

���������
	�������

��������	���	�����������
����������

 ����! "#��$�	�%�	&��$&	����
�'�����
����(�	�)�	��������*����+�,����
	&!�-

by

Diego López de Ipiña González de Artaza

Supervisor: Prof. Simon Lavington

September 1998

University of Essex
Department of Computer Science

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

i

SURNAME: López de Ipiña

NAME: Diego

QUALIFICATION SOUGHT: MSc in Computer Science (DIMS)

TITLE OF PROJECT REPORT: “ Cr iter ia for the Design of a Platform
Independent Distance Learning System”

SUPERVISOR: Prof. Simon Lavington

Abstract

Recently, efforts have been made to incorporate full-motion, high quality interactive
Video into Distance Learning Systems. Initial results have shown that Distance
Learning can benefit greatly when good quality video playback is achieved.
Development of this type of systems, however, poses great challenges: digital video
not only requires significantly more storage space and transmission bandwidth than
traditional data services, it must be delivered in time, i.e. isochronously, for
continuous playback.

So far, existing Distance Learning Systems have always been developed using
proprietary software and constrained to only one client platform. This work addresses
a software openness approach to video-based Interactive Distance Learning
development, using the latest beta release of an Oracle Server System and up-to-date
Java technology. The project analyses the trade-offs taken and difficulties
encountered to produce an acceptable performance multi-platform solution.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

ii

To my parents for all their love and dedication.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

iii

Acknowledgements

I would like to express my most sincere gratitude to my supervisor, Professor Simon
Lavington, who helped me throughout this project. I would also like to express my
appreciation to Neil Dewhurst and Mathew Hunter for their technical assistance, and
Karina Chong, the other MSc student involved in this project, for her support and
patience. Finally, I must mention my gratefulness to the Government of my country,
The Basque Country, for their sponsorship during this academic year at Essex.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

iv

Table of Contents

1. Introduction..1

1.1. Project Objectives ...3
1.2. Background Work ...4

2. Client-Server technologies for streaming Video. ...5
2.1. Streamed Media vs. Traditional Media...5
2.2. The need for Video/Audio Data Compression ..6
2.3. Problems found in Real-Time Media Delivery ...7
2.4. Hardware solutions to real-time media delivery requirements..8
2.5. System Architectures used for real-time media delivery...9
2.6. Approaches to Real-Time Video Delivery: VOD and NVOD. ...10
2.7. Differences between a Data Server and a Video Server..10
2.8. A Real-Time Media Delivery System: Oracle Video Server 3.0.3..11

2.8.1. Oracle Video Server 3.0.3 Architecture...12
2.8.2. Oracle Video Client 3.0.3 Architecture..15

2.8.2.1. The Oracle Video Java Library Interface..18
3. Devising a platform independent Distance Learning System...19

3.1. System Requirements..20
3.2. System Description ...22
3.3. System Architecture..26
3.4. System Design...28

3.4.1. Film Studies Tutorial Class Diagram...29
3.4.2. Flows of interaction between the user and the system..34
3.4.3. Concurrency Specification and Thread Control ...37
3.4.4. Educational Database Design...39

3.4.4.1. Entity Relationship Diagram of the Educational Database..39
4. Implementation Issues..43

4.1. Technical background ...43
4.1.1. Multithreaded programming in Java ..43
4.1.2. Java Foundation Classes: A unified UI Framework. ..47

4.2. Implementation Problems and Solutions...51
5. Testing & Experimental Results...56

5.1. Functional Testing (Black Box Testing) ...56
5.2. Reliability Testing (White Box Testing) ...61
5.3. Performance Testing..62

6. Further Work & Research. ...67
7. Conclusion..71
References..72
Appendix A. JDBC Notes. ...76
Appendix B. Relational Database Schema Derivation...78
Appendix C. Multithreaded Programming. ..80
Appendix D. Dynamic Memory Storage Needs...83
Appendix E. Film Studies Tutorial Manual. ..86
Appendix F. Source Code. ...90

Chapter 1. Introduction.

Criteria for the Design of a Platform Independent Distance Learning System. 1

1. Introduction.

The old model of education is changing from one intensive period in life to a
continuous training throughout a career: lifelong learning. Many higher education
establishments have realised this fact and are trying to meet this need by offering
distance learning activities [Ma-98].

“Distance Learning” refers to teaching and learning situations in which instructors
and learners are separated by time and/or space and rely on electronic devices and
print material for instruction delivery (e.g. video-cassettes, computer-based training,
audio and video-conferencing, etc.). Research comparing distance education to
traditional face-to-face instruction indicates that teaching and studying at a distance
can be as effective as traditional instruction, when the methods and technologies used
are appropriate to the instructional tasks [Willis-96].

The aim of this dissertation project has been to apply streaming full-motion video on
demand technology to the domain of Interactive Distance Learning. This domain
benefits greatly from good quality video because it enlivens many teaching and
learning tasks. Watching video instead of reading a text description improves the
learning process in quality and speed.

The usage of streaming video rather than other traditional forms of video delivery
bring many benefits but on the other hand require an expensive and complicate
distributed architecture. Up to very recently, sound and video were stored and
accessed via the Internet in the same way as other media data such as text and
graphics; locally-stored copies resulted in very high response times. Distance
Learning systems are characterised for being isochronous “on-demand” applications
that require recorded sound and video to be sent from the server to possibly many
clients, and to be displayed as soon as possible, i.e. as soon as enough data has
arrived. Usually a Media Player is required in the client machine responsible for
playing out sound or video files, and for running an IP streaming protocol with a
server to retrieve the media data [Bolot-96].

Significant progress has been achieved in the last few years in the application of full-
motion streamed media to computer-based Interactive Distance Learning Systems
[Lavington-97]. However, most of these systems were programmed using proprietary
technology and hardly ever could be run on multiple platforms. This dissertation
targets the development of a multi-platform client-server system using Java and
Oracle Video Server 3.0.3 beta release and details the implementation issues involved
in its creation. As a result of this development process, a set of guidelines has been
generated to serve as help for future projects of this nature. Furthermore, the criteria
to transform the system developed into a fully open system that removes the Oracle
technology software layer from the client-side, are discussed.

The resulting product from this project can be described as a multi-platform
computer-based Interactive Distance Learning system that applies streaming full-
motion video and other multimedia metaphors to develop a Tutorial to instruct in Film
Editing and Style concepts. The need for a Tutorial in this field was expressed by the
directors of a new MA in Film Studies to start this October at the University of Essex.
The system developed aimed to answer this need.

Chapter 1. Introduction.

Criteria for the Design of a Platform Independent Distance Learning System.

2

Nevertheless, the core of the work done has been the analysis of the problems found
when programming a system with real-time media needs in an interpreted language as
Java [Tyma-98]. A detailed discussion of the use of Multithreading to improve
performance, and of non-proprietary software alternatives to the Oracle-based
technology employed, was also undertaken.

Multi-platform and software openness terms will appear frequently in this work.
Java’s “write once, run anywhere” philosophy has been considered throughout the
project. A step forward in software openness was undertaken in the present system
implementation by the adoption of the new Java Swing GUI Toolkit. Swing usage
brought to the Film Studies Tutorial proposed a cross-platform user interface with
identical ‘ look and feel’ no matter what operating system it runs on.

Chapter 1. Introduction.

Criteria for the Design of a Platform Independent Distance Learning System.

3

1.1. Project Objectives

The objectives marked at the beginning of this dissertation were:

• Produce a full-motion1 video-based learning environment with synchronised

educational data to assist students of an MA in Film Studies at the University of
Essex in their understanding of Film Editing and Style concepts.

• Pursue a software-openness approach to the development of the system, avoiding

when possible the usage of proprietary software.

• Generate a set of Guidelines to apply in the development of other future systems

with the same real-time media needs as the one proposed.

• Study weaknesses and strengths of the proposed system and analyse alternative

technology solutions to it.

1 The term full-motion will appear throughout this dissertation innumerable times. This is made to
emphasise the existing difference between high quality video that can be obtained from a video server
such as Oracle Video Server; compared with jerky streamed video we are used to seeing on the Internet
by means of Xing’s StreamWorks or VODLive.

Chapter 1. Introduction.

Criteria for the Design of a Platform Independent Distance Learning System.

4

1.2. Background Work

At the University of Essex, some work in this area has been previously realised
[Lavington-97]. There is already an existing pilot system, implemented in a
client/server platform through the Oracle products Oracle Video Server 2.0 and
Oracle Media Object, that combines Distance Learning and video streaming
technology. The Distance Learning System Framework they developed was
successfully applied to Foreign Language Learning and Medical Studies.

A past year MSc student in the Department of Computer Science extended this system
by adding additional interactive facilities and a messaging system to communicate
between students and course tutor [Varonos-97].

This pilot system fulfilled the main goal of providing Interactive Distance Learning
by means of the usage of full-motion video on demand. However, two major
constraints are inherent to it: the level of interactivity provided is limited and its
implementation is completely constrained to an out-of-date Oracle technology.

The purpose of this dissertation has been to produce an Interactive Distance Learning
system that provides features which the previous generation system lacks. In this
project the Java programming language has been applied to produce a multi-platform
system that supports a level of interactivity much higher that its predecessor.
Moreover the work done has served to establish the criteria that should be followed to
distance the client-side of the system developed from Oracle proprietary software.

At this point, it is pertinent to emphasise that the Film Studies Tutorial developed has
been the result of the common effort of a group of people rather than of a single
person. The members of this team assumed different responsibilities in its
development such as creation of the client side, server side or multimedia content.
The author of this work was in charge of programming the client side of the system.
The server side was implemented by Karina Chong, another MSc. student at the
Department of Computer Science, University of Essex [Chong-98]. The domain-
specific tutorial information on Film Analysis was provided by Tara Bacon and
Whedbee Mullin (Department of History & Art).

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System. 5

2. Client-Server technologies for streaming Video.

This chapter makes an overview of the support technology that was needed to
undertake this project. It includes a ‘ tour’ through all the generic concepts associated
with Video Server technology, the domain of the application developed. Its objective
is to go from the more generic and basic to the more concrete and complicated issues
involved in this technology.

2.1. Streamed Media vs. Traditional Media

The traditional approach to video and audio data delivery has been the bulk media
transfer or client-pull method that consists of the server transferring the entire media
file before playback begins. The major drawback of this approach is the lengthy delay
before the user can start the media data playback. To reduce the delay to an acceptable
level regardless the file size, a streaming protocol is necessary. Streamed video is fed
isochronously from a server computer with large storage and delivery capabilities to a
client machine that decodes and displays the streamed video in real time as it arrives,
without waiting until the entire file has been transmitted to start rendering its content
[Serber-96].

For streaming to work, the client side receiving the data must be able to collect the
data and send it as a steady stream to the application that is processing the data and
converting it to sound or pictures. This means that if the streaming client receives the
data more quickly than required, it needs to save the excess data in a buffer. If the
data doesn't come quickly enough, however, the presentation of the data will not be
smooth. Two of the most popular products supporting this streaming video technology
that are used on Internet are Stream Works from Xing Technology corp, and
VDOLive from VDOnet corp.

The advantages of Streaming Media over Bulk Transfer can be summarised as
follows:

1. In streaming media the file is broken up into many small packets and each packet

is transmitted individually. The client can begin the playback after receiving the
first few packets rather than waiting for the entire file to be downloaded as in the
case of “bulk transfer” .

2. Streamed digital-video media delivers the video as a series of small pieces. As

soon as one small piece of video has been sent to one viewer, that piece is
available to be sent to another. Thus, streamed video can simultaneously serve
many viewers. There is also the possibility of using IP Multicasting.

3. With bulk transfer, the client machine must provide enough storage space to

contain the entire downloaded video file. Streamed video requires that the client
machine provide only enough capacity to store and display the video portion being
viewed, and perhaps a small buffer to provide error recovery capability and
smooth out trasfer-delay jitter.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

6

2.2. The need for Video/Audio Data Compression

The necessity of compression in order to support real-time delivery of media is due to
the huge length of the files this data is stored in. The required amount of compression
is such that only “ lossy” compression algorithms can be adopted. Lossy systems are
important because accepting a small amount of information loss can give a huge
payoff in terms of the compression ratio possible. Moreover, the decrease of quality
produced is generally imperceptible to the human eye and ear [Tanenbaum-97].

The MPEG (Motion Picture Experts Group) [MPEG-98a] standards are the main lossy
compression algorithms used to encode both audio and video. Other popular
compression formats used are AVI and QuickTime. The basic idea behind MPEG
video compression is to remove spatial redundancy within a video frame and
temporal redundancy between video frames. As in JPEG, the standard for still image
compression, DCT-based (Discrete Cosine Transform) compression is used to reduce
spatial redundancy (I-Frames). Motion-compensation is used to exploit temporal
redundancy (B-Frames and P-Frames). The images in a video stream usually do not
change much within small time intervals. The idea of motion-compensation is to
encode a video frame based on other video frames temporally close to it. MPEG,
therefore, achieves high compression rate by storing only the changes from one frame
to another, instead of each entire frame. To compress audio MPEG tries to remove the
irrelevant and redundant parts of the signal [VIDEONICS-97].

MPEG files are composed of three layers: video, audio, and system. The video and
audio layers (also called elementary streams) contain the encoded video and audio
data, respectively. The system layer defines the multiplexed structure for the video
and audio data, as well as the timing information required to replay the segments
synchronised in real time.

There are two major MPEG standards: MPEG-1 and MPEG-2 [MPEG-98b]. The
most common implementations of the MPEG-1 standard are designed to produce bit
rates around 1.5Mb/s, with images of size 352x240 at 24-30 frames per second (fps).
MPEG-1 produces video quality slightly below the quality of conventional VCR
videos. Full screen MPEG-1 following the European standard (PAL) for colour
television broadcast signals defines a frame size of 352*288 and is encoded at 25
frames/sec whereas the one following the US standard (NTSC) defines a frame size of
352*240 and is encoded at 30 Frames/sec. MPEG-1 is usually considered of
acceptable quality for Distance Learning applications. It was the video encoding
format used in the Film Studies Tutorial developed.

A newer standard, MPEG-2, offers resolutions of 720x480 and 1280x720 at 60 fps,
with full CD-quality audio. This is sufficient for all the major TV standards, including
NTSC, and even HDTV. The ISO standards body is currently working on the new
standards MPEG-4 [Javasoft-98b] and MPEG-7.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

7

2.3. Problems found in Real-Time Media Delivery

Among the many different types of media available for retrieval, retrieving full-
motion, high quality video in real-time poses the greatest challenges. Digital video not
only requires significantly more storage space and transmission bandwidth than
traditional data services, it must be delivered in time for continuous playback [Serber-
96].

Internet is intrinsically a packet-switched network and was not designed to handle
isosynchronous (continuous-time based) traffic such as real-time audio and video.
Regardless of the available bandwidth, Internet operates as a best effort service, and
hence there is no guarantee of minimum throughput or maximum delay. Internet is
notoriously unpredictable when it comes to transmission performance. Heavy traffic
load and internal transmission problems can cause delays that are beyond anyone’s
control. The main challenge when designing a real-time data delivery system is to
cope with lost packets and bandwidth limitations while meeting minimum audio and
video quality requirements.

