
Ubiquitous Capability Access for Continuous Service Execution in Mobile

Environments

Ramon Alcarria
1
, Unai Aguilera

2
, Tomas Robles

1
, Diego López-de-Ipiña

2
, Augusto Morales

1

Dept. of Telematics Engineering
1

Technical Univ. of Madrid

Madrid, Spain

ralcarria,trobles,amorales@dit.upm.es

Deusto Institute of Technology – DeustoTech
2

University of Deusto

Bilbao, Spain

unai.aguilera,dipina@deusto.es

Abstract— Dynamic mobile environments are characterized by

integrating a set of devices (sensors, actuators, intelligent

terminals) whose availability continuously changes. In

addition, these devices are heterogeneous in their technology,

access protocols and in the format of the exchanged data. This

paper proposes an architecture that allows continuous and

ubiquitous access to capabilities, i.e. the functionality provided

by these devices, to solve some of the problems associated to

dynamic mobile environments. Focusing on the issue of

continuous capability invocation, this work uses a set of

software engineering patterns for defining the communication

architecture, which support the most common types of

resource access. Finally, a contribution to resource access

management is described, through the implementation of two

algorithms and their evaluation through two different use

cases.

Keywords-resource management; prosumer; software

engineering; ubicuitous computing; communication paradigms

I. INTRODUCTION

Uniform access to resources and devices is one of the
most discussed topics in ubiquitous computing related work.
This is demonstrated by the large amount of work on
communication middleware available today [7] [8]. These
middleware solutions often face the problem of device
interoperability, due to the wide heterogeneous nature of
existing devices.

This work covers the design and validation of a solution
for continuous capability access whilst service execution is
taking place in ubiquitous environments. In this paper, we
propose a resource access middleware that integrates a set of
access technologies and communication paradigms, which
are commonly used and requested by available capabilities.

The presented middleware contributions are part of the
mIO! project, which aims at the provision and consumption
of prosumer services in a mobile environment. For further
information about the prosumer concept and the mIO!
architecture the reader is referred to our previous work [1].

A. Mobile prosumer environment

In our view, the user is placed in the centre of the device
environment. Using their smartphone, users can design their
services by selecting an appropriate set of components from
a catalogue and, with the help of a creation tool, connect and
configure them. The generated service is able to use the
available functionalities which are offered by surrounding
entities. Users, while moving, will interact with close

elements and the middleware will try to guarantee that the
service execution is maintained even though the used
elements may change or disappear.

Mobile prosumer environments establish some
requirements that determine the design of the proposed
architecture. Focusing on non-expert users, a high level of
abstraction is required in order to enable users to create their
own services in an easy way. Besides, the architecture needs
to adapt to changes in the availability of resources and
services, as well as to provide a communication
infrastructure for uniform resource access.

The provision of a higher level of abstraction for
prosumer users leads to the following concepts: Service, as a
unit supplied and consumed by the prosumer, Component,
which represents a basic and functional unit used by a
service, and Capability, which is the implementation of the
functionality defined by a component and provided by some
element (hardware or software). It is also necessary to
introduce the concept of Orchestration, which manages the
interaction between the different components of a service,
Resolution, which manages the association of capabilities to
components and, finally, Invocation, which provides a
uniform access to the infrastructure capabilities.

Based on the requirements of the mobile prosumer
environment, the service must present a logical structure
defined by different layers, described in the next Section.
Section III analyses the communication paradigms currently
used in communication middleware. Section IV describes the
overall architecture, which has been designed using various
design patterns in order to meet the requirements imposed by
the ubiquitous environment and the studied communication
paradigms. Section V and VI describe the integration
between the resolution and capability invocation processes
while Section VII makes a contribution to the problem of
resource and connection management. Finally, the paper
concludes with a validation of the designed system, related
work and some conclusions of the proposed solution.

II. SERVICE LOGICAL MODEL

A service can be defined in many ways, depending on the
state of the life cycle in which the service is. We define the
logical structure of a service by different levels: the service
level, the component level and the capability level. To
facilitate the understanding of these concepts we present the
example of a simple prosumer service, called Sport Tracker,
which aims to access the location information of a user and
to represent it on a map along with information about his

heartbeat. This service consists of three components: a Map
provider, a Location provider and a Pulse provider. These
components provide an interface that must be dynamically
bound so services can execute them. For example, the
Location component needs to be resolved into a GPS device
or a GPS capability (e.g. offered by a mobile phone) in order
to obtain the information about the user's location.

