operation, blocking the execution and awaiting the 
outcome, which is returned as a synchronous result. In 
order to avoid blocking problems on long-lasting 
requests, the Harmonizer controls the invocation 
requests using threads. 

- QP2P: the Operation Processor, through a queue used 
for sending messages, has the possibility to handle 
asynchronous capability invocation in an independent 
way. In addition it can also wait to receive some 
execution orders in order to make complex capability 
invocations. By having a queue for the receiving 
messages, the Operation Processor can return 
Completion Events composed of several responses. This 
is useful to send several responses received from the 
capability in a single message to the upper layers.  

- Publish/Subscribe: this paradigm provides Subscribers 
with the ability to express their interest in a topic or set 
of topics in order to be notified subsequently of any 
incoming events generated by a Publisher, which match 
the registered interest. This middleware integrates a 
topic-based publish-subscribe mechanism with the 
addition of an external service called Event Channel, 
which provides storage and management for 
subscriptions and efficient delivery of events. 

   
Because of the need to establish and maintain 

connections that use scarce resources in the mobile terminal 
(Bluetooth stack and ports), a Resource Controller Module 
has been incorporated to the proposed middleware for 
connection management, which optimizes connection 
duration and reduces data access delay. In the previous 
section, we described the usefulness of the connection 
drivers to decouple the invocation processing from the 
technology used for capability access. In order to implement 
this decoupling we have used the Acceptor/Connector 
pattern, which defines two entities called Acceptor and 
Connector. The Acceptor is responsible for creating an 
endpoint that passively listens to connection requests in a 

Harmonizer
Invocation 

Manager

Async. Op. 

Processor

Asynchronous 

Operation

Capability 

Handler

invokeAsync
capabilityId

invocationArgs[]

capabilityHandler

capabilityId

invocationArgs[]

Driver

define Async. Op.

register
Async. Op.

Async. Processor

capabilityHandler

select()
execute()return

completion event
Async result

result

cancelAsync
capabilityId

unregister()
close()

OK
OK

return

completion event
Async result

result

Figure 5.   Interaction diagram of asynchronous invocation. 



particular address. The Connector connects to a remote 
Acceptor. In this pattern there is an element called 
ServiceHandler, which provides a hook method that is called 
by an Acceptor or Connector to activate the application 
service when the connection is established. Once a Service 
Handler is completely initialized by an Acceptor or 
Connector factory it typically does not interact with these 
components any further. 

Invocation drivers contain an Acceptor and Connector 
entities. The first one listens to capability connection 
requests while the latter (that is the one used most often) 
makes requests over external capabilities. ServiceHandlers 
adapt and uniform the invocation result and deliver it to the 
Sync/Async Operation Processor for further processing. 

Fig. 7 shows an implementation of the communication 
between the Access Driver, the Operation Processor that 
executes it and the Resource Controller. In each driver there 
is a pool of ServiceHandlers, managing information from 
different types of capabilities. This design seeks to 
standardize data from heterogeneous devices so that can be 
recognized by Middleware’s upper layers (Harmonizer and 
Execution subsystem). Between drivers and the Resource 
Controller two interfaces are defined, Resource API and 
Connection API, which exchange messages for controlling 
resources, an issue that we describe in the next section. 

VII. RESOURCE MANAGEMENT FOR CAPABILITY 

DISCOVERY AND INVOCATION 

The environment described in our work defines 
capability access as a fundamental mechanism for prosumer 
service and enables to obtain the needed functionality at 
execution time. We consider that these services request 
access to capabilities for repetitive invocations with a 
constant frequency. These invocations concurrently use 
resources of the mobile terminal that can be considered as 
limited (communication ports and Bluetooth stack). 
Therefore, we have defined mechanisms for resource 
management by using the Monitor Object concurrency 
pattern. This pattern synchronizes method execution to make 
sure that only one method is executed at a time. Thus, 
different drivers can concurrently attempt to access a 
common resource, but an internal mechanism will 
synchronize access to it, allowing access to one driver at a 
time. In Java, synchronized methods are used for this task. 
Fig. 6 shows how a driver obtains a resource and uses it: first 
the driver should contact the Resource API for a Resource 
Object, then it establishes the priority to acquire the resource 
and, after using the resource, the driver releases it. 

The Decissor module, in the Resource Controller, selects 
which invocation acquires the resource based on profiles. If 
the selected profile (by user preferences or depending on the 
capability type) seeks to reduce energy consumption in the 

Access Middleware, it will minimize the parameter    
̅̅ ̅̅ ̅. This 

parameter defines the average utilization rate of a resource 
for connections with an X capability, given that maintaining 
an open connection without being used increases battery 
consumption (from 6.6 mW in stand-by state to 69 mW in 
connected state for Bluetooth in the work of Cano et al. 
[14]). But if the objective is to minimize the invocation delay 

the middleware adopts a profile that attempts to increase    
̅̅ ̅̅ ̅, 

so that connections are always active (see delay analysis in 
the validation section). We have implemented these two 
profiles with two algorithms called ESA (Energy Saving 
Algorithm) and SOA (Session Optimization Algorithm). 