Bandwidth limitation can be catered for with the adoption of the lossy compression
schemes explained in the previous section. Loss of packets could be avoided by the
usage of the TCP transport protocol. TCP delivers reliable data stream in a correct
order at the cost of long delay (due to large packet headers and retransmissions).
However, TCP is not usually applied because real-time media, such as audio and
video, cannot benefit from re-transmissions in interactive applications. Real-time
media is more concerned with prompt delivery rather than with accurate delivery.
This type of media has a maximum delay associated with it, and re-transmitted traffic
arrives too late to be played back. However, it is not affected by small percentages of
packet loss providing that such losses are rare [Bolot-96]. Latencies in delivering
video data are extremely noticeable and manifests in the applications that use it, in the
form of glitches such as:

• Misaligned or non-corresponding parts of video.
• Some parts of the video stop moving.
• Audio and video not synchronised.
• Video Screen black for short instances of time.

Since TCP requests retransmission, it is not suitable for real-time traffic. Real-time
media do not use TCP, but UDP (UDP provides a very lightweight service, and does
not re-transmits lost data). However, media that uses UDP as the underlying transport
protocol may suffer from packet loss and does not provide any means to overcome it.
It is therefore necessary that real-time media tools provide application layer framing
(ALF) for the transport protocol used in order to avoid or at least reduce data lost. The
Real Time Protocol (RTP) has been developed within the IETF (Internet Engineering
Task Force) and is a standard protocol proposed to deal with this issue [Schulzrinne-
96]. It provides facilities such as sequence numbers and timestamps that are required
by real-time media.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

8

2.4. Hardware solutions to real-time media delivery requirements

Software solutions such as the Real Time Protocol (RTP) can help in part to deal with
real-time data delivery problems, but only the adoption of new network technologies
that allow resource reservation and maximum time delivery guarantees will guarantee
a final answer. Two hardware solutions can be adopted depending on the environment
in which real-time media data is delivered. In the case of the Internet Environment,
ATM could be the solution while in the Organisations environment where data is
transmitted in a LAN, Switched Ethernet is a solution [Tanenbaum-97].

Asynchronous Transfer Mode (ATM) networking is a reliable mechanism for high-
speed delivery of large amounts of highly complex data, using fixed-size delivery
packets called cells. Because of its switched, connection-oriented nature and its fixed
cell size of 53 bytes, ATM is an inherently reliable, scalable networking technology.

ATM can offer several advantages over other networking protocols such as TCP/IP,
the protocol stack used in Internet, including [Gaurene-98]:

• scalability, to work at different speeds and on different media
• open-ended growth paths, since ATM is not tied to any physical medium or speed
• a single network for delivery of voice, data, and video, thereby improving

efficiency and manageability
• compatibility with existing physical networks (because ATM is not dependent on

a specific type of physical transport).

When real-time media data is used only within an organisation LAN, such as an
Enterprise environment, the hardware solution to tackle with the problems associated
to streamed media delivery is to adopt Switched Ethernet technology. Unlike shared
Ethernet in which every computer reads every data packet, switched Ethernet uses a
hardware hub that provides a dedicated link to each client. The dedicated link allows
the hub to physically map each client IP address to the communication channel
between the hub and the client. Each client views only its data and does not spend
time examining packets addressed to others on the same communication channel
[Linden-98].

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

9

2.5. System Architectures used for real-time media delivery

Real-time media delivery systems have three main goals:

• Retrieve large encoded content files from storage
• Stream these files at high delivery rates across a network that may be unreliable

• Reassemble, decode and display the streamed content on a client device.

The components of a real-time media delivery system that make possible the
fulfilment of these goals can be seen in Figure 1:

FIGURE 1
Video Data Encoding Decoding Process Overview

 .
The encoder encodes the media (audio or video) data into the compressed format
that can be efficiently transmitted over the Internet. This process is usually done
off-line and placed in a real-time media server database, named Media Data Store.

 /
The Media Data Store (MDS) is a real-time file system for storing and delivering
uninterrupted video in real time. MDS files are stored in MDS volumes, named
collections of disks. Each volume has a table of contents that lists the files in the
volume and their locations on disk. Usually a technique called striping is used for
storing the media data. Space Striping means dividing a file into pieces called
stripes (typically of 32k or 64k each) and storing each of them on a different disk.
Striping a file distributes access to file across many disks, rather than
concentrating it on one, reducing requests for each disk and improving
performance when the file is accessed by many concurrent clients [Lee-98].

 0
The Video Server is responsible for delivering the data, controlling the flow of
data, and other tasks related to performance monitoring and control. The Video
Pump packetises the encoded video data obtained from MDS and sends it over IP
networks in a continuous pace.

Display

Reassembled
MPEG

Video Stream Socket Data
Reader

Decoded
Video Data

Decoder

IP Packet encapsulating UDP Header,
ALF Header and Video Data as Payload

Video Server

Socket Video
Pump

IP Network

ALF Hdr
UDP Hdr

Video
Data

IP

Video
Data

MPEG
Encoded
Video

MPEG
Encoder

MPEG
Encoded
Video
Stream Media

Data
Store

Video Client

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

10

1 The Video client is responsible for obtaining, decoding and displaying the video
stored on the server. It contains a Media Player that decodes (decompresses) the
data stream into a format that can be played back on the client’s computer. The
client does not retain the data, once the digital video data has been displayed it no
longer exits on the client machine.

It is worth noting that the video content will have to be encoded only once but will be
decoded thousands of times. This asymmetry means that is acceptable for the
encoding algorithm to be slow and require expensive hardware providing that the
decoding algorithm is fast and does not require expensive hardware.

2.6. Approaches to Real-Time Video Delivery: VOD and NVOD.

The two more characteristic approaches to video data streaming are: Video On
Demand (VOD) and Near Video ON Demand (NVOD). VOD implies that the video
Server can be configured to enable video clients to watch what they want to when
they want to, choosing any title that has been digitised and stored for delivery. In
contrast, NVOD or scheduled video happens when the Video Server streams a
specific video data on a specific channel at a specific time. Clients can then “ tune in”
to see the video they want with no signals required from the client to the Video
Server. Since the server pushes video data to the client at a controlled rate, these
approaches are called server-push.

2.7. Differences between a Data Server and a Video Server

Database servers are tuned for optimum database performance. The primary goal of a
database server is to offer a rich set of operations on structured data and to deliver
transaction results quickly and reliably. In most database applications the requirement
is to get accurate data; if the data is not accurate, the database is not useful.

In most video applications, however, the key requirement is that the video data arrive
on time, so that it can be received and displayed in real-time. To that end, the
processes running on a video server have to be optimised to provide real-time
guarantees based on resource allocation of CPU, disk, and network bandwidth. The
most important resource on a video server machine is its I/O bandwidth. Unlike Data
Servers which must execute procedures and perform complex sort and join operations,
video servers require comparatively less CPU. However, video servers must have
efficient disk drives, network cards, device drivers, and a fast system bus, because the
primary goal of a Video Server is to read the video data from disk and put it onto the
network as efficiently as possible to be displayed on the client [Linden-98].

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

11

2.8. A Real-Time Media Delivery System: Oracle Video Server 3.0.3

In the development of this project, Oracle Video Server 3.0.3 in its beta release has
been used. This section describes in detail what are the different components of
Oracle Video Server architecture and explains how one actual real-time media
delivery system works in practice.

The Oracle Video Server System in its version 3.0.3 is composed of three main
components [Linden-98]:

• Oracle Video Server
• Oracle Video Client
• Oracle Media Net.

The Oracle Video Server (OVS) function is to store and deliver encoded video data
into applications running on PCs or NetWork Computers.

The Oracle Video Client Software enables the development of interactive, video-
based multimedia applications such as distance learning using movies on demand.
Oracle Video Client applications can receive and display MPEG-1 system streams,
MPEG-2 transport streams and Raw Key Frame, including OSF (Oracle Streaming
Format) files from the Oracle Video Server [Herrick-98].

Oracle Media Net is a networking infrastructure that enables the OVS and its clients
to communicate in a distributed computing environment. Using heterogeneous
network protocols, Oracle Media Net enables connectionless communication among
the various OVS system components running on different platforms. Oracle Media
Net is Oracle’s implementation of CORBA [CORBA-98], so heterogeneous services
programmed in different languages and distributed over different computers in a
network can communicate without concern for each other’s location or the details in
transporting data or converting data among them [Maring-97].

The client applications that run on the client device communicate through OMN with
specialised server applications, or services, that perform specific task on behalf of the
client, such as provide the client with information on available videos. Note that the
client and server communicate through OMN to set up and control the streaming of
video, but the video data itself is transported as real-time data directly to clients using
standard network protocols, and is not transported through OMN.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

12

2.8.1. Oracle Video Server 3.0.3 Architecture

Oracle Video Server function is to transmit video data over the network in a paced,
isochronous (continuos time-based) fashion. OVS consists of a group of services that
work together to provide clients with access to video and other types of OVS data
[Fursbush-98]. The Services Oracle Video Server provides are:
 2

Session Service.

The Session Service establishes and maintains the client/server communication
channels and manages a set of OVS resources on behalf of a particular client
device. It keeps track of all the clients currently connected to the video server and
the server resources that have been allocated. When a client wants to stream
video, it first establishes a session with the Session Service that ensures that the
resources needed to service that client are available. If no more resources are
available (e.g., if the server has reached the maximum number of concurrent video
streams it can support), the client request will be denied.

As a result of a successful session allocation the client will be assigned with:

• An identifier that uniquely identifies it from the other connected clients.

• One or more circuits through which control messages and video are

transported. Generally a session is composed of a downstream (from Server to
Client) channel to deliver video and a bi-directional channel to carry control
messages.

• Several Resources for the client and its connection to the OVS. Two key

resources that are required for all clients are a stream object (or stream context)
and a Video Pump thread.

 3

Content Service.

The Content Service provides the client with information on the content available
to it from the OVS system. It queries the Media Data Store for a list of video
content available for streaming. The video server associates each piece of content
with a server-defined structure, called asset cookie (or stream id). The contents of
the asset cookies are opaque to the client application and are used only by the
server.

A client application obtains asset cookies in response to queries on the content
service. To obtain video or other types of content from the video server, the client
passes the asset cookie associated with the desired content back to the server,
which then uses a content resolver to “ resolve” the asset cookie into the actual
pieces of content in the MDS.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

13

 4
Stream Service.

The Stream Service is the process all clients communicate with to control their
video streams. It represents the “virtual VCR” for each client, supporting
operations for video playback such as open, prepare, play, pause, and seek. The
stream service directs a video pump to deliver OVS data to the client device in the
form of a real-time stream. Streams are delivered directly from the server to the
client over an isochronous circuit.

To receive a stream, the client application requests a stream object (or stream
context) from the Stream Service. When allocating a stream, the playback
capabilities of the client device must be specified to the stream service. Once
allocated, this context allows the client to open a video and perform playback
operation on it, just by passing to the stream service an asset cookie that specifies
the content to be streamed. Clients do not communicate with the Video Pump
directly, the Stream Service acts as an intermediary, making sure that the Video
Pump sends the correct data from the content file. The Stream Service is the only
component of OVS that knows exactly what type of content is being streamed

 5

Video Pump.

The Video Pump is a multi-instance and multithreaded process, that receives
streaming commands from the Stream Service, reads the Video Data from the
Media Data Store, packetises the data, and then sends it over IP networks to the
client.

In order for the OVS to transport the video data over the network, the video pump
must convert the video stream into a series of packets. For streams consisting of
data encoded using MPEG-1 System Streams or Oracle Streaming Format (OSF),
the video pump divides the video stream into a series of chunks and wraps each
chunk with an Oracle Generic Framing (OGF2) header. The client uses the
information in the OGF headers to reassemble the video data back into a
continuous stream.

When operating in local-area networks using UDP, Oracle Video Server uses a
default network packet size of 8K3 to transmit video data. Depending on the
network protocol and components in use, these packets may be fragmented further
as they are routed from source to destination [Baltz-98].

The Video Pump uses double buffering, filling two buffers before beginning to
stream to the client. When it has exhausted the first buffer by streaming all the
data from that buffer, it fills it again with a request to MDS for more data and
streams in the mean time from the other buffer.

2 Note that OGF is the Application Layer Framing (ALF) added by the OVS to the UDP packets
transmitted.
3 The default size is the maximum UDP packet size = 8192 bytes, however this size is adjustable.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

14

Unlike the Stream Service, the Video Pump does not have any knowledge of the
type of content being delivered. It only manages network delivery issues, such as
framing and timing.

 6

Media Data Storage Services

Media Data Storage Service stores and provides access to all of the media data in
the OVS System. MDS (Media Data store) is the repository used by Oracle Video
Server for storage of real-time content. It uses Oracle’s patented real-time RAID
software technology, which allows Oracle Video Server to stream video to large
number of clients even in the event of disk failure. Clients can receive data from
OVS in the form of a real-time stream or a binary object, called a BLOB (Binary
Large Object). Note that the client receives BLOB data over a Media Net control
channel and real-time data directly over an isochronous channel from the server.

Once a content file has been copied into MDS, it must be “ tagged”. OVS creates
and stores a tag file associated with each content file. Tag files are small files
(.mpi extension files, typically) that contain indexing information about the
content, such as byte offsets of the I-frames in the content. They also contain other
information needed by the Stream Service to play the file, such as the encoding
type (e.g, MPEG-1) and the bit rate. Tag files are used by the Oracle Video Server
for any operation requiring random access to the content files, such as seeking,
fast forward, and rewind. All content must have an associated tag file in order to
be available for streaming.

Two concepts very important to be understood on the storage logic employed by
MDS are the terms Clip and Logical Content. A clip is a logical part of a physical
content file. Each clip maps to a specific start and stop position within the file. A
Logical Content denotes a collection of titles, each representing a clip. The OVS
enables system administrators to assemble these clips as they see fit and then label
the assembled clips and videos with a single title, to make retrieval and delivery
easier. These clips do not actually need to physically be assembled into a single
file and are accessed from their physical locations by OVS’s internal logic.

It is worth commenting the constraints OVS 3.0.3 brings regarding clips
assembling. Experience during the project development showed that the maximum
number of clips allowed being part of a Logical Content is 9. Moreover, all the
clips that compose the Logical Content have to be encoded under exactly the same
encoding parameters.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

15

2.8.2. Oracle Video Client 3.0.3 Architecture

OVC handles the technical aspects of the video streaming process and provides three
different client interfaces around which client applications can be created. The Oracle
Video Client (OVC) software consists of two main parts [Herrick-98]:
 7

The OVI abstraction layer and 8 The client interfaces:
• Oracle Video Web Plug-In,
• Oracle Video Java Library and
• Oracle Video ActiveX Control.

The Oracle Video Client Interfaces use the Oracle Video Interface (OVI) to access
streaming video from the Oracle Video Server. The separation of client interface from
the basic streaming functionality supported by OVI means that the functionality of the
Oracle Video Server can be harnessed from a variety of platforms, without worrying
about the underlying mechanisms that handle the low level tasks.

The OVI abstraction layer handles the technical aspects of communicating with the
server, controlling the real-time stream, and audio-video playback. OVI is a client of
the OVS and the client interfaces can themselves be considered clients of OVI. Its
functions are:

1) Communicate with the Client Interface, passing requests from the Interface on to

the Video Server
2) Handle network communications between the client machine and the Video

Server, including managing video and audio streams as they arrive from the Video
Server.

3) Communicate with the playback and display technology, such as Oracle Video
FrameWork and ActiveMovie.

OVI software layer is itself composed of five components (see Figure 2):
 9

Producer.

The Producer is the interface between the network and the Stream Manager. It
receives video data over UDP from the Oracle Video Server and delivers it into
the Stream Manager’s buffer pool. It is also responsible for handling network
errors such as missing packets or packets received out of order. The Producer
component has no knowledge of the type of content being received.

 :

Consumer.