Fig. 1 shows the proposed service logical model, adapted
to this simple example service. The three-level model is
explained below:

First level is the service level, where services are seen as
abstract resources with the capability of performing tasks
where the different internally used components remain
hidden. Service behaviour and orchestration logic are
described by a Service Description Language (SDL)
document.

Continuing with the component level, the service is split
into different logical units called components, which provide
a higher level abstraction to make the creation process easier,
and are implemented by an available capability depending on
the service execution conditions. In order to make a step
towards the new mobile prosumer environment, developers
must implement and publish a big number of different
components, which cover all the creation possibilities that a
user could wish.

The orchestration process manages the interaction
between components, i.e., how the components are
interconnected to compose services, how are the components
managed and the data interchanged inside the architecture
and how the components obtain the appropriate capability to
implement their functionality. This process takes place
during creation time and is performed by the creation
subsystem.

Finally, in the capability level a service is seen as a set
of capabilities which offer the functionalities that are
demanded by the service. The capabilities generally access to
local (in-device), nearby or remote resources and are
designed to achieve the components’ objectives. The
division between the component and the capability models is
made for two reasons. First, orchestration logic is decoupled
from implementation. This way, a component can be
resolved into different capabilities depending on the service
execution conditions and the preferences given by users in
the creation process. Second, components are defined as

functionalities that are easy to understand for non-expert
users in order to help them to create simple services.

The resolution process assigns, during execution time,
each component to the best available capability that can
implement it. This process takes place in the harmonization
subsystem. Finding the optimal capability depends on
multiple factors, for example, the configuration options
established by the user during creation time or component
requirements.

In the Sport Tracker’s example scenario, the Pulse
component always calls the Bluetooth sensor capability
whereas the Map component can choose a map provider
based on user preferences or service restrictions.

The capability invocation process, which is the main
topic of this work, is the one responsible for requesting and
obtaining all the required resources. An effective
coordination between the resolution and the invocation
processes will enable mobile continuous service execution in
dynamic environments. In these environments, the
capabilities can appear and disappear at any time and the
wide variety of sensors, actuators and other devices makes
necessary to design different mechanisms for the access and
invocation of heterogeneous capabilities. This process takes
place in the Capability Middleware and is explained in
section IV, along with the Creation, Execution and
Harmonization subsystems.

III. COMMUNICATION PARADIGMS IN CAPABILITY ACCESS

Most mobile middleware solutions for resource access
include only one communication paradigm, ignoring the fact
that the scenarios in such environments are extremely varied.
Therefore, we designed a capability access middleware that
includes several communication paradigms, classified under
three criteria:

- Coordination Mechanism: Differentiates between

synchronous or asynchronous communication models.
- Notification Model: determines if consumers explicitly

retrieve new messages or are notified when new
messages are produced (synchronous or asynchronous
notification).

- Connection Orientation: many middleware platforms
employ the notion of message as a fundamental building
block (Message-oriented Middleware). Other
middlewares use the concept of session to communicate
with resources [9], providing channel and transaction
management [6]. A connection oriented middleware
uses sessions instead of single message interchange as
the most natural method of communication.

The studied paradigms are described below. Table 1

shows the features of these paradigms according to defined
criteria and the requirements that they impose on the design
of system’s architecture, presented in the next section.

Request-Reply model: a synchronous model is adopted in
situations that require the communicating entities to be
connected simultaneously. The sending entity delegates the
control to the receiving entity, which performs some
processing and responds, allowing the first to continue its
execution.

Figure 1. Service Logical Parts.

QP2P (Queue-based Point-to-point Paradigm):
distributed queues are used for sending and receiving
messages. Using this model, messages are obtained in a
predefined order based on queue type (FIFO, LIFO, etc).
Producers and consumers are fully decoupled.

Tuple Spaces: this paradigm provides a distributed shared
memory for the exchange of tuples between various entities.
Like QP2P, Tuple Spaces uses an indirect model, mediated
by a Tuple Space Service, but in this case the consumer gets
messages (tuples) by requesting them directly to this service.

Publish-Subscribe: communicating entities exchange
messages by publishing events and subscribing to them. An
intermediate service called Event Channel [13] registers the
subscriptions and forwards the events published. In pub-sub
systems, message delivery depends fully on the actions of
the receivers, which frequently are unknown to the senders.