The ESA algorithm is simple: When the driver requests a 
resource to perform a capability connection, the Resource 
Controller blocks the request until the resource has become 
free. When the driver stops using the resource, it can invoke 
setPriority(Priority.LOW) or releaseResource() to indicate 
that it does not need this resource in a while. 

The SOA algorithm is defined below: Be    a resource 

X,  
  

 and  
  

 priority and non-priority invocation queues 

that use   , and     an invocation to Y capability, the 

Decissor applies the algorithm of Fig. 8 when it receives a 
resource request. 

In order to release and assign resources, the Decissor 
interacts with the Connection API for communicating to 

drivers. Finally, there is also a thread that assigns    to the 

first element of  
  

 and, if  
  

 is empty, to the first element 

of  
  

. 

VIII. VALIDATION 

This work has been validated as part of a prototype 
implementation that consists of a Creation Environment, 
Execution Environment, Harmonizer Subsystem [1] and 
Access Middleware, according to the mIO! project’s 
architecture devised for mobile service provision.  

In this work we focus in the Ubiquitous Capability 
Access for Continuous Services Execution in Mobile 
Environments, in particular, in the Capability Access 
Middleware and its integration with the Harmonizer. 

The developed middleware follows the architecture 
described in Fig. 2, integrating the Request/Reply, QP2P and 
Publish/Subscribe communication paradigms and the 
explained design patterns. The discovery module and some 
drivers that control capability access have also been 
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Figure 7.   Internal Driver Communication. 

Resource res = getResource (resourceId); 
res.setPriority(Priority.HIGH); 
doSomething(resource); 
res.setPriority(Priority.LOW); 
releaseResource(resourceId); 

             Figure 6.   Resource request in drivers. 



(𝐼𝐶𝑦,𝑅𝑥) setPriority (Priority.HIGH) 

1: add to 𝑄𝐻𝑥 
2: if 𝑅𝑥 is used by 𝐼𝐶𝑧with Priority.LOW then 

3: release(𝑅𝑥) from 𝐼𝐶𝑧 
4: assign(𝑅𝑥) to first element of 𝑄𝐻𝑥 
5: wait() until 𝑅𝑥 is assigned to 𝐼𝐶𝑦  

6: return  
(𝐼𝐶𝑦,𝑅𝑥) setPriority (Priority.LOW) 

1: add to 𝑄𝐿𝑥 
2: if 𝑅𝑥 is not used then 
3: assign(𝑅𝑥) to first element of 𝑄𝐿𝑥 

4: wait() until 𝑅𝑥 is assigned to 𝐼𝐶𝑦  

5: return  
(𝐼𝐶𝑦,𝑅𝑥) releaseResource () 

1: release(𝑅𝑥) from 𝐼𝐶𝑦 

2: assign(𝑅𝑥) to first element of 𝑄𝐻𝑥 
 

developed, using REST, Bluetooth (RFCOMM and OBEX), 
SOAP and Java local access. For this proof of concept we 
have tested access to Google Maps and Yahoo Maps using 
REST, control of an UPnP / DLNA network hard drive 
(Model Media Iomega Home Network Drive) through SOAP 
and connection to a B600 FRWD heart rate monitor and a 
BT microX Medical RGB [12] pulse oximeter. 

The harmonizer and the middleware have been 
implemented in Java ME with LWUIT interface and have 
been tested in a Nokia N97 and Nokia 5800 XpressMusic 
(O.S. Symbian S60 5º Ed) devices.  

As a proof of concept for resource management we 
present a performance evaluation of capability access using 
the internal Bluetooth capability (through JSR 82) of the 
mobile terminal that is executing the Capability Access 
Middleware. The aim of this study is to compare the 
behaviour of the Resource Controller for each of the defined 
algorithms (ESA and SOA) in these two use cases: 

Case # 1: The system runs a service that accesses the 
Bluetooth resource every 6 seconds. 

Case # 2: The system runs two services that access via 
Bluetooth to different capabilities periodically, with a 
frequency of 5 and 12 seconds. 

In these cases we are not taking into account the 
discovery time and we assume that the Bluetooth service 
accessed is known. If Bluetooth capabilities were unknown, 
the Discovery module (which also uses the Bluetooth 
resource) would be needed. Thus, discovery is modelled as 
another capability that accesses resources for the Resource 
Controller’s point of view. 

We found that the average delay for data access using the 
studied Bluetooth capability (BT microX Medical RGB  
pulse oximeter) corresponds to 3953 ms (0.2 standard 
deviation) and 1988 ms (0.3 standard deviation) if the 
connection  was already established before. Fig. 9 analyzes 
the value of   ̅̅̅̅  (Average resource usage rate for connections 
with studied capabilities) for both use cases and ESA and 
SOA algorithms, knowing that a low value of   ̅̅̅̅  optimizes 

power consumption, while a value of   ̅̅̅̅  close to 100% 
determine a lower access delay. 