The Consumer is the interface between Stream Manager and the video decoding
solution, either hardware or software. The Consumer takes video data from the
buffer pool and feeds it to the video decoder as needed for display. This
component based architecture allows the software to stream to different third-
party decoding solutions by writing new Consumers for them.

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

16

; Stream Manager.

The Stream Manager is responsible for coordinating the data flow from Producer
to Consumer. To do this, it manages a pool of buffers containing the incoming
video data. Oracle Video Client buffers a certain amount of data so that delivery
to the decoder can be as smooth as possible. The Stream Manager controls the
video stream and performs actions such as pausing and resuming the server when
necessary to keep the right amount of data buffered.

 < Video Decoder.

The Video Decoder receives the compressed video stream provided by the
consumer, decodes it and passes it to the Video Player.

 = Video Player .

The Video Player receives a sequence of video frames, still images, and displays
one frame after another. When dealing with MPEG-1 it has to display at a rate
between 24 to 30 frames per second. OVC works with ActiveMovie decoders, so
the decoder used must me compliant with ActiveMovie 1.0, no matter if it is
hardware or software.

Figure 2 entitled “Video Streaming Process in OVS 3.0.3” synthesises all the concepts
explained about OVS 3.0.3 System Architecture. It also shows the steps followed
when a client connects to an Oracle Video Server requesting streaming video data.

C

ha
pt

er
 2

. C
lie

nt
-S

er
ve

r
te

ch
no

lo
gi

es
 f

or
 s

tr
ea

m
in

g
V

id
eo

.

C
ri

te
ri

a
fo

r
th

e
D

es
ig

n
of

 a
 P

la
tf

or
m

 I
nd

ep
en

de
nt

 D
is

ta
nc

e
L

ea
rn

in
g

S
ys

te
m

.

17

1)
 O

V
C

 r
ec

ei
ve

s
a

re
qu

es
t f

ro
m

 th
e

A
pp

lic
at

io
n

th
ro

ug
h

th
e

A
pp

lic
at

io
n

In
te

rf
ac

e
to

 s
tr

ea
m

 v
id

eo
 d

at
a

fr
om

 th
e

O
V

S.

2)
 O

V
C

 m
ak

es
 r

eq
ue

st
 to

 S
es

si
on

 S
er

vi
ce

 to
 e

st
ab

lis
h

a
se

ss
io

n
.

3)
 O

V
S

se
rv

er
 c

re
at

es
 a

 s
es

si
on

 f
or

 th
e

cl
ie

nt
 d

ev
ic

e
an

d
se

ts
 u

p
a

co
nt

ro
l

ci
rc

ui
t t

o
al

lo
w

 th
e

co
m

m
un

ic
at

io
n

be
tw

ee
n

O
V

C
 a

nd
 O

V
S.

 A
 S

tr
ea

m

O
bj

ec
t a

nd
 a

 V
id

eo
 P

um
p

T
hr

ea
d

ar
e

as
si

gn
ed

 to
 c

lie
nt

.
4)

 O
V

C
 a

pp
lic

at
io

n
qu

er
ie

s
th

e
co

nt
en

t s
er

vi
ce

 f
or

 th
e

pr
es

en
ce

 o
f

on
e

or

m
or

e
vi

de
o

tit
le

s.

5)
 O

V
S

co
nt

en
t s

er
vi

ce
 r

et
ur

ns
 th

e
as

se
t c

oo
ki

es
 a

ss
oc

ia
te

d
w

it
h

th
e

de
si

re
d

vi
de

o
co

nt
en

t
6)

 C
lie

nt
 p

as
se

s
th

e
as

se
t c

oo
ki

es
 to

 th
e

st
re

am
 s

er
vi

ce
 to

 p
re

pa
re

 th
e

vi
de

o
co

nt
en

t t
o

be
 s

tr
ea

m
ed

.
7)

 S
tr

ea
m

 s
er

vi
ce

 u
se

s
th

e
co

nt
en

t
re

so
lv

er
 t

o
re

so
lv

e
th

e
as

se
t c

oo
ki

es
.

8)
 S

tr
ea

m
 s

er
vi

ce
 lo

ca
te

s
th

e
as

so
ci

at
ed

 v
id

eo
 c

on
te

nt
 in

 M
D

S.

9)
 S

tr
ea

m
 s

er
vi

ce
 in

st
ru

ct
s

th
e

V
id

eo
 P

um
p

to
 o

pe
n

th
e

co
nt

en
t f

ile
, r

ea
d

da
ta

 f
ro

m
 it

,
pa

ck
et

is
e
 it

 a
nd

 s
to

re
 it

 in
 it

s
st

re
am

in
g

bu
ff

er
s.

10
)

O
V

C
 is

su
es

 th
e

pl
ay

 c
om

m
an

d
an

d
St

re
am

 S
er

vi
ce

 c
om

m
an

ds
 V

id
eo

P

um
p

to
 s

ta
rt

 s
tr

ea
m

in
g

vi
de

o
da

ta
.

11
)

V
id

eo
 P

um
p

st
re

am
s

vi
de

o
co

nt
en

t t
o

th
e

cl
ie

nt
. T

he
 c

lie
nt

 c
on

ti
nu

es

to
 r

ec
ei

ve
 th

e
da

ta
,

“
un

 - p
ac

ke
tis

e
”

it,
 a

nd
 s

en
d

it
to

 th
e

de
co

de
r

un
ti

l t
he

us

er
 in

te
rv

en
es

 w
it

h
a

pa
us

e,
 s

to
p

or
 c

lo
se

 c
om

m
an

d.

12
)

O
V

C
 c

al
ls

 S
tr

ea
m

 S
er

vi
ce

 to

de
al

lo
ca

te
 t

he
 c

on
te

xt
, t

ha
t i

nv
ok

es
 th

e
Se

ss
io

n
Se

rv
ic

e
to

 d
es

tr
oy

 th
e

se
ss

io
n.

A
ct

iv
eX

C

on
tr

ol

W
eb

P

lu
g-

In

Ja
va

L

ib
ra

ry

O
V

C
 I

nt
er

fa
ce

V
id

eo
 C

lie
nt

A
pp

lic
at

io
n

B
uf

fe
r

C
on

su
m

er

P
ro

du
ce

r

St
re

am

M
an

ag
er

V
id

eo
 D

ec
od

er

(s
of

tw
ar

e
or

 h
ar

dw
ar

e)

C
om

pr
es

se
d

V
id

eo
 D

at
a

U
nc

om
pr

es
se

d
V

id
eo

 D
at

a

O
V

I
m

an
ag

es
 th

e
st

re
am

s
fr

om
 th

e
O

V
S,

ha

nd
le

s
m

es
sa

ge
s

an
d

tr
an

sa
ct

io
ns

 b
et

w
ee

n
th

e
O

V
C

 a
nd

 th
e

O
V

S
an

d
co

nt
ro

ls
 th

e
D

is
pl

ay
 te

ch
no

lo
gy

.

O
V

C
 w

or
ks

 w
ith

 A
ct

iv
eM

ov
ie

de
co

de
rs

, s
o

th
e

de
co

de
r

yo
u

us
e

m
us

t
m

e
co

m
pl

ia
nt

 w
ith

 A
ct

iv
eM

ov
ie

 1
.0

O
V

C
 I

nt
er

fa
ce

-O
V

I
C

om
m

un
ic

at
io

n
C

ha
nn

el

1,
 4

, 6
, 1

0,
 1

2

O
V

C
 C

lie
nt

 I
nt

er
fa

ce
s

pr
ov

id
e

us
er

co
nt

ro
l o

f
st

re
am

s,
 s

et
 u

p
th

e
di

sp
la

y
ar

ea

an
d

ha
nd

le
 th

e
tr

an
sa

ct
io

ns
 w

it
h

th
e

cl
ie

nt

en
vi

ro
nm

en
t

O
M

N

C
on

tr
ol

C

ha
nn

el
s

Is
oc

hr
on

ou
s

 U
D

P
/I

P
 c

ha
nn

el

M
ed

ia

D
at

a
S

to
re

St
re

am

Se
rv

ic
e

Se
ss

io
n

Se
rv

ic
e

M
D

S
Se

rv
ic

e

C
on

te
nt

Q
ue

ry

C
on

te
nt

 S
er

vi
ce

C
on

te
nt

R
es

ol
ve

r

O
ra

cl
e

V
id

eo
 S

er
ve

r

9,
 1

0 8

7

V
id

eo

P
um

p

6
4

2

O
ra

cl
e

V
id

eo
 I

nt
er

fa
ce

 (
O

V
I)

O

V
I’

s
 S

tr
ea

m
 M

an
ag

er
 a

ut
om

at
ic

al
ly

m
an

ag
es

 th
e

co
nd

iti
on

s
of

 th
e

de
co

de
r

no
t

ac
ce

pt
in

g
en

ou
gh

 d
at

a
or

 ta
ki

ng
 to

o
m

uc
h

da
ta

.

IP
 P

ac
ke

t e
nc

ap
su

la
ti

ng
 U

D
P

H
ea

de
r,

O
G

F
H

ea
de

r
an

d
V

id
eo

 D
at

a
as

 P
ay

lo
ad

10

12

O
ra

cl
e

M
ed

ia
 N

et

(C
O

R
B

A
)

11

5
3

F
IG

U
R

E
 2

V

id
eo

 S
tr

ea
m

in
g

P
ro

ce
ss

 in
 O

V
S

 3
.0

.3

Chapter 2. Client-Server technologies for streaming Video.

Criteria for the Design of a Platform Independent Distance Learning System.

18

2.8.2.1. The Oracle Video Java L ibrary Inter face

The Oracle Video Java Library is the OVC Interface that was chosen to develop the
Film Studies Tutorial. This interface enables Java applications to play streaming video
and audio from OVS. It provides a number of public classes and interfaces that allow
the programmer to playback and control video and audio streams, find out
information about the current stream and query the video server for available content
titles [Herrick-98].

The Player Classes constitute the primary classes and interfaces in the Oracle Video
Java Library. These are:
 >

Player Class, which contains all of the functionality needed to directly control
media file loading and playback.

 ?
PlayerFactory Class, which creates new Player objects.

 @
The PlayerL istener interface, which allows your application to be notified of
events affecting the Player object.

 A
PlayerException Class, which supports notification of raised exceptions specific
to the Oracle Video Java Library.

The Stream Information Classes are used to report on the current stream, including:
 B

Stream position, by means of the class StmPos.
 C

Stream Information, such as the name, transport protocol, description, frame rate,
and so on, through the usage of class StmInfo.

 D
Stream statistics, such as the number of data packets received, number of data
packets dropped, average frames per second, and so on. The StmStats is used for
this purpose.

The Content Query Classes are used to query the Oracle Video Server for a list of
available content files. The classes are:
 E

Content, which performs the actual content query.
 F

ContenI ter , which is used to iterate through the returned content entries.
 G

ContentException, which is thrown when an exception occurs during the query
operation.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

19

3. Devising a platform independent Distance Learning System

The core of this project has been to develop an Interactive Distance Learning System
using Oracle Video Server 3.0.3 and Java. Film Studies was chosen as the domain for
which the Distance Learning System would be developed. The main purpose of the
system was to produce an Interactive Distance Learning Tutorial System that would
allow the students of an MA in Film Studies to be started in October 1998 at Essex, to
understand the diverse range of camera techniques applied when a movie is being
recorded. The technical name of the knowledge field this Tutorial treats is ‘Basics of
Continuity Editing and Style’ .

This chapter describes the stages that were followed to device such system:
 H

Identify System Requirements.
The requirements to produce a system of these features were identified.

 I
Produce a System Description.
Once the requirements of the system were understood, the system to be produced
was devised. At this stage, mock-ups of the GUI the system would support were
produced and all the facilities it had to support from the user point of view were
studied.

 J
Define the System Architecture.
At this stage the author focused his attention at what hardware and software
architecture was required to produce the Tutorial. This was the first time in which
HOW the system would be implemented was considered.

 K
Undertake the System Design.
After having identified the system needs or facilities and had understood the
system architecture needed to achieve them an Object oriented Design took place.

The outcomes of this process were:

• A Class Diagram defining all the classes necessary to support the system

functionality.
• Two Flow Diagrams identifying the different states the system would go

through during its future execution.
• A concurrency specification describing the concurrent parts of the system.
• A Database Design, for the Educational Data associated with the Video

Content of the Tutorial.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

20

3.1. System Requirements

The system requirements of the Film Studies Tutorial proposed, a multi-platform
Distance Learning system that uses video and multimedia educational data, are:
 L

Create and capture the video content.

The video material used in the system was selected from the classical movies
“The Big Sleep” , “Suspicion” and “Psycho” from the famous British Director
Alfred Hitchcock and it was digitalised.

 M

Encode the captured video.

Suitable fragments of the above three movies were encoded to the MPEG-1
format and with all of them a Logical Content was formed.

Remember that Logical Content, in OVS terms, can be defined as a ‘ logical file’
consisting of a set of different video segments called clips. A clip is another
logical storing structure that makes reference to a fragment of a physical video
file.

In common agreement with all the stakeholders of the system, it was decided that
the Tutorial Video Content would consist on a OVS Logical Content build from
three clips representing fragments of the movies “The Big Sleep” , “Suspicion”
and “Psycho” respectively. These 3 clips were encoded into MPEG-1 system
stream with interleaved video and audio data. The encoding parameters that were
employed followed the PAL standard that defines a frame size of 352*288 pixels,
at 25 frames/sec, encoding the audio at 44100 Hz and producing a video/audio bit
rate of 1.5 Mb/sec.

 N

Associate educational content to the video.

In order to provide an effective Distance Learning system it was necessary to
associate to the Tutorial Video Content some multimedia educational data that
would give explanation to the concepts the video data was intended for. Having in
mind the purpose of the learning system, Continuous editing and style, it was
decided after pertinent meetings among the developers and potential users of the
system, that the most sensible way of structuring the Tutorial was by basic movie
units called shots. “A shot is the basic building block of a film. An unedited shot
corresponds to the amount of film footage exposed by the camera from the time it
is turned on until it is turned off. Individual shots are then sequenced and trimmed
by the editor to create the finished film” [Prince-95].

Once the basic Video Content Division Unit was established, the stakeholders of
the system indicated that for each shot, a set of Diagrams explaining each of the
different camera movements produced inside a shot was required. Moreover, each
shot had to be associated with a set of keywords identifying the film editing and
style concepts explained in it and a Lecturer Notes Text.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

21

 O
Design a framework to integrate and synchronise Video and Educational Data.

An application framework was designed to allow the communication between the
Distance Learning Video Client and the two Servers that provide data to it, a
Relational Database Server with multimedia educational information, and a Video
Server with Video Content. This framework had to integrate seamlessly for the
user point of view the data coming from these two sources and what is most
important it had to synchronise them in order to display the appropriate
educational data at the pertinent position of the Tutorial Video Content.

 P

Provide real-time interaction facilities to the student.

In order to produce a successful Distance Learning Tutorial it was necessary for
the system to provide a high degree of user interactivity. The user was required to
be able to have full VCR-like control over the Tutorial Demo. Therefore, controls
that would allow the user volume control, fast-forward, stop and resume the
Tutorial, move to the previous or next shot or simply move to the Tutorial
Position the student wanted to focus the attention on were clearly needed. The
System Description section gives a detailed explanation of all the interactivity
required in the proposed system.

 Q Develop a communication system to bridge the ‘distance’ existing between
supervisor and learner.

To achieve a complete Distance Learning system, it is necessary to provide a tool
that would allow some communication between the student and the supervisor.
For this purpose an e-mail system was developed.

 R Deploy the application for one or more platforms.