IV. OVERALL ARCHITECTURE FOR SERVICE

ORCHESTRATION, RESOLUTION AND INVOCATION

The service provision and consumption platform
described in this paper consists of a set of subsystems (Fig.
2), which perform the functions of orchestration, resolution
and capability invocation. The design of these subsystems is
affected by the communication paradigms that address the
capability access, which relate to the need for external
services to manage deployed tuples and
publication/subscription records (4a) and the environmental
requirements for mobile prosumer users, stated in the
introduction section.

Design patterns are used to address the requirements of
the prosumer environment in an elegant and effective way
[10]. The application of these patterns can impact the ability
of systems to achieve their quality attribute goals, and,
therefore, they affect the system architecture and help to
address key issues that are resolved in the following sections.
The proposed subsystems are:

Creation Environment (1): provides mechanisms for
service creation and composition by non-expert users
through component interconnection and customization.
Therefore, this environment performs the service
orchestration process, resulting in the generation of the SDL
document (1a), which describes the set of components
required for the service to run properly, in addition to a
number of restrictions that will be used by the harmonizer for
optimal component resolution into capabilities.

Execution Environment (2): is responsible for
processing the SDL document and generating the graphical
visualization of the service. This environment starts the

process of component resolution, which is carried out by the
harmonizer subsystem.

Harmonizer (3): its main function is to make the
matchmaking between the component to execute and a
compatible capability (3a) from those available at the
capability repository (3b). The aim of the Harmonizer is to
select the best capability for each component grounded on
different sources of information (user profile, customization
options in components, context information, capability
definition and so on).

Capability Access Middleware (4): performs capability
discovery and invocation tasks and manages the events
received, providing a uniform interface to the Harmonizer
for data access (4b). To deal with asynchronous
communication we have chosen to use the Proactor pattern
[17], that uses the inversion control mechanism (in callback
methods, 3c) to decouple application-independent
asynchrony mechanisms from application-specific
functionality. Callback methods are invoked when an event
appears, such as a message arrival to the Access Middleware
through a connection to a capability and perform application-
specific processing. The component resolution process as
well as the synchronous and asynchronous invocation
management is further explained in Section IV.

An important requirement to be considered in

TABLE I. COMMUNICATION PARADIGMS AND FEATURES

Paradigm Coordination
mechanism

Notification
model

Connection
Orientation

Connection
initiated by

Design requisites

Request
/Reply

Synchronous Synchronous Consumer
(Middleware)

Client-server model

QP2P Asynchronous Synchronous Producer/
Consumer

Message are retrieved in a
predefined order

Tuple
Spaces

Asynchronous Synchronous Intermediated by a tuple space
service

Publish-
Subscribe

Asynchronous Asynchronous Event Channel
Service

Event channel service must be
external

Figure 2. Overall Architecture.

environments with a large amount of heterogeneous
capabilities is how to provide mechanisms for effective reuse
of communication technologies during resource accessing.
The Capability Access Middleware represents the
fundamental level of reusability and follows the
Acceptor/Connector pattern [17], which decouples the
connection among tasks from the processing performed once
the connection was carried out. This is achieved using
various connection drivers (4c). In Section V we develop the
key aspects of event and connection management.

An access middleware for mobile environments is
characterized, from the ubiquitous computing point of view,
by the large number of connections and disconnections that
occur in a continuously changing environment and the
appearance and disappearance of new capabilities. Proper
management of resources is needed for efficient capability
access. This management is facilitated by the use of the
Monitor Object pattern [17] (4d) which synchronizes method
execution to ensure that only one method runs within an
object at a time. It also allows an object's methods to
cooperatively schedule their execution sequences.

Section VII describes resource management in detail and
the optimization algorithms we have defined for the
Middleware.

V. CONTINUOUS COMPONENT RESOLUTION IN MOBILE

ENVIRONMENTS

The Harmonizer subsystem provides a continuous
component resolution process. The resolution is carried out
using capabilities that are available in the user's current
context. These can be capabilities which are accessible in the
own mobile device (e.g. GPS device) or by proximity (e.g.
printers, screens, etc.) or capabilities which are globally
accessible using telecommunication networks (e.g. 3G,
GSM, etc). Since these capabilities may disappear, the
resolution process not only takes place at the beginning of
each capability usage but also occurs when the Harmonizer
determines that a change of capability is appropriate or
necessary (e.g. a user with a GPS device enters an indoor
environment). This subsystem also incorporates other
advanced features, such as the suspension of running
services and the detection of those new available capabilities
that impeded a service execution.