These figures show that the difference between the two 
algorithms in terms of channel usage for connections is clear. 
In Case #1 with ESA algorithm the average resource usage 
for connections tends to 100% as time passes, due to the fact 
that the Middleware creates a single connection, which holds 
every invocation (20 invocations in 1 connection for 120 
seconds). In the case of SOA, the resource is used just to 
receive the capability data, which corresponds to about 50% 
utilization. In Case #2 (which is a more realistic behaviour 
for a multi-execution environment), the difference in values, 
although significant, is not as extreme; since in both cases it 
is necessary to make disconnections (22 versus 15) to release 
the resource in order to be used by other capabilities. 

IX. RELATED WORK 

This section concentrates on reviewing previous work on 
resource access middleware, since the related work in the 
area of service provision in mobile prosumer environments 
was previously studied in [1]. 

There are many types of communication middlewares, 
Message Oriented (MoM), Remote Procedure Call (RPC), 
Object Request Broker (ORB) and even Service-oriented 
Architecture Middlewares [15]. While traditional 
middleware platforms typically employ synchronous, RPC-
style client/server interactions, MoMs provide asynchronous, 
peer-to-peer style interactions, leading to a more loosely 
coupled architecture which is more adequate for mobile 
computing [4].  

In ubiquitous computing environments, devices might 
not be connected at all times. Several proposals take this into 
account and support that devices enter and leave networks on 
an ad hoc basis. This behaviour can be modelled by using 
P2P networks [3], in which devices are peers and 
communicate via ad hoc protocols. To locate these devices, 
some content-based techniques are used, such as Distributed 
Hash Tables (DHT). 

Integrating communication paradigms in Access 
Middleware has been tackled in [4], proposing an 
architecture which supports the traditional synchronous 
model and different variations of the so-called asynchronous 
models. Other works, as GREEN [5], focus in the concept of 
reconfiguration in continuous execution environments, and 
provide a reconfigurable middleware (according to 
application requirements and context information) that 
supports publish-subscribe interaction types (topic-based, 
content-based and location-based) but only for one 
communication paradigm.  

Related works in resource management are divided 
between those that provide mechanisms for overload 
prevention, that is, provide message prioritization and load 
balancing [16], and those which rely on adaptation 
mechanisms that change the access protocol or session QoS 
parameters. Regarding the latter, MUM [2] proposes a 
dynamic and flexible middleware to support continuous 
services to mobile users by migrating the session state in 
response to user movements during service provisioning. It 
also integrates some sync/async client/server paradigms but 
it focuses in session management and preservation rather 
than device access or architectural issues. In [6] a Session 
Initiation Protocol middleware is provided for session 

Figure 8.  Pseudocode of Session Optimization Algorithm. 



management, which also provides resource reservation and 
QoS management for user services. In our work, session 
management is carried out by the Harmonizer subsystem [1], 
while physical resource reservation is performed in the 
access middleware.  

X. CONCLUSIONS 

This paper proposes a solution for homogeneous resource 
access with continuous service execution in ubiquitous 
environments. This solution is based on the decoupling 
between the data access and their processing and 
interpretation. The defined architecture is focused on the 
prosumer mobile environment in which the user is the centre 
of the environment and his mobile phone is the gateway for 
interacting with the surrounding capabilities. The 
requirements imposed by this environment determine the 
existence of three processes: Orchestration, Resolution and 
Capability Invocation. Focusing on the latter, our main 
contribution in this work is specified by the definition and 
implementation of an architecture for a communication 
middleware as part of an overall architecture for the mIO! 
project. This architecture has been developed following the 
design patterns Proactor, Acceptor/Connector, Monitor 
Object and Command [17], in order to meet the requirements 
of asynchronism, reusability and efficient resource 
management respectively.  

The communication paradigms that are present in the 
Access Middleware (Request/Reply, QP2P and 
Publish/Subscribe) allow it to cope with the heterogeneity of 
sensors, actuators, controllers and other devices in the 
environment. The middleware implementation fulfils the task 
of decoupling capability access from the selection of the 
optimal capability and from the processing of the generated 
information.  

Finally, we have made a contribution related to the 
management of limited resources in the mobile terminal that 
performs capability access by comparing the performance of 
two algorithms for Bluetooth access in terms of energy 
consumption and data access delay. This leads to the 
conclusion that the Access Middleware must be able to 
decide which algorithm to use depending on the parameter to 
optimize (delay or consumption), which will be given by 
user preferences or provided by contextual information. 
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    Figure 9.  Average Resource Utilization for Bluetooth in Case #1 (left) and Case #2 (right). 

 