The way to provide a Distance Learning system that could be run in all the
platforms without the requirement of source code re-compiling was to implement
it using the Java programming language. Java programs can be run in every
system that provides the Java Virtual Machine [Kramer-96]. Moreover, a step
forward towards software openness was achieved through the use of the Swing
JFC component [Andrews-98], that allows the application designed to look and
behave (feel) exactly in the same way independently of the platform it is run. With
Swing, applications can adapt to user’s preferences rather than to the platform in
which the application where it is run. Swing is part of the Java software openness
revolution in which applications will not have an identifying look and feel due to
the platform they run on.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

22

3.2. System Description

The first stage in the development of the Film Studies Tutorial System was to capture
the requirements of interactive facilities that the system to be built should provide.
Moreover it was necessary to understand how the Film Studies Tutorial would be
structured and what would be the different GUI components that would allow the
display of all the educational multimedia material involved in the system.

At this stage it was still to be determined what the system proposed would exactly do
and look like. After several meeting with all the stakeholders of the proposed system
it was decided to divide the functionality of the system in two parts:
 S

Tutorial Demo T Glossary

The Tutorial Demo is the essence of the application. It constitutes the framework in
which different multimedia elements are combined to produce an attractive Interactive
Distance Learning System to the user. Figure 3, shows the layout of the different
components that compose the Tutorial Demo Panel or GUI:

FIGURE 3
Tutorial Demo Panel Layout

Tool Bar

Menu Bar

Status Bar

Glossary Tab Tutorial Tab

Keywords L ist

Keyword Explanation Area

Notes Panel

Diagram Panel PlayerUI
(Video Panel)

Player Controls

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

23

• A Video Panel in which a movie streamed from the Video Server is played. The
Video Content rendered on this panel is composed of three sections or clips,
according to OVS terminology as it was explained in the System Requirements.

• A Diagram Panel, where concurrently with the movie played a GIF Diagrams

Animation is produced while the movie is being played. The aim of this
Animation is to explain the student the camera techniques that where employed in
the recording of each of the film shots. The Tutorial Film can be stopped by a
click of the user over the Diagram Panel. Once the Demo has been stopped,
whether because the user clicked over the Diagram Panel or other way of stopping
was used, mouse movements over the components contained in the current active
diagram will produce Tag Tips to come up, with the name of the component the
mouse is on. It should be noted this facility was added in order to help the user
distinguish the different elements of a diagram drawn in sketch mode, where only
the objects to explain a Film Editing concept, the camera and film characters, are
shown with higher definition.

• A set of Player Controls (see Figure 4) consisting of some video playback control

buttons, two Slider Bars and a Shot Number Display. These control elements
provide the full VCR-like control required in the Tutorial. The control buttons
allow the user to play or pause the movie, move to the next or previous shot in the
movie and turn on/off the volume. The two sliders are a Movie Position Slider and
a Movie Volume Slider. The Movie Position Slider allows the user to move
flexibly through all the different positions of the Tutorial Demo. The reason to add
this control was thought as a means of allowing the user flexibly move to the point
in the Tutorial where the students want to work. The Movie Volume Slider
purpose is to control the volume of the Tutorial Film. Finally, the Shot Number
Display objective is to show the student the position inside a Clip where the Demo
is on.

FIGURE 4
Tutorial Demo Player Controls

PlayerUI
(Video Panel)

Shot Number Display

Movie Position Slider Next Shot Button
Previous Shot Button

Play Button

Mute Button

Movie Volume Slider

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

24

• A Keywords List where keywords associated to each of the shots of the Tutorial
Film are displayed. The function of this control is to point out the Film Editing
and Style concepts that are employed at the current Shot of the Tutorial Film.

• A Keyword Explanation Panel. Whenever the user clicks a Keyword List Item,

the Demo stops, in case it was running, and the explanation of the selected
keyword is displayed in the Keyword Explanation Area.

• A Notes Panel. This panel contains the notes associated to each shot. This notes

only appear when the Demo has been stopped. The notes can contain two different
kinds of links: Diagram Links and Keyword Links. The user click over a Keyword
Link brings about a tip window to pop up explaining the keyword the link
corresponds to. A click over a Diagram Link results in a new Diagram appearing
in the Diagram Panel. This is necessary to explain certain concepts in the notes
when reference is done to previous shots and comparison is needed with the
current Active Shot in the Tutorial Film.

The Glossary (see Figure 5) of the Film Studies Tutorial was created to allow the
student to revise the different Film Editing and Style concepts (keywords) the Tutorial
gives explanation to. The Glossary GUI or Panel is formed by the following two
components:

FIGURE 5
Glossary Panel Layout

Tool Bar

Menu Bar

Status Bar

Glossary Tab Tutorial Tab

Glossary Document

Glossary Index

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

25

U A Glossary Index consisting on an click-able alphabetical Index to provide quick
access to the beginning of the section of the Glossary where Keywords starting by
the letter clicked are displayed.

 V
A Glossary Document containing all the keywords explained in the Tutorial Demo
together with their explanation and link to their bibliography references. The
keywords are listed alphabetically. When the user clicks over a Bibliography link,
the bibliography references associated to the keyword are displayed.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

26

3.3. System Architecture

Once the facilities the system had to provide were identified, the next stage in the
development process of the Film Studies Tutorial was to identify the software and
hardware architecture needed to make it possible.

The system architecture proposed was a client-server one (see Figure 6). In the Client
Side the Java Distance Learning application resides together with the interfaces that
allow the client system gain access to the Server Side. In the Server Side two different
Information Servers are found. On one hand, the Oracle Video Server attends to the
requests of the clients for streaming video, whereas on the other one an Oracle 7.3.2
Relational DBMS stores the multimedia educational data associated to the encoded-
video placed at OVS’s Media Data Store. The hardware networking infrastructure that
makes possible the communication between the two sides of the system is a Fast
Switched Ethernet (100 MHz) LAN.

The client communication with the Oracle Video Server takes place through OVI
(Oracle Video Interface). This Oracle Video Client Software Component deals with
low level details concerning the reassemble of the Video Data Packets that arrive
from the Server Side and the decoding of them for its posterior visualisation. The
actions carried out by OVI are completely hidden to the programmer. During the
implementation of the client side in Java, the Player class provided in the Oracle
Video Client Java Library Interface was used to deal with the basic interactive
operations over the streaming video data sent from OVS.

The communication between the client stand-alone application and OVS takes place
through two different channels: a TCP control channel and an UDP isochronous
(continuous time-based) data channel. The TCP control channel functionality is to
request OVS services by means of Oracle Media Net, the communication
infrastructure between OVC and OVS. The isochronous data channel is a downstream
channel (from server to client) that enables the delivery of the UDP packets in which
the MPEG-1 encoded data is packetised by the Video Pump component of OVS.

On the other hand, the Distance Learning Video Java Client gains access to the
Relational DBMS by means of the JDBC (Java Database Connectivity) [Guan-98]
API. The communication between the Java Client and the DBMS takes place through
a native-protocol all-Java JDBC Driver (Type 4). See “Appendix A: JDBC Notes” for
further details about JDBC drivers.

C

ha
pt

er
 3

. D
ev

is
in

g
a

pl
at

fo
rm

 I
nd

ep
en

de
nt

 D
is

ta
nc

e
L

ea
rn

in
g

Sy
st

em
.

C
ri

te
ri

a
fo

r
th

e
D

es
ig

n
of

 a
 P

la
tf

or
m

 I
nd

ep
en

de
nt

 D
is

ta
nc

e
L

ea
rn

in
g

S
ys

te
m

.

27

F
ig

u
re

 6

S
ys

te
m

 A
rc

hi
te

ct
ur

e
O

ra
cl

e-
te

ch
no

lo
g

y
ba

se
d

D
is

ta
nc

e
Le

ar
ni

ng
 S

ys
te

m

O
ra

cl
e

M

ed
ia

 N
et

(C

O
R

B
A

)

C
on

te
nt

S

er
vi

ce

S
es

si
on

S

er
vi

ce

S
tr

ea
m

S

er
vi

ce

M
D

S

S
er

vi
ce

O
ra

cl
e

V
id

eo
 S

er
ve

r
M

ed
ia

D

at
a

S
to

re

T
C

P
 D

at
ab

as
e

A
cc

es
s

th
ro

ug
h

SQ
L

*N
et

U
D

P
 C

ha
nn

el
 f

or
 M

P
E

G

en
co

de
d

or
 O

SF
 F

or
m

at

V
id

eo

T
C

P
 C

on
tr

ol
 C

ha
nn

el

D
at

a
S

to
re

O
ra

cl
e

7.
3.

2
R

el
at

io
na

l D
B

M
S

(E
du

ca
ti

on
al

 D
at

a)

M

ul
tim

ed
ia

 E
du

ca
tio

na
l D

at
a

as
so

ci
at

ed
 to

 th
e

V
id

eo
 C

on
te

nt

ho
ld

 in
 th

e
M

D
S

M

PE
G

-1

V
id

eo
 C

on
te

nt

SS
ee rr

vv ee
rr

SS
ii dd

ee
SS
ee rr

vv ee
rr

SS
ii dd

ee

JD
B

C
 D

ri
ve

r
M

an
ag

er

O
R

A
C

L
E

’s
 J

D
B

C
 T

hi
n

D
ri

ve
r

O
V

I

(O
ra

cl
e

V
id

eo
 I

nt
er

fa
ce

)

O
ra

cl
e

V
id

eo
 J

av
a

L
ib

ra
ry

C

lie
nt

 I
nt

er
fa

ce

JD
B

C
 A

P
I

T
C

P
 C

on
tr

ol
 C

ha
nn

el

P
la

ye
r,

 S
tr

ea
m

 I
nf

or
m

at
io

n
an

d
C

on
te

nt
 Q

ue
ry

 C
la

ss
es

 a
nd

In

te
rf

ac
es

B

ef
or

e
an

y
en

d
us

er
 c

an
 u

se
 th

e
ne

w
 c

lie
nt

 a
pp

lic
at

io
n,

 th
e

m
in

im
um

 O
ra

cl
e

V
id

eo

C
lie

nt
(O

V
I+

C
lie

nt
 In

te
rf

ac
e)

m

us
t b

e
in

st
al

le
d

CC
ll ii

ee nn
tt

SS
ii dd

ee
CC

ll ii
ee nn

tt
SS
ii dd

ee

P
la

tf
or

m
 I

nd
ep

en
de

nt

D
is

ta
nc

e
L

ea
rn

in
g

Ja

va
 C

lie
nt

T

yp
e

4
dr

iv
er

 th
at

 u
se

s
Ja

va
 s

oc
ke

ts
 to

co

nn
ec

t d
ir

ec
tly

 to
 O

ra
cl

e.
 I

t p
ro

vi
de

s
it

s
ow

n
im

pl
em

en
ta

tio
n

of
 a

 T
C

P/
IP

 v
er

si
on

 o
f

O
ra

cl
e’

s
SQ

L
*N

et
. B

ec
au

se
 it

 is
 w

ri
tte

n
en

ti
re

ly
 in

 J
av

a,
 th

is
 d

ri
ve

r
is

 p
la

tf
or

m
-

in
de

pe
nd

en
t.

 FF
aa ss

tt
EE

tt hh
ee rr

nn
ee tt

 LL
AA

NN

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

28

3.4. System Design

Having described WHAT facilities the system should provide to the student and
WHAT system architecture will support them, the next stage was to determine HOW
the system could be implemented. For this purpose the following stages where
followed:

1. Develop a Class Diagram containing all the classes that will be needed to

implement the Film Studies Tutorial functionality. An object-oriented approach to
design was taken because the language chosen to implement the system, Java, is a
fully object-oriented language.

2. Analyse the flow of interaction between the user and the system, producing flow

diagrams. This study was realised to the sophisticated and complex level of
interactivity required in the proposed system.

3. Analyse the concurrency elements of the system proposed and produce a

Concurrency Specification of them. Seamless synchronisation of educational data
and video content is a key issue in the Film Studies Tutorial that requires parallel
execution of tasks.

4. Design the database that will hold the multimedia educational data associated with

the Tutorial Demo Video Content.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

29

3.4.1. Film Studies Tutorial Class Diagram

Taking into consideration the rich user interface required to implement the Film
Studies Tutorial, the classes defined were largely based on the different GUI
elements. Figure 8 depicts the Class Diagram obtained using Booch notation [Booch-
93]. It defines all the classes considered necessary to implement the Tutorial. Figure 7
explains the different notation elements employed in the diagram.

 W

FilmStudiesTutor ial.

This is the main class of the system. This class is in charge of building the
framework of the application and establishing the connection with the Relational
Database System. It defines the MenuBar, the ToolBar and the StatusBar of the
system. Events taken place on any of those GUI elements are handled by a
FilmStudiesEventListener class instance, contained in the FilmStudiesTutorial. To
establish the connection to the RDBMS, the FilmStudiesTutorial class creates an
instance of the class SQLHandler. FilmStudiesTutorial contains an instance of
each of the classes that implement the whole functionality of the Tutorial, the
TutorialDemo, the Glossary class and the Mailer Class.

 X

FilmStudiesEventL istener .

This is the class to which the FilmStudiesTutorial class delegates the events that
occur over its GUI elements.

 Y

SQLHandler .

This class handles all the interactions between the Film Studies Tutorial and the
Relational Database System. It defines the methods that allow the system to
retrieve the multimedia educational data associated to the Tutorial Film.

 Z

Tutor ialDemo.

The TutorialDemo class holds the functionality essence of the interactive distance
learning system. It creates the UI that holds the Interactive Tutorial Demo. Its
attributes correspond to all the GUI elements that form it. The PlayerUI Panel is
used to display the video. The PlayerControls are a set of buttons and slider bars,
that hold all the interactive operations that can be applied to the Tutorial Demo,
such as stop or resume it, go to the next or previous shot, seek to a random
position in the Demo, turn on/off the Volume and control the volume level. The
DiagramPanel is a panel to contain the Diagram animation produced for each shot
of the movie. The KeywordList is a list where all the keywords associated to a
shot are displayed. The KeywordExplanationArea is where the explanation of the
keyword clicked is shown. Finally, the NotesPanel is the area where the notes of a
shot are displayed. It also provides all the methods that allow the manipulation of

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

30

the GUI elements mentioned. All the events that happen over these GUI elements
are handled by an instance of the class TutorialDemoEventListener.

TutorialDemo’s most important attributes are an instance of the VideoPlayer class
and another of the DemoWorker class. The VideoPlayer handles the interaction
with the Video Server and provides to TutorialDemo VCR-like control over the
Logical Content streamed. The DemoWorker class instance controls the
synchronisation between the Logical Content played and the educational data
associated to it.

 [

Glossary.

This class creates the GUI of the Glossary, composed of the GlossaryIndex and
the GlossaryDocument. All the events that can happen in the Glossary such as
click over and index letter or bibliography link of a keyword are handled by an
instance of the class GlossaryEventListener. The Glossary contains a list of
instances of Keyword class that define all the terms contained in the Glossary.

 \ Mailer .

This class implements the proposed communication system between learners and
course tutor. Its function is to provide the Film Studies Tutorial with email
facilities.

]

Tutor ialDemoEventL istener .

This class is the class used by TutorialDemo to delegate the events that occur over
its GUI elements.

 ̂

VideoPlayer .

This class implements the Player that loads the Video Content from the Video
Server and controls its playback. It defines methods to provide the system full
VCR-like control over the video streamed (play, stop, pause, resume, forward and
rewind methods). It also supports other kind of control methods to know details
about the video streamed, getInfo(), the current position, getPos() and the state of
the player, getState().

 _

DemoWorker .