The selection of the optimal capability for each
component is done taking into account the user’s preferences
(e.g. higher priority for cheapest or closest devices) and
component and capability descriptions, expressed using a
XML language (see [1] for more details). A set of conditions
can be defined to act as restrictions over a property, using
comparison operators (i.e. ==, >=, <=, =, !=). These
conditions are converted to other query languages like
SPARQL or SQL to perform the matching process.

Once the resolution process has finished, the Harmonizer
is responsible for transmitting any component invocation

performed by the execution subsystem to the Capability
Middleware and returning the execution results to the
rendering module (Fig. 2). The messages exchanged among
the Execution, Harmonization and Capability Middleware
subsystems are Java Objects, which encapsulate the
transmitted parameters. The Invocation API (Fig. 3, 4b)
contains generic methods for capability invocation,
distinguishing between synchronous and asynchronous
invocations.

The invokeSync method returns the result of the
synchronous invocation through the Invocation Manager
(Fig. 4). The capabilityId parameter indicates the selected
capability and the invocationArgs[] parameter contains the
name of the method to be invoked and the parameters
required for the method to run properly. This method returns
a Java Object as a result, which is transmitted to the
execution environment. After the Invocation Manager
receives the synchronous access request, it creates a
Synchronous Operation, designed by following the
Command design pattern [17], which encapsulates all the
necessary information to process the request (capability
identification, capabilityId; arguments needed to perform the
invocation, invocationArgs[]; driver identification, driverId)
and defines an execute() method. This method performs the
invocation request through a Driver, which controls the
access technology, using capabilityId and invocationArgs[].
After that, the Invocation Manager selects a Synchronous
Operation Processor to perform the Synchronous Operation
in a new thread. There exist a limited number of Operation
Processors, according to the number of Communication
Paradigms that this middleware supports.

In the case of the asynchronous call (invokeAsync
method), the common solution is to use a multi-thread
technique to perform operations in parallel (synchronous
multi-threading). Every requested operation is executed in a
thread that is scheduled by a manager. It is easy to write
code for one thread, but the synchronization among many
threads is a challenging task [11]. Nevertheless, in our work,
the inversion mechanism provided by the Proactor pattern is
used. The Proactor architecture pattern demultiplexes and
dispatches completion events that are triggered by the
completion of asynchronous operations. These completion
events are dispatched to concrete service handlers that
process them. Fig. 5 shows the developed implementation of
the Proactor pattern for asynchronous communication
between the Harmonizer and the Capability Middleware
subsystems.

Object invokeSync (int capabilityId, String invocationArgs[]);
void invokeAsync (int capabilityId, String invocationArgs[],
CapabilityHandler cHandler);
void cancelAsync (int capabilityId);

Figure 4. Interaction diagram of synchronous invocation.

Harmonizer
Invocation

Manager

Sync. Op.

Processor

Synchronous

Operation

invokeSync
capabilityId

invocationArgs[]

capabilityId

invocationArgs[]

Driver

define Sync. Op.

select()
execute()

sync result
sync result

result

Figure 3. Capability invocation API

The Harmonizer consumes the API provided by the
Middleware and invokes the invokeAsync (capabilityId,
invocationArgs[], capabilityHandler) method where
capablityHandler is the reference to an object that can
process the asynchronous result once it is received. The
invokeAsync method is implemented by the Invocation
Manager, which has two different roles: on one hand it
defines the Asynchronous Operation as in the synchronous
case and on the other hand registers the Asynchronous
Operation with the capabilityHandler provided by the
Harmonizer. Thus, once the asynchronous invocation is
completed and the result is returned, the Invocation
Manager can retrieve the Capability Handler from the
registry and send it the result.

Once the registration is performed, the Invocation
Manager selects an Asynchronous Operation Processor to
perform the Asynchronous Operation in a new thread. When
the operation finishes executing, a completion event is
generated by the Asynchronous Operation Processor, which
notifies the Invocation Manager. Then, the Invocation
Manager dispatches to the associated capability handler,
which processes the results of the asynchronous operation.

When the execution environment does not wish to
receive asynchronous invocation results from capabilities,
either because the service is over or the service execution
logic no longer requires asynchronous access to data, the
Harmonizer uses the cancelAsync API method, to cancel the
event subscription. This invocation requests the
Asynchronous Processor that is processing the
Asynchronous Operation to terminate the connection to the
capability. Once the connection has been completed, the
Invocation Manager unregisters the Asynchronous Operation
and returns a message indicating whether everything went
well or not.