This class holds the most intelligent element of the system defined. It carries out
the control of all the Tutorial Demo execution. It provides methods that allow the
Demo to be started, stopped and interrupted. The doWork method invokes the
play method of the VideoPlayer class to play the video, tracks each of the shots
the video passes through and for each shot it produces a diagram animation

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

31

representing the camera movements produced within it and displays the keywords
associated to it. When stopped it shows the notes associated to the shot where the
movie was stopped.

 ̀

LogicalContent.

This class defines the attributes associated to the Tutorial Film. It has a set of
instances of the clip class. In the case of the FilmStudiesTutorial it actually has 3
clips, as it was explained in the section System Description.

 a

Clip.

This class contains the details of each of the clips, the LogicalContent is
composed of. A Clip instance contains several Shot class instances.

 b

Shot.

This class holds all the details of the shots contained in a clip. A shot contains 0 to
n Diagram class instances, 0 to n keyword class instances and 0 to 1 Notes Text.

 c

Diagram.

This class represents each of the Diagrams a shot is represented by. A Diagram
has to 0 to n Tag class instances.

 d

Keyword.

This class represents the keywords a shot is associated to and the keywords the
Glossary is composed of. A Keyword has 1 to n Bibliography class instances.

 e

Tag.

This class represents each of the tags associated to the different components of a
diagram.

 f

Bibliography.

This class represents each of the bibliography references associated to a Keyword.

 g

Notes.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

32

This class is used to give a text explanation of all the film editing concepts
explained through a shot. It contains 0 to n links of the two existing link types:
Keyword and Diagram link.

 h

NotesKeywordL ink.

This class represents each of the links contained in the Notes of a shot that refer to
film editing and style keywords.

 i

NotesDiagramLink.

This class represents each of the links contained in the Notes of a shot that make
reference to a previously represented shot. The click of this type of links produces
a Diagram to be displayed in the Diagram Panel.

FIGURE 7
Booch Object Oriented Methodology Notation

Class name
attributes

operations()

It represents a class in a system

It represents a "has" relationship

It represents a ”uses" relationship

It represents a "has" relationship

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

33

FIGURE 8
Film Studies Tutorial Class Diagram

 n

 FilmStudiesTutorial
MenuBar
ToolBar

StatusBar
createFilmStudiesTutorial()

disposeFilmStudiesTutorial()
createGUI()

addEventListener()
setStatusBarText()

InitDatabase()

SQLHandler
DatabaseConnection
createSQLHandler()

disposeSQLHandler()
getLogicalContent()

getLogicalContentClips()
getClipShots()
getShotNotes()

getShotKeywords()
getShotDiagrams()

getNotesLinks()
getDiagramTags()

getKeywords()
getKeywordBibliography()

1

TutorialDemo
PlayerUI

PlayerControls
DiagramPanel
KeywordsList

KeywordExplanationArea
ShotNumberVisualizer

NotesPanel
createTutorialDemo()

disposeTutorialDemo()
createGUI()

updateDiagramPanel()
updateKeywordsList()

updateKeywordExplanationArea()
updateShotNumberVisualizer()

updateNotesPanel()

Glossary
GlossaryIndex

GlossaryDocument
createGlossary()

disposeGlossary()
createGlossaryGUI()

showGlossaryTermBibliography()

1

1

1

VideoPlayer
Player

createPlayer()
disposePlayer()

play()
stop()

pause()
resume()
getPos()
getState()
getInfo()

1

1

DemoWorker
WorkerThread
createWorker()

disposeWorker()
start()
stop()

interrupt()
doWork()

 FilmStudiesEventListener
Listener

createFilmStudiesEventListener()
disposeFilmStudiesEventListener()

HandleEvent()

 GlossaryEventListener
Listener

createGlossaryEventListener()
disposeGlossaryEventListener()

HandleEvent()

 TutorialDemoEventListener
Listener

createTutorialDemoEventListener()
disposeTutorialDemoEventListener()

HandleEvent()

LogicalContent
ContentID

Name
Description

Length
VideoWidth
VideoHeight

createLogicalContent()
disposeLogicalContent()

Clip
ClipD
Path
Name

StartTime
StopTime

Description
createClip()

disposeClip()
Shot
ShotID

ShotNumber
StartTime
StopTime

createShot()
disposeShot()

Notes
NotesID

Text
createNotes()

disposeNotes()

Keyword
Term

Explanation
createKeyword()

disposeKeyword()

Bibliography
BiblioD

Title
Author

Publisher
createBibliography()

disposeBibliography()

Diagram
DiagramID

Name
Dimensions

BitMap
createDiagram()

disposeDiagram()

Tag
TagID

Position
Dimensions

Text
createTag()

disposeTag()

1

1

1

1

1

1

1

1

1

1

NotesKeywordLink
Position

LinkCarLength
KeywordID

createNotesKeywordLink()
disposeNotesKeywordLink()

NotesDiagramLink
Position

LinkCarLength
DiagramID

createNotesDiagramLink()
disposeNotesDiagramLink()

1
1

1

n

1

n

0n

0

n

1

n

0

1

 0 n
0 n

1

0
n

Mailer
MailServerConnection

MessageHeader
Message

createMailer()
disposeMailer()

sendMail()

1 1

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

34

3.4.2. Flows of interaction between the user and the system.

Due to the rich and complex range of interactivity facilities that was identified during
the System Requirements capture, it was deemed necessary to do a thorough study of
how interactivity manifests in the proposed system. For that purpose, Figures 9 and 10
were produced. These diagrams define the flow control of the Film Studies Tutorial,
by synthesising the different stages the Tutorial passes through when user interaction
occurs. These figures were very helpful when the programming phase of this project
took place.

Figure 9 explains the different stages the system goes through once the Film Studies
Tutorial is started. In first place, the GUI of the Tutorial is created and connections
with the two Media Servers are established. Then the system enters in a loop were
events generated by the user interactions are handled. Remember this system was
conceived as being composed by a Tabbed Pane containing the Tutorial Demo Panel
and the Glossary Panel (see Figure 5). Events occurring in these two panels are
handled independently as it can be seen in Figure 9. When the user decides to finish
the Film Studies Tutorial execution, the connections with the two servers are closed.

Figure 10 explains in greater detail the flow control when the Tutorial Demo Panel is
active. Special attention should be paid to the diagram’s left hand side, to the Diagram
Area between Play Tutorial Film and Pause Tutorial Film. The two parallel lines
mean the actions carried out inside them are undertaken in parallel. So, as it can be
observed in Figure 10, while the frames of a shot are retrieved and rendered, the
keywords and diagrams associated to it have also to be retrieved and displayed. Note
as well the complicated set of operations that have to be carried out when the demo is
interrupted by an event, see right hand side of the diagram. Observer that when the
Tutorial Demo is running and an event takes place, a test is necessary to check the
kind of event that occurred and determine if after the event is handled the Demo
execution should be resumed or not. If the Demo is not running, the processing
involved when an event happens is much easier.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

35

Glossary Panel

 Focus Lost

Film Studies Tutorial
Begin

Prepare Video Server
to stream Film Studies

Tutorial Movie

Connect to
Film Studies Tutorial
Educational Database

Create
Film StudiesTutorial GUI

Handle Event

Handle
Glossary

Event

Move to new
Glossary Position

Show Bibliography
Notes Indicate Video Server

to stop streaming Film
Studies Tutorial Movie

Close Connection to Film
Studies Tutorial

Educational Database

Film Studies Tutorial
End

Tutorial Demo Panel Tab Selected Glossary Panel Tab Selected

Film Studies Tutorial
Termination

Show
Glossary Panel

Show
Tutorial Demo Panel

Tutorial Demo

Glossary
 Index Selected Bibliography Link Clicked

Legend

Decision

Terminator

Process

Send Email

Send Email Button Pressed

FIGURE 9
Film Studies Tutorial Flow Diagram

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

36

Show Demo Active
Position Diagram

Move to New Demo
Movie Position

Get Demo Active
Position Diagram

Resume Tutorial Demo

Get Demo Active
Position Keywords

Show Demo Active
Shot Keywords

Show Active Shot
Notes

Get Active Diagram
Tags

Get Active
Shot Notes

Pause Tutorial Demo

Demo
Interrupted

Show Shot
Diagrams

Handle
Tutorial Demo

Event

Check
Demo

Position
Update
Event

Demo
Running

Show Diagram
Active Tag

Show Keyword
Selected Explanation

Display Keyword
Explanaiton Tip

Show Diagram

Handle
Demo

Paused
Event

yes

Demo Paused Action Event

no

Mouse Clicked over
Keyword Link

Mouse Clicked over
Keyword List Item

Mouse Clicked over
Diagram Link

Get Shot Diagrams

Show Shot
Keywords

Get Shot Keywords

Render Shot
Frames

Get Shot Frames

Get Demo Active
Shot

Play Tutorial Film

yes

no

Start or Resume Tutorial Demo

End Tutorial Demo

Begin Tutorial Demo

Tutorial Demo Volume Modification

Demo
Volume
Update
Event

Turn on/off Volume

Modify Volume Level

Other Tutorial Demo
Interactions

Mute Button
Pressed

Movie Volume
Slider Moved

Tutorial Demo Panel Focus

Mouse Moved over
Diagram Tag Area

Next or Previous
Shot Button
clicked or Movie
Time Slider Moved

Pause Tutorial Film

Resume Tutorial Demo

FIGURE 10
Tutorial Demo Flow Diagram

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

37

3.4.3. Concurrency Specification and Thread Control

While undertaking the Object oriented design of the system, it was understood the
most complicated part of this system implementation would be the synchronisation of
the VideoPlayer and DemoWorker objects execution (see Figure 8). The VideoPlayer
Object duty is to carry out the displaying of the movie whereas the DemoWorker
Object needs to track the Shot in which the film is in and for each shot display the
Diagrams and keywords associated to it. There can be several Diagrams for a given
Shot, and therefore the requirement of the system is to produce a simple kind of
animation with them, displaying each of the diagrams for a specified time, that
corresponds always with the time elapsed between two camera movements.

In order to understand this process better, the concurrent execution of the VideoPlayer
process and the DemoWorker process was specified using the CSP (Communicating
Sequential Processes) notation, encountered at [Mett-96].

TUTORI AL_DEMO_ON = PLAYER_ON | | DEMO_WORKER_ON

PLAYER_ON =
 pl ayer . get Shot j pl ayer . get Shot Fr ames k (Fr amesI ndex : = 0) ;
 ((Fr amesI ndex < NumShot Fr ames) *
 (pl ayer UI . showCur r ent Fr ame l Fr amesI ndex : = Fr amesI ndex+1)
) ; PLAYER_ON

DEMO_WORKER_ON =
 (pl ayer . get Shot m Dat abase. get Shot Keywor ds n Dat abase. get Shot Di agr ams o
 Shot Number Di spl ay. showShot Number p Keywor dsLi st . showShot Keywor ds q
 DI AGRAM_ANI MATI ON
) ; DEMO_WORKER_ON

DI AGRAM_ANI MATI ON =
 Cur r ent Di agr am : = 0;
 ((cur r ent Di agr am < NumShot Di agr ams) *
 (Dat abase. get Cur r ent Di agr am r Di agr amPanel . showCur r ent Di agr am s
 ((Cur r ent Di agr amSt opTi me < pl ayer . get Pos) *
 (Movi eTi meSl i der . updat eToCur r ent Pos)
) ; cur r ent Di agr am : = cur r ent Di agr am+1
)
)

It is important to note the specification of the process PLAYER_ON, it is only an
approximation of what actually happens when the Video Player Object is playing
video. The implementation of this object is hidden from the programmer, it is
provided within Oracle Video Java Library, and therefore the only thing the
programmer knows is that there is a thread that carries out the rendering of film
frames. In contrast, all the steps specified in the CSP notation of the processes
DEMO_WORKER_ON and DIAGRAM_ANIMATION were fiercefully followed
during the system implementation.

As it is seen in the specification of TUTORIAL_DEMO_ON process, when the
Tutorial Demo is running two recursive processes (or threads) are executed in paralell
(||), DEMO_WORKER_ON and PLAYER_ON.

Due to the need of displaying the movie withouth any glitching, the programmer
should assign maximum priority to the PLAYER_ON process. This is in fact, the only
manipulation the programmer is able to do over this process, because as it was

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

38

mentioned, its implementation is hidden within the Player class of the OVC Java
Library.

The DEMO_WORKER_ON recursive process has to be synchronised with the
execution of the process PLAYER_ON. A main requirement is that the execution of
the DEMO_WORKER_ON must not delay the PLAYER_ON process. The
DEMO_WORKER_ON process although having to be concurrently executed with the
PLAYER_ON one, should be assigned a lower priority in order to maximise the CPU
resources allocated to PLAYER_ON process. It should be realised the vast amount of
processing involved by DEMO_WORKER_ON process. The operations that have to
be carried out by this process are:

1. Track the beginning of a new shot.
2. Obtain the keywords associated with the active shot from the Educational

Database.
3. Obtain the diagrams associated with the active shot from the Educational

Database.
4. Show the active shot number in the Shot Number Display element of the Tutorial

Demo GUI.
5. Display the set of Keywords associated to the given shot in the Keyword List

element of the Tutorial Demo GUI.
6. Run an animation with the set of diagrams associated to the active shot, displaying

those images in the Diagram Panel contained in the Tutorial Demo GUI. It is
necessary to display a new Diagram for each different camera movement
produced inside a shot. Therefore the programmer has to keep track of the position
of the player within the current shot in order to change the active diagram when
necessary.

7. Update the Movie Time Slider Bar indicating the film position during the shot
display time.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

39

3.4.4. Educational Database Design

This section describes the Design of Database created to associate Educational Data to
the encoded video contained in the MDS of OVS. The database design carried out was
divided in two stages:

1. Develop an Entity Relationship Diagram in Chen Notation representing the main

entities of the proposed system.

2. Derive the Relational Database Schema associated to the ERD and proceed to its

normalisation in 3rd Normal Form to obtain the Database Tables.

It is convenient to highlight that the actual implementation of the Educational
Database was carried out by Karina Chong, another MSc student in the Department of
Computer Science, University of Essex, in charge of the Server side of the system
[Chong-98]. She implemented the Database using SQL scripts and produced an
Editing Tool to load data in. The author of this work limited to collaborate with her in
the Database Design. It was, however, thought that an overall description of this
Database Design would be helpful for a thorough understanding of the client system
developed by the author. Note the second stage of this database design is found in
“Appendix B: Relational Database Schema Derivation” .

3.4.4.1. Entity Relationship Diagram of the Educational Database

Figure 12 shows the main entities identified in the Film Studies Tutorial System, as
well as the relationships that exist among them. In what follows a detailed explanation
of all the entities as well as complex relationships, (M:N) cardinality type
relationships, is given.

The entities identified are:
 t

Logical Content.
The Logical Content entity has been named in this way after the OVS way of
denoting a collection of titles, each representing a series of parts of physical
content files (clip). The Film Studies Tutorial System uses a single Logical
Content created in the OVS. It is described in the RDBMS by its identifier,
ContentID, its name, a description of its contents, the time duration of it (length)
and the Dimensions of the frame size employed in its encoding (Frame Width and
Frame Height).

 u
Clip.
The Logical Content associated to the Film Studies Tutorial System contains a
collection of clips. In OVS terminology a clip maps to a specific start and stop
position within a single physical file. However, in order to ease the
implementation of the system, each clip was considered to represent an entire
physical file. The DBMS holds for each Clip, an identifier, ClipID, the path of the
directory inside the MDS where the physical file has been stored, the name of
physical file the clip refers to and a description explaining the clip contents.
 v Shot.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

40

Each Clip is divided into several shots. A Shot is a cinema term that refers to each
of the basic blocks in which a movie is built. For each shot a shot identifier,
ShotID, the shot number within the clip, and the start and stop time with regards
to the start time of the containing clip is stored.
 w Notes.
Each shot is explained in zero or one Notes text. Each Notes is described in the
Database by a notes identifier, NotesID, and a text. It is possible that several shots
have exactly the same Notes text.

 x
Diagram.
Each Shot is represented by a set of Diagrams. Each Diagram is stored as an
identifier, DiagramID, the name of the Diagram, the dimensions of it, its width
and height, and the BitMap, the binary representation of the Diagram content.

 y
Keyword.
Each Shot gives explanation to zero or more Keywords. A Keyword is represented
with the attributes Term, the Keyword itself, and the Explanation of it.
 z Tag.
A Diagram has a set of Tags associated to it. It could happen that a Diagram has
no Tag related to it. A Tag is described by a Tag Identifier, TagID, a text field and
the area in the Diagram over which the Tag should be displayed when the mouse
pointer is moved in. The area of display of the Tag is specified by the attributes
Position, denoting the Top Left Corner (X, Y) and Dimension, the width and height
of the area.

 {
Bibliography.
Each Keyword is found at a set of Bibliography notes. A Bibliography note is
denoted by a Bibliography Identifier, BiblioID, the title of the bibliography
reference, the author and the publisher.

The complex relationships denoting N:M cardinality are:
 | “ contains” .

This relationship was created to handle the case in which a Clip could be
contained more than once in the Logical Content associated to the Film Studies
Tutorial System. Moreover it is necessary to keep track of the position or
positions within the Logical Content in which a Clip is included. The attributes
Start Time and Stop Time are used for this purpose.
 } “ is represented by” .
This N:M relationship was created because the same Diagram can be reused for
various different Shots. Within a given Shot the Film Studies Tutorial System
requires to know when inside a given Shot a new Diagram must be displayed. The
Start Time attribute, therefore, indicates at what instant in the Shot Displaying
Time the Diagram should be displayed. A Diagram is displayed until a new
Diagram Start Time in a given Shot is reached or the first Diagram corresponding
to a new Shot is displayed. The Start Time attribute represents the absolute time
from the beginning of the clip the shot it refers belongs to.

Chapter 3. Devising a platform Independent Distance Learning System.

Criteria for the Design of a Platform Independent Distance Learning System.

41

 ~ “ contains link to” .
This N:M relationship is used to enable the inclusion of links in the Notes text
associated to a Shot. Two different kinds of links can take place in Notes text. The
first one, Keyword Link, allows the user to see an explanation of a Keyword when
the link is clicked. This kind of link is possible through the relationship
established between Notes-Keyword entities. The other type of links, Diagram
Link, allows the user to invoke the display of a Diagram when the link is clicked.
This type of link is possible through the relationship between Notes-Diagram. The
Film Studies Tutorial System knows where inside the Notes text the links have to
be displayed by means of the attributes of this relationship, Position and Length.
Position indicates in which character position from the beginning of the text a link
starts, whereas Length indicates, how many characters the link is formed of.
 � “ is found at” .
This N:M relationship is created to enable the same bibliography note to be used
by several Keywords. The Page Number attribute of this relationship allows the
specification of the page number within a bibliography reference in which a
keyword can be found.

“Appendix B: Relational Database Schema Derivation“ , explains how the Relational
Database Schema shown in Figure 11 was obtained form the ERD displayed at Figure
12.

Logical Content (ContentID, Name, Description, Length, VideoWidth, VideoHeight)
LogicalContentContainsClip (ContentID, ClipID, StartTime, StopTime)
Clip (ClipID, PathName, Description)
Shot (ShotID, ShotNumber, StartTime, StopTime, ClipID)
DiagramRepresentingShot (ShotID, DiagramID, StartTime)
Diagram (DiagramID, Name, Width, Height, Bitmap)
Tag (TagID, X, Y, Width, Height, Text, DiagramID)
Notes (NotesID, Text, ShotID)
NotesDiagramLink (NotesID, DiagramID, Position, Length)
NotesKeywordL ink (NotesID, Term, Position, Length)
Keyword (Term, Explanation)
KeywordFoundAtBibliography (Term, BiblioID, PageNumber)
Bibliography (BiblioID, Title, Author, Publisher)
ShotExplainsKeyword (ShotID, Term)

FIGURE 11
Relational Database Schema

C

ha
pt

er
 3

. D
ev

is
in

g
a

pl
at

fo
rm

 I
nd

ep
en

de
nt

 D
is

ta
nc

e
L

ea
rn

in
g

Sy
st

em
.

C
ri

te
ri

a
fo

r
th

e
D

es
ig

n
of

 a
 P

la
tf

or
m

 I
nd

ep
en

de
nt

 D
is

ta
nc

e
L

ea
rn

in
g

S
ys

te
m

.

42

S
ta

rt
 T

im
e co
nt

ai
ns

S
to

p
T

im
e

is

fo
un

d

at

Pa
ge

 N
um

be
r

E

xp
la

na
tio

n
T

er
m

ha
s

is

re
pr

es
en

te
d

by

S
ta

rt
 T

im
e

di
vi

de
d

in
to

is

ex
pl

ai
ne

d

in

co
nt

ai
ns

lin

k

to

L
en

gt
h

P
os

it
io

n

(1
,N

)

(1
,N

)

(1
,1

)

(1
,N

)
(1

,N
)

(0
,N

)

(1
,N

)

(1
,1

)

(0
, N

)

(1
,N

)

(1
,N

)

(0
,N

)

(0
,N

)

co
nt

ai
ns

lin

k

to

L
en

gt
h

P
os

it
io

n

(0
,N

)

(0
,1

)

(1

,N
)

Fr
am

e
W

id
th

N
am

e
L

en
gt

h
Fr

am
e

H
ei

gh
t

C
on

te
nt

ID

D
es

cr
ip

tio
n

D
es

cr
ip

tio
n

C
lip

ID

N
am

e
Pa

th

Sh
ot

ID

St
ar

t T
im

e
St

op
 T

im
e

Sh
ot

 N
um

be
r

B
itM

ap

N
am

e
D

ia
gr

am
ID

W
id

th

H
ei

gh
t

D
im

en
si

on

T
ex

t
Po

si
ti

on

X

Y

D
im

en
si

on

W
id

th

H
ei

gh
t

T
ag

ID

T
ex

t
N

ot
es

ID

B
ib

lio
ID
 T

it
le

A
ut

ho
r Pu

bl
is

he
r

R
el

at
io

ns
hi

p
T

yp
e

E
nt

it
y

T
yp

e

A
tt

ri
bu

te

K
ey

 A
tt

ri
bu

te

C
om

po
si

te

A
tt

ri
bu

te

L
eg

en
d

gi
ve

s

ex
pl

an
at

io
n

to

(0
,N

)
(0

,N
)

F
IG

U
R

E
 1

2
F

ilm
 S

tu
di

es
 T

ut
or

ia
l E

nt
ity

 R
el

at
io

ns
hi

p
D

ia
gr

am

L
og

ic
al

 C
on

te
nt

C

lip

B
ib

lio
gr

ap
hy

D
ia

gr
am

Sh
ot

K
ey

w
or

d

T
ag

N

ot
es

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

43

4. Implementation Issues.

Once the Design phase of the Film Studies Tutorial was concluded the next stage was
to proceed to its implementation. This chapter makes in first place, an overview of the
technological background required to understand how the system was implemented.
In second place, it describes the most significant problems that were identified in the
system programming and the solutions that were adopted.

4.1. Technical background

In this section, an introduction to the most relevant features of the Java programming
language that were used in the Film Studies Tutorial implementation is given. Java
Multithreaded Programming and Java Foundation Classes [JavaSoft-98a] are briefly
described.

4.1.1. Multithreaded programming in Java

As it was seen in the System Design (Section 3.4.3), the Film Studies Tutorial needs
several processes (or threads) to be executed in parallel in order to produce the
synchronisation of the data coming from the two different Information Servers. The
means Java provides to achieve this effect is Threads usage. Appendix C makes an
overview of Multi-threaded programming in general. This section focuses its attention
on how Java performs multitasking.

MULTITHREADING DEFINITION

A multithreaded program is an executable entity containing two or more parts that
run concurrently [Gosling-96]. Each part of such a program is called a thread, and
each thread defines a separate path of execution. The main advantage of
multithreading is that allows writing very efficient programs that make maximum use
of CPU, because idle time can be kept to a minimum. Java provides the Thr ead object
to support multithreading.

THREAD PRIORITIES

Thread priorities are used to decide when to switch from one running thread to the
next, i.e. when a context switch takes place. Java assigns a priority (set Pr i or i t y
method of Thr ead Class) to each thread that determines how that thread should be
treated with respect to the others. The rules that determine when a context switch
takes place are:

• A thread can voluntarily relinquish control. The highest priority thread that is

ready to run is given the CPU.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

44

• A thread can be preempted by a higher-priority thread. This is call preemptive
multitasking.

When two threads with the same priority are competing for CPU cycles, the situation
is a bit complicated. Windows 95 Java threads of equal priority are time-sliced in a
round-robin fashion. However, for other operating systems, such as Solaris 2.x,
threads of equal priority must voluntarily yield control. It must be noted, therefore,
that implementations of Java have radically different behaviour when it comes to
scheduling.

When programming threads special care has to be paid to tasks that are CPU
intensive. Such threads will dominate the CPU. For these types of threads, it will be
recommended to yield control occasionally so that other threads can run.

THREADS SYNCHRONISATION

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time, i.e. they need
synchronisation. In Java the model of synchronisation employed is the monitor. The
monitor is a control mechanism that was first defined by C.A.R. Hoare in his famous
paper of 1974 [Hoare-74]. A monitor is an object that is used as a mutually exclusive
lock, or mutex. Only one thread can own a monitor at a given time. All other threads
attempting to enter the locked monitor will be suspended until the first thread exits the
monitor. Java uses the synchr oni zed keyword to synchronise the access to methods
and objects. Please refer to for more information to [Deitel-97].

A special type of error that can happen when monitors are used for synchronisation is
called deadlock. Deadlock occurs when two threads have a circular dependency on a
pair on synchronised objects.

A given library function is said to be thread-safe when it has been implemented in
such a manner that it can be executed by multiple concurrent threads of execution.
The major problem with explicitly programmed thread support, as in Java, is that is
always difficult to be sure the locks needed have been acquired and released again at
the right time. If a method returns prematurely, for instance, or if an exception is
raised, for another instance, the lock that was imposed would not be released and
deadlock would be the result.

THREAD LIFE CYCLE IN A JAVA PROGRAM

The goal of this point is to explain the stages a thread passes through since a new
Thread type object is born by means of new Thr ead() Java statement till it dies. It is
impossible to explain how to deal with threads in Java in such a small space, but with
this brief description it was just pretended to give an idea on how it is done. Please
refer either to [Cornell-96], [Deitel-97] or the source code (Appendix F) of the
application to see actual examples.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

45

FIGURE 13
Thread Life Cycle in a Java Program

At any time a thread is said to be in one of the several thread states shown above. If
the thread has just been created is in the born state. The thread remains in this state
until the thread’s st ar t method is called; this causes the thread to enter in the ready
state and to move its point of execution to the beginning of its r un method. The
highest priority ready thread enters the running state when the system assigns the
CPU to the thread. When a thread is running is simply executing the code contained in
its r un method.

A running thread enters the blocked state when the thread issues an input/output
request. A blocked thread becomes ready when the I/O operation it is waiting for
completes. A blocked thread does not consume CPU resources even if they are
available.

When a running thread invokes the sl eep method, that thread enters the sleeping
state. In a sleeping state a thread yields control for an specified period of time, not
consuming CPU resources during that period. A sleeping thread becomes ready after
the designated sleep time expires.

When a running thread’s suspend method is called, that thread enters the suspended
state. A thread is in its suspended state when its execution is stopped momentanealy at
a given execution point in its r un method. A suspended thread cannot use the CPU

born

suspended

running

ready

sleeping

dead

blocked waiting

st ar t

not i f y or
not i f yAl l

wai t
sl eep

r esume

suspend

st op sleep interval
expires

issue I/0
request

I/O Completion quantum
expiration

dispatch
(assign

processor)

complete

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

46

even if it is available untils its r esume method is called by other thread. A resumed
thread continues its execution within its r un method at the point in which it was
suspended.

When a running thread calls wai t the thread enters a waiting state where it waits in a
queue associated with the particular object on which wai t was called. The first thread
in the wait queue for a particular object becomes ready on a call to not i f y issued by
another thread. Every thread in the wait queue for a given object becomes ready on a
call to not i f yAl l .

A thread enters the dead state when its r un method completes or its st op method is
called.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

47

4.1.2. Java Foundation Classes: A unified UI Framework.

A very important part of the work done to implement the Film Studies Tutorial was to
provide an outstanding GUI that would be highly user-friendly to the student and that
would encourage its use. The Abstract Windowing Toolkit (AWT) API, the default
GUI toolkit provided by Java, doesn’ t provide a very rich range of GUI visual
components, such as Tabbed Panes, Progress Bar, Sliding Bars, etc. If sophisticated
graphic user interface elements want to be used, the programmer is forced to code his
own GUI classes. Fortunately, the appearance of the Swing API contained in the
recently released Java Foundation Classes was the answer to the GUI needs of this
project.

WHAT ARE THE JAVA FOUNDATION CLASSES?

The Java Developer’s Kit (JDK) release 1.1 introduced the first installation of the
most significant cross-platform graphical user interface technology since the advent of
the windowing system: the Java Foundation Classes(JFC) [Nelson-98].

The Java Foundation Classes extend the original Abstract Windowing Toolkit4
(AWT) by adding a comprehensive set of graphical user interface class libraries. Java
and the AWT freed developers from being tied to a specific or proprietary platform
for GUI application development and deployment. However, sophisticated
applications for the enterprise could not still be produced due to the lack of a rich
range of visual components. JFC solves this issue.

The Java Foundation Classes empowers developers on all platforms, and brings the
future of portable GUI development here today: Write Once, Run Anywhere. It is
composed of the following APIs:

• " Swing" GUI Components

These components are written in the Java language, without native window-
system specific code. This facilitates a customisable look and feel without relying
on the native windowing system, and simplifies the deployment of applications.

• Accessibility API

The Accessibility API is an interface that provides assistive technologies such as
screen magnifiers and audible text readers. These technologies are designed to
help people with disabilities to interact and communicate easily with GUI
components.

• Java 2D API

Java 2D is a set of classes for advanced 2D graphics and imaging. Java 2D
supplies Java applications with many different paint styles, mechanisms for
defining complex shapes, and classes and methods for fine-tuning the rendering
process.

• Drag and Drop API

4 Java default Graphic User Interface Toolkit.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

48

Drag and Drop is a technology that enables data transfer across Java and native
applications, across Java applications, and within a single Java application.

SWING

From an architectural point of view, the Swing component set extends the Abstract
Windowing Toolkit (AWT) [Fowler-98]. Swing is a graphical user-interface (GUI)
toolkit formed by a set of object-oriented classes designed to help programmers write
graphical user interfaces for their Java programs.

Swing comes with a special cross-platform look and feel, named metal5 or the Java
look and feel, that always presents a set of components with the same appearance and
behaviour, no matter what operating system the application is running on. With Swing
your applications can not only run in all the platforms but they can also provide you
the same look and feel (way of interaction with them) no matter which platform you
are working with. However, you can still make a program developed with Swing look
and feel specifically for the computer platform it resides on, without any kind of
modification in the source code [Andrews-98].