VI. COMMUNICATION ARCHITECTURE

A middleware that provides a single communication
paradigm could not cope with the variety of sensors,
actuators, controllers and other devices that act as
capabilities in our environment, making their use very

limited. This middleware solution offers a set of
communication paradigms ranging from the traditional
synchronous model to different variations of the
asynchronous model.

We define a Synchronous/Asynchronous Operation
Processor as an entity chosen by the Invocation Manager to
perform a sync/async operation. This operation may return
an immediate result, as in the case of synchronous invocation
or it may generate a series of events routed toward a
Capability Handler, which is responsible for their processing.
The way events containing invocation results are handled
depends on the type of communication paradigm applied;
therefore, there must be as many Operation Processors as
Communication Paradigms are supported by the
Middleware.

In the Capability Access Middleware we have
implemented support for Request-Reply, QP2P and Publish-
Subscribe communication models. The implications on the
proposed architecture are described below:

- Request-Reply: the Operation Processor defined for this

synchronous model runs directly the invocation
operation, blocking the execution and awaiting the
outcome, which is returned as a synchronous result. In
order to avoid blocking problems on long-lasting
requests, the Harmonizer controls the invocation
requests using threads.

- QP2P: the Operation Processor, through a queue used
for sending messages, has the possibility to handle
asynchronous capability invocation in an independent
way. In addition it can also wait to receive some
execution orders in order to make complex capability
invocations. By having a queue for the receiving
messages, the Operation Processor can return
Completion Events composed of several responses. This
is useful to send several responses received from the
capability in a single message to the upper layers.

- Publish/Subscribe: this paradigm provides Subscribers
with the ability to express their interest in a topic or set
of topics in order to be notified subsequently of any
incoming events generated by a Publisher, which match
the registered interest. This middleware integrates a
topic-based publish-subscribe mechanism with the
addition of an external service called Event Channel,
which provides storage and management for
subscriptions and efficient delivery of events.

Because of the need to establish and maintain

connections that use scarce resources in the mobile terminal
(Bluetooth stack and ports), a Resource Controller Module
has been incorporated to the proposed middleware for
connection management, which optimizes connection
duration and reduces data access delay. In the previous
section, we described the usefulness of the connection
drivers to decouple the invocation processing from the
technology used for capability access. In order to implement
this decoupling we have used the Acceptor/Connector
pattern, which defines two entities called Acceptor and
Connector. The Acceptor is responsible for creating an
endpoint that passively listens to connection requests in a

Harmonizer
Invocation

Manager

Async. Op.

Processor

Asynchronous

Operation

Capability

Handler

invokeAsync
capabilityId

invocationArgs[]

capabilityHandler

capabilityId

invocationArgs[]

Driver

define Async. Op.

register
Async. Op.

Async. Processor

capabilityHandler

select()
execute()return

completion event
Async result

result

cancelAsync
capabilityId

unregister()
close()

OK
OK

return

completion event
Async result

result

Figure 5. Interaction diagram of asynchronous invocation.

particular address. The Connector connects to a remote
Acceptor. In this pattern there is an element called
ServiceHandler, which provides a hook method that is called
by an Acceptor or Connector to activate the application
service when the connection is established. Once a Service
Handler is completely initialized by an Acceptor or
Connector factory it typically does not interact with these
components any further.

Invocation drivers contain an Acceptor and Connector
entities. The first one listens to capability connection
requests while the latter (that is the one used most often)
makes requests over external capabilities. ServiceHandlers
adapt and uniform the invocation result and deliver it to the
Sync/Async Operation Processor for further processing.

Fig. 7 shows an implementation of the communication
between the Access Driver, the Operation Processor that
executes it and the Resource Controller. In each driver there
is a pool of ServiceHandlers, managing information from
different types of capabilities. This design seeks to
standardize data from heterogeneous devices so that can be
recognized by Middleware’s upper layers (Harmonizer and
Execution subsystem). Between drivers and the Resource
Controller two interfaces are defined, Resource API and
Connection API, which exchange messages for controlling
resources, an issue that we describe in the next section.

VII. RESOURCE MANAGEMENT FOR CAPABILITY

DISCOVERY AND INVOCATION

The environment described in our work defines
capability access as a fundamental mechanism for prosumer
service and enables to obtain the needed functionality at
execution time. We consider that these services request
access to capabilities for repetitive invocations with a
constant frequency. These invocations concurrently use
resources of the mobile terminal that can be considered as
limited (communication ports and Bluetooth stack).
Therefore, we have defined mechanisms for resource
management by using the Monitor Object concurrency
pattern. This pattern synchronizes method execution to make
sure that only one method is executed at a time. Thus,
different drivers can concurrently attempt to access a
common resource, but an internal mechanism will
synchronize access to it, allowing access to one driver at a
time. In Java, synchronized methods are used for this task.
Fig. 6 shows how a driver obtains a resource and uses it: first
the driver should contact the Resource API for a Resource
Object, then it establishes the priority to acquire the resource
and, after using the resource, the driver releases it.

The Decissor module, in the Resource Controller, selects
which invocation acquires the resource based on profiles. If
the selected profile (by user preferences or depending on the
capability type) seeks to reduce energy consumption in the

Access Middleware, it will minimize the parameter
̅̅ ̅̅ ̅. This

parameter defines the average utilization rate of a resource
for connections with an X capability, given that maintaining
an open connection without being used increases battery
consumption (from 6.6 mW in stand-by state to 69 mW in
connected state for Bluetooth in the work of Cano et al.
[14]). But if the objective is to minimize the invocation delay

the middleware adopts a profile that attempts to increase
̅̅ ̅̅ ̅,

so that connections are always active (see delay analysis in
the validation section). We have implemented these two
profiles with two algorithms called ESA (Energy Saving
Algorithm) and SOA (Session Optimization Algorithm).

The ESA algorithm is simple: When the driver requests a
resource to perform a capability connection, the Resource
Controller blocks the request until the resource has become
free. When the driver stops using the resource, it can invoke
setPriority(Priority.LOW) or releaseResource() to indicate
that it does not need this resource in a while.

The SOA algorithm is defined below: Be a resource

X,

 and

 priority and non-priority invocation queues

that use , and an invocation to Y capability, the

Decissor applies the algorithm of Fig. 8 when it receives a
resource request.

In order to release and assign resources, the Decissor
interacts with the Connection API for communicating to

drivers. Finally, there is also a thread that assigns to the

first element of

 and, if

 is empty, to the first element

of

.

VIII. VALIDATION

This work has been validated as part of a prototype
implementation that consists of a Creation Environment,
Execution Environment, Harmonizer Subsystem [1] and
Access Middleware, according to the mIO! project’s
architecture devised for mobile service provision.

In this work we focus in the Ubiquitous Capability
Access for Continuous Services Execution in Mobile
Environments, in particular, in the Capability Access
Middleware and its integration with the Harmonizer.

The developed middleware follows the architecture
described in Fig. 2, integrating the Request/Reply, QP2P and
Publish/Subscribe communication paradigms and the
explained design patterns. The discovery module and some
drivers that control capability access have also been

Resource Controller

Driver

Resource

Database Decissor

Resource API

Connection API

Acceptor

Connector

Serv. Handler

Serv. Handler

Serv. Handler

Resource

Management

Operation

Processor
Sync/Async

result

execute()

Comm.

paradigm

Figure 7. Internal Driver Communication.

Resource res = getResource (resourceId);
res.setPriority(Priority.HIGH);
doSomething(resource);
res.setPriority(Priority.LOW);
releaseResource(resourceId);

 Figure 6. Resource request in drivers.

(𝐼𝐶𝑦,𝑅𝑥) setPriority (Priority.HIGH)

1: add to 𝑄𝐻𝑥
2: if 𝑅𝑥 is used by 𝐼𝐶𝑧with Priority.LOW then

3: release(𝑅𝑥) from 𝐼𝐶𝑧
4: assign(𝑅𝑥) to first element of 𝑄𝐻𝑥
5: wait() until 𝑅𝑥 is assigned to 𝐼𝐶𝑦

6: return
(𝐼𝐶𝑦,𝑅𝑥) setPriority (Priority.LOW)

1: add to 𝑄𝐿𝑥
2: if 𝑅𝑥 is not used then
3: assign(𝑅𝑥) to first element of 𝑄𝐿𝑥

4: wait() until 𝑅𝑥 is assigned to 𝐼𝐶𝑦

5: return
(𝐼𝐶𝑦,𝑅𝑥) releaseResource ()

1: release(𝑅𝑥) from 𝐼𝐶𝑦

2: assign(𝑅𝑥) to first element of 𝑄𝐻𝑥

developed, using REST, Bluetooth (RFCOMM and OBEX),
SOAP and Java local access. For this proof of concept we
have tested access to Google Maps and Yahoo Maps using
REST, control of an UPnP / DLNA network hard drive
(Model Media Iomega Home Network Drive) through SOAP
and connection to a B600 FRWD heart rate monitor and a
BT microX Medical RGB [12] pulse oximeter.