SWING VS. AWT

The approach followed by AWT to implement a portable GUI environment is to layer
an API or class library on top of the native toolkit. Also known as the “peer” model,
each Java component class “wraps” the peer or native implementation.

The AWT greatest success was to shield developers from each platform
idiosyncrasies and yet produce 100% portable code with a native look and feel.
However, GUI developers soon complained that the AWT’s peer model was too
restrictive in rendering and event handling and that it was difficult to extend or
override different aspects of a component.

The approach followed by Swing to implement a portable GUI environment is to
provide a single toolkit and then emulate the native look and feel on each platform.

Swing set contains far more components than the pre-Swing AWT toolkit did, and
Swing components have many new features and capabilities that old-style AWT
components did not have. For instance, with Swing a button can have associated a
picture apart from the typical text. The most important difference between Swing and
the pre-Swing AWT toolkit is that Swing components don't borrow any native code
from the platforms on which they run. In other words, Swing does not use any
platform-specific implementations or “peer” . Instead, Swing creates its components
using pluggable look-and-feel (PL&F) modules that are written from scratch and don't
use any native code at all.

5 The Film Studies Tutorial was implemented to have by default “metal” look and feel. However, the
look and feel of the Tutorial can be easily changed through a Menu Choice.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

49

The most outstanding feature of Swing is its support of a platform-independent
pluggable look and feel. This feature gives a user the ability to switch the look and
feel of an application dynamically, at runtime, while your program is being executed.
Swing allows an application running for example in a Windows platform to have the
look and feel of a Motif environment, or to have the platform independent Java look
and feel called metal. Change from one environment look and feel to the other, can be
easily produced just by selecting at run-time a menu choice.

Figure 14 shows the result of implementing this feature in the Film Studies Tutorial.
This feature was implemented through a Menu Choice in the Menu View that allows
selection among Metal, Motif or Windows Look and Feel.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

50

FIGURE 14
Swing Pluggable Look and Feel

Window Look and feel

Java cross-platform Look and Feel
“ Metal”

Motif Look and feel

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

51

4.2. Implementation Problems and Solutions

In this section a tour is made through all the problems faced during the
implementation of the system. The goal of this section is to summarise problems
identified in the development of this Interactive Distance Learning system and to
discuss the solutions adopted. It is hoped this section will serve as reference for future
developers of systems of this nature to reduce the time invested in their software
implementations.
 �

Size of the Video Panel and Diagram Panel

An important conclusion that can be drawn when the design of a multimedia
system, as the one proposed, is faced is that the GUI framework built to integrate
the different media will have to be designed on the basis of the special features of
the data. If the GUI is first designed and later the media data (video and graphics)
has to be accommodated to them numerous problems will be found.

This situation arose when the programming of the Tutorial System was initiated.
A video size that would suit nicely with the rest of the GUI components of the
system was being looking for. It was even initially considered to resize the GUI
component (panel) in which the video was displayed. However, we overlooked
one of the special features of MPEG-1 (PAL) encoded video, the video format
used in this Tutorial. This feature is that its frame size is 352*288 pixels.
Displaying the video in a panel whose size was different to this resulted in poorer
quality video because a scaling procedure had to be applied to the video frames.
The solution was therefore to develop a Video Panel of fixed size, 352*288 pixels,
in order to avoid the mentioned scaling algorithm.

A similar problem occurred when visualising the GIF images representing the
Diagrams that give explanation of how the movie is recorded. Once again was
obviated that if images have to be displayed in a size that is not their actual one, a
scaling algorithm has to be applied. This procedure usually results in a lower
image quality unless a high CPU consuming smooth scaling method is applied.
Thus, in order to produce the most lightweight application it was decided to make
all the diagrams of the same size and display them in a fixed size panel of those
dimensions.

 �

GUI development challenges

As mentioned in the above point, the creation of the application GUI began with a
main constraint, the size of the displaying areas of video and diagrams had to be
fixed. A considerable amount of time was invested to achieve this effect in the
user interface. The solution to this problem was the new Layout Manager,
BoxLayout that comes with the last release of the Swing GUI Components of JFC
[Nelson-98].

Once the components of the GUI were properly arranged, the problem passed to
the development of some special GUI components that were not found neither on
the default AWT (Abstract Windowing Toolkit) nor on the Swing Toolkit. The

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

52

Film Tutorial proposed demanded levels of interactivity that could be satisfied
only by the programmer implementation of new GUI classes. In what follows a an
explanation of two new GUI that had to be created is given:

• Notes Panel containing text with Diagram and Keyword Links.

This GUI component required was difficult to implement because there was
not found any built-in GUI component in Java that allows text display with
click-able words. A new class, called TextAreaWithLinks (see Appendix F:
Source Code), had to be developed to achieve the required effect. The artifice
employed was to implement the Notes text as a set of Labels (for normal text)
and buttons without borders that looked like normal labels (for the links).

• Pop-Up Tip Window appearing after user click on Keyword Link.

The component required was a Windows-help like component that appears
when the user clicks over a Keyword Link and disappears when the user clicks
over the component, or somewhere else making the element lose the focus.
The KeywordTip class was created to solve this problem. Its implementation
is based in a Java Mouse Listener.

 � Synchronisation between Video Content and Educational Data.

When the media to synchronise with the video played is not highly resource
demanding in terms of network communication, CPU and memory,
synchronisation is relatively easy. For example, if text has to be synchronised with
video, text can be retrieved from a database and be displayed soon enough to
appear to the user that the text is synchronised with the video position. A small
buffer is used sometimes to keep the text to be displayed subsequently. However,
if images have to be synchronised with video, they definitely need to be retrieved
in advance and loaded to memory due to their bigger size and CPU resources
needed when rendered.

Moreover, another problem that occurs when synchronising media with video is
that the video time does not necessarily coincide with the system time. A second
of video does not necessarily elapses one system second, but usually a bit more.
Therefore the system time can not be taken as the “wall clock” to synchronise
video and the other educational media data but the video time should be
considered instead. It is worth remembering that the educational data associated to
the video has timestamps that indicate at what instant during the video playing
that data should be shown.

Synchronisation in the Film Studies Tutorial was achieved by creating a thread,
DemoWorker (see Appendix F: Source Code) that uses a polling technique in
which the position of the movie is tracked with certain time frequency. Taking
into consideration that a PAL MPEG-1 encoded film needs to be played at a rate
of 25 frames per second, to achieve good quality video, it was decided to enquiry
the movie player position every 10 frames time (400 ms). The DemoWorker
process can be send to sleep for 400 ms, and in this way release the CPU for being

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

53

used by other threads in the mean time. This time was experienced as a good
trade-off between system performance and synchronisation.

 � Mail System.

To implement the mail system, a thorough understanding of the SMTP [Postel-82]
protocol was needed and of Java sockets programming [Deitel-97]. The Mailer
class in the source code (Appendix F) corresponds to the email system
implementation.

 � Application Performance

The main problem found when the first running version of the system was
completed is that despite all the functional requirements of the system were met,
the performance of the Demo distanced much from appropriate. Its main
inconvenience was that due to all the processing required during the display of the
educational data associated to the video content, the movie playback was
interrupted occasionally and produced an unpleasant jerking effect.

The solution thought was to give the thread (Player object) in charge of playing
the movie the highest system priority and to the thread in charge of synchronising
the educational data (DemoWorker) with the video content minimum priority.
Moreover all the stages the DemoWorker thread passes through where high
processing is involved were re-programmed in a way that would always allow the
CPU to be yielded to the Player thread to minimise the glitching effect.

Despite all the effort paid in this issue, the author still could not avoid this
problem completely. Java thread programming was studied carefully in order to
provide the most optimum solution, however the final result although rather good
is not the one the author would have wished. The only reason it can explain this
unresolved problem is that Java is interpreted and its performance still distances
quite a lot from other compiled programming languages that produce native code.
As indicated in the further work section, a compilation of the Java code to native
code is suggested as a further performance improvement.

The approaches followed to reduce the time spent during each DemoWorker
thread stage were:

• Load to memory all the Educational Data needed to be displayed in real-time.

In the Tutorial Initialisation all the educational data that needs to be displayed
concurrently with the video (keywords and Diagrams) is stored into memory.
This results in a delay during the application initialisation. However, the
DemoWorker thread does not have to access the database while the Demo is
ON. This would produce the DemoWorker to be blocked until the database
operation is completed. In the mean time the Player thread would continue
rendering the video, making that when the database operation finally returns
and the DemoWorker is assigned the CPU by the dispatcher the movie is now
in a position where the educational data retrieved is not valid any more.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

54

A more intelligent approach could have been taken by having in memory only
the currently needed educational data and the one that will be needed in the
following seconds of the demo. A low priority thread could have been
employed to control the educational data buffered and retrieve new
information when needed. Time limitation disallowed proceeding in this task
and has been suggested as a further improvement of the system.

• Use the MediaTracker to load all images to memory to save displaying time.

The MediaTracker class provided by the AWT API allows the programmer to
control when an image has been completely loaded to memory. The retrieval
of an image from disk in Java is done asynchronously and the usage of the
MediaTracker class is the only way to ensure that when an image needs to be
displayed has already been loaded into memory.

• Prioritise Player Thread with respect to DemoWorker Thread.

As it has been explained, threads with higher priority receive more ‘quantum’s
of CPU that the ones with lower priority. Therefore, with this assignation of
higher priority to the thread in charge of displaying the movie most of the
CPU time is invested in this processing.

 � Multi-thread programming and Swing.

Several problems in the stability of the system were found as a consequence of
combining multiple-threads and Swing GUI Components. Swing components
bring many benefits in GUI development, as it has been commented, but have
associated to them the following drawback:

“ Once a Swing component has been realised6, all code that might affect or depend
on the state of that component should be executed in the event-dispatching
thread7” [Muller-98a]

The problem is that Swing Components Library is not thread-safe. A given library
function is said to be thread-safe when it has been implemented in such a manner
that it can be executed by multiple concurrent threads of execution. Swing was not
implemented in this way because usually most post-initialisation GUI work occurs
in the event-dispatching thread7. Once the GUI is visible, most programs are
driven by events such as button actions or mouse clicks, which are always handled
in the event-dispatching thread.

However, there are some situations in which programs need to perform non-event
driven GUI work after the GUI is visible. For instance, the programs whose GUI
must be updated as the result of non-AWT events. This is the case of the system
proposed where the GUI must be modified when the Tutorial Demo is ON, by
updating the Diagram Panel with new Diagrams, the Keyword List with new
Keywords, the Movie Time Slider with new Video Positions, and displaying the

6 A Swing component is realised when the component has been displayed.
7 The event-dispatching thread is the thread that executes drawing and event-handling code.

Chapter 4. Implementation Issues

Criteria for the Design of a Platform Independent Distance Learning System.

55

new Shot number in the Shot Number Display. The problem identified was that if
another thread like the DemoWorker in this system was updating Swing GUI
components while an event occurred, two threads (SwingWorker and the event-
dispatching thread) could have uncontrolled access to the same component. Due to
the fact the methods in Swing components are not synchronised a race condition
could be experienced and an unpredictable situation would be reached leading the
program to crash in some occasions.

The SwingUtilities class provides two methods to help the programmer run GUI
updating code in the event-dispatching thread and in this way solve the non-thread
safe problem associated to Swing. See [Muller-98b] for more details. The two
methods that can be applied for this purpose are:

• invokeLater(), requests that some code be executed in the event-dispatching

thread. This method returns immediately, without waiting for the code to be
executed.

• invokeAndWait(), acts like invokeLater(), except that this method waits for

the code to be executed.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

56

5. Testing & Experimental Results.

After the implementation of the system was concluded the important testing phase
was initiated. Black Box and White Box Test techniques described in [Pressman-93]
were employed for carrying out the tests. Black Box Testing techniques consist of
testing the fulfilment of the specific functions the system was developed for. White
Box testing, on the other hand, is concerned with ensuring the reliability of the
system, even in the non-common situations the system might pass through.

Bearing in mind the real-time nature of the system, due to its real-time media needs
and multithreading features, special tests had to be undertaken to control the
synchronisation of both media and multiple thread execution. As result of this
process, several performance measurements were made, the results of which are
included in this section.

5.1. Functional Testing (Black Box Testing)

During this stage, the functional requirements of the system were tested. The focus of
attention was to check that the functional requirements established at the beginning of
the project were achieved after its implementation. Moreover, the tests carried out
helped to identify:

1. Incorrect or overlooked functions.
2. GUI bugs.

Due to the time in which the development of the system took place, summer time, it
was not possible to carry out these tests with the actual targets of the system, the
students of the MA in Film Studies. However, staff of the Department of Art, History
& Theory of the University of Essex, organisers of the MA in Film Studies,
voluntarily offered to test the system and evaluate if the system fulfilled their initial
requirements.

Its work was to test and evaluate the following three aspects of the application:

1. Test the integration of the different media elements employed in the Tutorial and

evaluate the degree in which the educational purpose of the system was achieved
through them.

2. Test the interactivity of the system and evaluate its appropriateness to assist the

students in the learning process.

3. Test the email system provided by the system and evaluate its usefulness as a

means to communicate the students with the course tutor.

The first aspect of this evaluation, the integration of the different media elements, was
estimated as really outstanding. The synchronous and simultaneous visualisation of
movie, diagram animation and keywords when the Tutorial Demo is running was
considered as highly comprehensive. The suitable layout of Video Panel, Diagram
Panel and Keywords List was highlighted as paramount to easily follow the Tutorial,

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

57

despite the wide range of dynamic elements (Movie, Diagram Animation, Keywords)
on it. Figure 15 shows the outlook of the Film Studies Tutorial Demo while running.

FIGURE 15

Film Studies Tutorial when Tutorial Demo is ON

The second aspect tested was the interactivity of the system. Film Studies Staff
pinpointed the user friendliness and rich sort of interactivity facilities provided by the
system. The Tip Tags (see Figure 16) that appear when the user moves the mouse
over the different Film Studies Tutorial Controls (Player Controls, Tool Bar, etc.),
were considered as very helpful to make the user prompt learn how to use the system.
The rich sort of facilities provided for the full VCR-like control over the Demo Film
(play/pause, next and previous shot, fast forward or rewind, Volume Control), not
only fulfilled their requirements but exceeded their expectations. It was considered as
very logical the capacity of allowing the user pause the application by clicking, the
Diagram Panel, the Keywords List or the Player Controls.

Positive comments were received as well about the interactive facilities provided
when the Tutorial is paused. The facility of receiving Keywords explanation whether
through a click over a Keyword List Item or a highlighted keyword on the Tutorial
Notes (see Figure 17) by means of the Keyword Explanation Area and a pop-up Tip
Window respectively, were considered as very useful. The click facility over Diagram
Links (see Figure 16) resulting in a new Diagram displayed in the Diagram Area to
allow the comparison between the current shot and previous ones was deemed as
highly instructive as well. Figure 16 and 17 show the situation in which the Tutorial
Demo is stopped in two different instants inside the shot 14 of the Tutorial. Different
operations are executed in each case.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

58

FIGURE 16
Tutorial Demo paused, Diagram Link clicked and Mouse Moved over Resume button.

FIGURE 17
Tutorial Demo paused, Keyword List Item and Keyword Link clicked.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

59

The Glossary and its quick access index facility was judged as very useful to help the
student remember Film Editing terms and provide access to bibliography sources
where further information about a term can be found. Figure 18 shows the situation in
which the student has clicked the ‘M’ letter to have rapid access to all the Film
Editing and Style terms that start by that letter.