The harmonizer and the middleware have been
implemented in Java ME with LWUIT interface and have
been tested in a Nokia N97 and Nokia 5800 XpressMusic
(O.S. Symbian S60 5º Ed) devices.

As a proof of concept for resource management we
present a performance evaluation of capability access using
the internal Bluetooth capability (through JSR 82) of the
mobile terminal that is executing the Capability Access
Middleware. The aim of this study is to compare the
behaviour of the Resource Controller for each of the defined
algorithms (ESA and SOA) in these two use cases:

Case # 1: The system runs a service that accesses the
Bluetooth resource every 6 seconds.

Case # 2: The system runs two services that access via
Bluetooth to different capabilities periodically, with a
frequency of 5 and 12 seconds.

In these cases we are not taking into account the
discovery time and we assume that the Bluetooth service
accessed is known. If Bluetooth capabilities were unknown,
the Discovery module (which also uses the Bluetooth
resource) would be needed. Thus, discovery is modelled as
another capability that accesses resources for the Resource
Controller’s point of view.

We found that the average delay for data access using the
studied Bluetooth capability (BT microX Medical RGB
pulse oximeter) corresponds to 3953 ms (0.2 standard
deviation) and 1988 ms (0.3 standard deviation) if the
connection was already established before. Fig. 9 analyzes
the value of ̅̅̅̅ (Average resource usage rate for connections
with studied capabilities) for both use cases and ESA and
SOA algorithms, knowing that a low value of ̅̅̅̅ optimizes

power consumption, while a value of ̅̅̅̅ close to 100%
determine a lower access delay.

These figures show that the difference between the two
algorithms in terms of channel usage for connections is clear.
In Case #1 with ESA algorithm the average resource usage
for connections tends to 100% as time passes, due to the fact
that the Middleware creates a single connection, which holds
every invocation (20 invocations in 1 connection for 120
seconds). In the case of SOA, the resource is used just to
receive the capability data, which corresponds to about 50%
utilization. In Case #2 (which is a more realistic behaviour
for a multi-execution environment), the difference in values,
although significant, is not as extreme; since in both cases it
is necessary to make disconnections (22 versus 15) to release
the resource in order to be used by other capabilities.

IX. RELATED WORK

This section concentrates on reviewing previous work on
resource access middleware, since the related work in the
area of service provision in mobile prosumer environments
was previously studied in [1].

There are many types of communication middlewares,
Message Oriented (MoM), Remote Procedure Call (RPC),
Object Request Broker (ORB) and even Service-oriented
Architecture Middlewares [15]. While traditional
middleware platforms typically employ synchronous, RPC-
style client/server interactions, MoMs provide asynchronous,
peer-to-peer style interactions, leading to a more loosely
coupled architecture which is more adequate for mobile
computing [4].

In ubiquitous computing environments, devices might
not be connected at all times. Several proposals take this into
account and support that devices enter and leave networks on
an ad hoc basis. This behaviour can be modelled by using
P2P networks [3], in which devices are peers and
communicate via ad hoc protocols. To locate these devices,
some content-based techniques are used, such as Distributed
Hash Tables (DHT).

Integrating communication paradigms in Access
Middleware has been tackled in [4], proposing an
architecture which supports the traditional synchronous
model and different variations of the so-called asynchronous
models. Other works, as GREEN [5], focus in the concept of
reconfiguration in continuous execution environments, and
provide a reconfigurable middleware (according to
application requirements and context information) that
supports publish-subscribe interaction types (topic-based,
content-based and location-based) but only for one
communication paradigm.

Related works in resource management are divided
between those that provide mechanisms for overload
prevention, that is, provide message prioritization and load
balancing [16], and those which rely on adaptation
mechanisms that change the access protocol or session QoS
parameters. Regarding the latter, MUM [2] proposes a
dynamic and flexible middleware to support continuous
services to mobile users by migrating the session state in
response to user movements during service provisioning. It
also integrates some sync/async client/server paradigms but
it focuses in session management and preservation rather
than device access or architectural issues. In [6] a Session
Initiation Protocol middleware is provided for session

Figure 8. Pseudocode of Session Optimization Algorithm.

management, which also provides resource reservation and
QoS management for user services. In our work, session
management is carried out by the Harmonizer subsystem [1],
while physical resource reservation is performed in the
access middleware.

X. CONCLUSIONS

This paper proposes a solution for homogeneous resource
access with continuous service execution in ubiquitous
environments. This solution is based on the decoupling
between the data access and their processing and
interpretation. The defined architecture is focused on the
prosumer mobile environment in which the user is the centre
of the environment and his mobile phone is the gateway for
interacting with the surrounding capabilities. The
requirements imposed by this environment determine the
existence of three processes: Orchestration, Resolution and
Capability Invocation. Focusing on the latter, our main
contribution in this work is specified by the definition and
implementation of an architecture for a communication
middleware as part of an overall architecture for the mIO!
project. This architecture has been developed following the
design patterns Proactor, Acceptor/Connector, Monitor
Object and Command [17], in order to meet the requirements
of asynchronism, reusability and efficient resource
management respectively.

The communication paradigms that are present in the
Access Middleware (Request/Reply, QP2P and
Publish/Subscribe) allow it to cope with the heterogeneity of
sensors, actuators, controllers and other devices in the
environment. The middleware implementation fulfils the task
of decoupling capability access from the selection of the
optimal capability and from the processing of the generated
information.

Finally, we have made a contribution related to the
management of limited resources in the mobile terminal that
performs capability access by comparing the performance of
two algorithms for Bluetooth access in terms of energy
consumption and data access delay. This leads to the
conclusion that the Access Middleware must be able to
decide which algorithm to use depending on the parameter to
optimize (delay or consumption), which will be given by
user preferences or provided by contextual information.

REFERENCES

[1] U. Aguilera, A. Almeida, P. Orduña, D. López-de-Ipiña, and R. de las
Heras, “Continuous service execution in mobile prosumer
environments,” UCAmI’10, pp. 229-238, Sept. 2010.

[2] P. Bellavista, A. Corradi, and L. Foschini, "MUM: a middleware for
the provisioning of continuous services to mobile users," ISCC’04,
vol.1, pp. 498- 505, July 2004.

[3] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service
composition for mobile environment,” Mobile Networks and
Applications, 4, 10, Aug. 2005, pp. 435-451.

[4] Y. Morais and G. Elias, “Integrating Communication Paradigms in a
Mobile Middleware Product Line ,” ICN’10, pp. 255-261, April 2010.

[5] T. Sivaharan, G. Blair, and G. Coulson, “GREEN: A Configurable
and Re-configurable Publish-Subscribe Middleware for Pervasive
Computing,” LNCS 3760, pp. 732-749, Springer 2005.

[6] T. Guenkova-Luy, H. Schmidt, A. Schorr, F.J. Hauck, and A. Kassler,
"A Session-Initiation-Protocol-Based Middleware for Multi-
Application Management," ICC’07, pp. 1582-1587, June 2007.

[7] S. Hadim and N. Mohamed, "Middleware for Wireless Sensor
Networks: A Survey," Comsware’06, pp. 1-7, Jan. 2006.

[8] M.M. Molla and S.I. Ahamed, "A survey of middleware for sensor
network and challenges," ICPP’06 , pp.-228, Aug. 2006.

[9] M. Fähndrich et al., “Language support for fast and reliable message-
based communication in singularity OS,” EuroSys’06, pp. 177-190,
April 2006.

[10] N.B. Harrison and P. Avgeriou, "Analysis of Architecture Pattern
Usage in Legacy System Architecture Documentation," WICSA’08,
pp. 147-156, Feb. 2008.

[11] L. Cheng, Z. Wang, and X. Huang, "A stream-based communication
framework for network control system," BMEI’10, vol.7, pp. 2828-
2833, Oct. 2010.

[12] RGB Medical Devices. http://www.rgb-medical.com/.

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv. 35, 2, June
2003, pp. 114-131.

[14] J.C. Cano, J.M. Cano, E. González, C. Calafate, and P. Manzoni,
“Evaluation of the energetic impact of Bluetooth low-power modes
for ubiquitous computing applications,” PE-WASUN’06, pp. 1-8,
Oct. 2006.

[15] N. Ibrahim, "Orthogonal Classification of Middleware Technologies,"
UBICOMM’09, pp. 46-51, Oct. 2009.

[16] A. Erradi and P. Maheshwari, "wsBus: QoS-aware middleware for
reliable Web services interactions," EEE’05, pp. 634-639, April 2005.

[17] F. Buschmann, K. Henney, D. D. Schmidt, Pattern-oriented software
architecture: On patterns and pattern languages. John Wiley & Sons,
2007.

 Figure 9. Average Resource Utilization for Bluetooth in Case #1 (left) and Case #2 (right).