Finally the usefulness of the e-mail facility (see Figure 19) as a means to
communicate students and course tutor was evaluated. Tutorial testers deemed it as a
very practical tool to provide the course tutor feedback of the difficulties encountered
by the students during the Tutorial execution. By means of this e-mail system student
and course-tutor which are de-coupled in space and time are brought together. The
student does not feel alone in front of a machine any more. Thanks to the authoring
tool8 provided as a complement of this system, the Tutor could improve the
educational data contents associated to the Demo Movie, by for example rewriting a
keyword explanation where the students found problems.

8 This authoring tool has been developed by Karina Chong, another MSc student in the Department of
Computer Science, University of Essex.

FIGURE 18
Glossary panel after user clicks over ‘M’ letter index.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

60

FIGURE 19
Film Studies Tutorial Email facility.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

61

5.2. Reliability Testing (White Box Testing)

Due to the real-time and multi-threaded features of the system developed, two major
problems were faced in the production of a reliable and stable system:

• Synchronisation of the different media elements.
• Thread synchronisation.

Synchronisation was a critical issue in this system implementation because of the
need of integrating data coming from two different Information Servers, a Relational
Database Management System and a Video Server. Data obtained from the RDBMS
contains timestamps that indicate where during the video playback associated
educational data has to be displayed. One of the main objectives of the system
produced was to achieve a seamless integration of the media in a way that the
different origin of the data would never be perceived by the final user.

The solution to the synchronisation of the different media was achieved by means of
Java threads. Java threads allow concurrent execution of tasks within a process. In the
case, of the system produced, it was necessary to have two different threads, the
thread that plays the movie and the thread that controls the movie position and ensures
the pertinent educational data is displayed. Multithreaded programming improves
program’s performance but on the other hand makes debugging much more difficult.
When several threads share a resource and have access to it simultaneously, race
conditions can arise making the application crash. Therefore, during this reliability
testing all the code sections run by these two threads were carefully studied. The
synchr oni zed Java keyword was used in all the code and data sections of the
program where a synchronisation anomaly between threads could have occurred.

During the implementation phase, the programmer made numerous tests, examining
all critic situations where anomalies could occur. Those critic situations were when a
VCR-like control operation is carried out by the user, i.e. when pausing, resuming,
moving to a new position of the Demo, etc. In all these cases, the media
synchronisation, after the proper bug corrections, was achieved.

The stability of the system was highly affected by the usage of threads. As it was
described in the Implementation Issues section of this work, when an event occurs, a
conflict can arise between the thread in charge of attending the event, and the thread
in charge of controlling the demo execution. Moreover, the usage of Swing made it
even more difficult due to its no thread-safe nature. Fortunately, the papers [Muller-
98a] and [Muller-98b] helped a lot on the solution of this problem.

The users that tested the system pointed out its high reliability. During their hands-on
sessions, no system crash was experienced. The synchronisation of video and media
data achieved was completely seamless according to them.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

62

5.3. Performance Testing

The needs of real-time media in the Film Studies Tutorial required that the
Performance Testing stage should be considered in great detail. To achieve an
acceptable level of performance was without doubt the most complicate and
challenging part of this system development.

To begin with, the client/server architecture of this system should be considered. To
achieve a homogeneous level of performance in a system with these features is
obviously much more complicate that to do it in a system that runs on one machine
and does not need to communicate with others. Network delays, and the delays with
which servers attend requests from clients are factors that influence in the overall
system performance. Therefore, during the performance testing ample problems were
experienced because the results obtained were lower than expected not due to bad
programming, but to problems far beyond it, such as Sever processing overload due to
other tasks or network hardware problems.

The hardware description of the client/server architecture in which the system was
tested is:

• A Sun SPARCUltra 4 under Solaris 2.5 with 64 Mbytes of memory, where the

Relational Database Server and Video Server are run.
• Three client machines, Pentium II at 233 MHz with 64 MB under Windows 95.
• A Fast Ethernet LAN at 100MHz that allows the communication between the

client machines and the server.

On the other hand the features of the video streamed in the Film Studies Tutorial are:

• Video Format: MPEG-1 System
• Full Length: 13 minutes and 29 seconds
• File Size: 116.954.070 bytes
• Frame rate: 25 fps
• Bit Rate: 1650800 bps
• Normal Size: 352 * 288 pixels

The Video Server transfers full-motion video in a constant bit rate being the size of
the UDP packets employed of 8,192 bytes9. Providing that the video bit rate is
1650800 it can be drawn that approximately 25 UDP10 packets/sec are transmitted
from server to client, with a 40 ms gap between them. However, due not only to the
network delays but also to the physics of the server’s hard disk, latency and seek
times have also to be considered, the actual UDP packets rate sent is lower.

The client machine has a default video buffer of 0.5Mb to receive the video streamed,
i.e. it stores approximately 2.5 seconds11 of video. If the server has to send full-motion
video to many client machines then each client should serve a large enough buffer to
hold enough data to compensate with the increased possibility of network delays.

9 This is the maximum UDP size
10 1650800 bits per second/ 8 bits per byte/ 8192 byte per UDP packet = 25,189 packets/second
11 512K * 1024 bytes/K / (1650800bits / 8 bits/byte) = 2.54 seconds

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

63

Moreover the Tutorial System needs to load to Dynamic Memory the Educational
Data needed in real-time, an estimated amount of data corresponding to 8MB. This is
due to the fact that in order to speed up the execution of the system it is required to
load to memory all the keywords and diagrams associated to each shot of the movie.
Appendix D: Dynamic Memory Storage Needs gives a detailed description of the
Heap Memory storage needs estimation that was made.

To the Dynamic Memory Storage Needs we have to add the memory needed to load
the Application code and the non-dynamic data. Therefore, it can be concluded that
the memory needs of the Film Studies Tutorial are very high. The Film Studies
Tutorial should be run in system with 64 MB or more.

During the performance testing of the system the most complicate problem that was
faced was to avoid the unpleasant jerking effect that occasionally appears during
video playback. Multiple factors were determined to influence in this glitching effect.
In what follows these factors are enumerated and when applicable the solution that
was or could be adopted:

1. Interpreted nature of the language in which the Tutor ial has been

programmed [Kramer-96].

Java language programs performance, even when JIT12 compilers are used, can
not be compared with the performance of other programming language programs
where native code is generated. In the execution of the Film Studies Tutorial the
JIT compiler that comes with the JDK 1.1.6 is used. However, it is expected that if
the application would be compiled to native code some performance improvement
could still be achieved. IBM has recently released a Java compiler that suits the
Java programs compiling necessity. IBM High Performance Compiler for Java
allows to obtain optimised native code from Java applications. Read [IBM-98] for
further information. It is freely downloadable from
ht t p: / / www. al phaWor ks. i bm. com/ f or mul a.

Experimental test where made with the simplest possible application that can be
written in Java to enable video playback from OVS. The goal was to determine
the video quality difference experienced when using the default Video Player that
comes with the installation of Oracle Video Client 3.0 instead of the simple
application implemented by means of the Oracle Video Client Library. The results
reflected that the quality obtained with the Java application, although acceptable,
were poorer in quality than the ones obtained with the default OVC Player. These
results could be explained arguing that the interpreted nature of Java makes
applications developed on it run slower that they would do with other non-
interpreted languages.

12 Short for just-in-time compiler, a code generator that converts Java bytecode into machine language
instructions. Java programs compiled by a JIT generally run much faster than when the bytecode is
executed by an interpreter.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

64

2. Work Load of the server that is providing the video.

An important factor in the resulting performance of the video playback is whether
the server machine streaming the video is performing other time consuming tasks
or not. When other processes of heavy load are running on the server host, apart
from the Oracle Video Server process, the video playback is affected because the
server is not capable of streaming UPD video encoded packets to the clients, with
the required frequency.

3. Platform on which the system is running

Windows 95 multitask handling is not as good as Window NT. Windows NT was
especially designed to host applications that require critical use of resources. A
proposed suggestion that would also help to increase the video playback quality
would be to run the Tutorial on a Windows NT platform rather than a Windows
95 one. Java programmers using multiple threads in their programs have
experienced significant performance enhancements in their applications when
switching the platform in which they run them from Windows 95 to Window NT.

4. Lack of memory assigned to the Java Vir tual Machine.

Some of the tests carried out demonstrated that some occasional video jerks
occurred after hard disk access when new Diagram visualisation takes place.
These disk accesses are apparently due to memory swapping from disk to
memory. The explanation should be that the memory space assigned to the Java
Virtual Machine [Kramer-96] is exhausted.

As it was highlighted before, the memory resources required by the Film Studies
Tutorial are very high. It needs 8 Mbytes only for the Educational Data that needs
to be stored at Dynamic Memory in the initialisation of the system, not taken into
consideration the memory required for the code and non-dynamic data of the
Tutorial. A solution to this intensive need of memory should be to increase the
memory resources of the machine in which the Tutorial is run to 128 MB. A
partial solution was taken by assigning a bigger size of heap memory to be used
by the Java Virtual Machine by means of the j ava

13 interpreter switch –mx.

5. Network problems

Problems in the Server network card resulted in that the Fast Switched Ethernet
LAN existing to link client machines to server, did not actually operate to the
expected 100 Mbps, but to 10 Mbps instead, and in half duplex mode. To operate
in half-duplex mode was especially awkward because if communications needed
to take place in both senses from server to client and on the other way round, the

13 The Film Studies Tutorial is run using the line command:
j ava –mx16000000 Fi l mSt udi esTut or i al
The –mx switch indicates the necessity of assigning 16MB for Dynamic Memory Allocation to the
Java Virtual Machine.

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

65

transmission time should be shared between the traffic of each direction. A
solution of this networking hardware problem is considered would help in great
measure to the improvement of the Film Studies Tutorial overall performance.

6. Polling mechanism to track current Video Position.

In order to track the position inside the Film where the Demo is at a given instant
it is necessary to continuously enquiry the Server about the stream position it
pumped last time. Due to the network problems explained in the previous point,
when this polling mechanism was done too continuously, UDP video packets
coming from the server where forced to share the bandwidth with the control
packets sent from both peers of the system, to enquiry and give answer to the
current video position. The effect of this delay in video delivery resulted in that
the video client buffer was eventually emptied and therefore the application
execution had to be stopped briefly to fill the video buffer back. The solution
found to tackle this problem was to increase the period of time between two
continues polls in order to reduce the traffic generated to enquiry for video
positions. Initially, this polling mechanism was programmed to occur every 80
ms, but finally it was thought that in order to increase the overall system
performance should be set up in 400 ms. This period of time was taken as a
suitable trade-off between performance and media synchronisation. If bigger
periods of time would have been chosen the performance would have been
increased even more, but the synchronisation of the media would have suffered as
consequence.

7. Quality of the streamed video

When experimental tests where made with different videos it was observed that
depending on the video, the final video playback quality obtained in the client side
varied significantly. Therefore, it can be concluded the video encoding quality has
as well its influence in the condition video playback occurs.

8. Multi-threaded nature of the system.

The jerking effect was also produced in certain measure by the concurrent
execution of multiple threads inside the Film Studies Tutorial. Experiments were
done to run the Film Studies Tutorial with no threads apart from the one in charge
of playing the video. Slight improvements of video quality were achieved. This
problem could be due as well to the way in which Windows 95 handles
multitasking. As it was described in the section “ Implementation Issues” of this
work numerous approaches were taken to enhance the overall performance
obtained by the several threads parallel execution.

9. Oracle Video Server 3.0.3 Beta Release

Chapter 5. Testing & Exper imental Results.

Criteria for the Design of a Platform Independent Distance Learning System.

66

Numerous stability problems were found in the Beta OVS release that was used. It
is hoped that these problems will be solved when the actual release was
implemented. It is possible that with the final release of the product, deficiencies
identified in the Oracle Video Java Library will have been corrected.

Chapter 6. Fur ther Work and Research.

Criteria for the Design of a Platform Independent Distance Learning System.

67

6. Further Work & Research.

This section summarises some pending improvements that could have been applied to
the system developed and some alternative approaches to be followed in its solution.
These alternative approaches could be taken as suggestions for future MSc
Dissertations in Video Server technology domain.
 �

Compile the code

In the Performance Testing Section of this work it was pinpointed that a way to
improve the performance of the system would have been to generate native code
for the Tutorial. Some popular Java development environments such as Symantec
Cafe already provide the facility of generating ‘exe’ files from Java source code.
However, there is only one compiler available that supports the Swing14 package,
the IBM High Performance Compiler for Java [IBM-98]. It is hoped that in short
more compilers supporting the Swing Package will come to market.

 � Test the application on different platforms.

Time constraints disallowed the system be tested on different platforms to the one
in which it was developed, Windows 95. It would have been worth to prove the
multi-platform nature of the produced system by running in on a Solaris platform.
Moreover, it would have been very interesting to evaluate the different
performance results obtained when the application is run on different platforms
such as Windows NT or Solaris. Note that potential problems would have been
identified when porting the application to UNIX platforms due to the different
way in which Java threads are handled in this environment.

 �

Memory Usage Improvement

A more intelligent approach to the Memory Management of the Film Studies
Tutorial could have been taken by buffering in memory only the currently needed
educational data and the one that will be needed in the following seconds. The
approach followed was to load all the Educational Data needed in real-time during
the system initialisation. A low priority thread could have been used to control the
Educational Data buffered and retrieve new information when needed. Time
limitation disallowed to compare this approach with the one used and determine
the most cost-effective one. Note, however, that system overall performance could
suffer by adding a new thread of execution. Memory usage would be improved
but system performance might decrease.

 �

Develop a Web-based System

The Film Studies Tutorial stand-alone application could be easily mapped to an
applet to be included into an HTML document and in this way be run through

14 Swing Package was released last March.

Chapter 6. Fur ther Work and Research.

Criteria for the Design of a Platform Independent Distance Learning System.

68

Web Access. However, the following considerations should be taken before
proceeding:

• Due to Applet Security constraints the Web Server providing the Web Page

where the applet would be embedded should reside in the same machine where
the Video Server and the Educational Database Server are. This means that
both OVS and RDBMS will have to be running in the same machine where the
Web Server is located, since one of the security restrictions of an Applet is
that it only allows the creation of network connections to the computer from
which it was loaded.

• Java applets created with the Oracle Video Java Library can be run from the

command line, in an applet viewer, or in browsers that permit the execution of
unsigned applets, such as Sun’s HotJava and the JDK appletviewer utility, but
not in Netscape Navigator or Microsoft Internet Explorer.

• The network bandwidth needs of the Film Studies Tutorial are very high. As it

was explained in the chapter Client/Server technologies for streaming Video,
Internet is not still suitable for the delivery of high quality real-time media,
such as full-motion video.

Despite the two constraints just mentioned it would still be worth considering a
Web-based Oracle-technology based Film Studies Tutorial, because hypermedia
capabilities could be added to the system. These facilities would allow the
students have access to other related educational material located at remote Web
sites.

 �

Remove the Oracle-based technology from the client-side of the system.

The Oracle Video Client uses the Oracle Video Interface (OVI) to access
streaming video from the Oracle Video Server. The separation of the client
interface from the basic streaming functionality supported by OVI means that the
functionality of the Oracle Video Server can be harnessed from a variety of
platforms, without worrying about the underlying mechanisms that handle the low
level tasks.

As a consequence, to be able to run an application developed by means of any of
the Client Interfaces provided by OVC, it is first needed to proceed to a minimum
installation of Oracle Video Client. This installation includes OVI and as well the
client interface the application was developed in. For instance, in the case of the
Film Studies Tutorial, the Oracle Video Java Libraries should be installed in the
client side of the system. In essence, Oracle Video Server 3.0.3 provides powerful
and relatively easy ways of producing video-on demand applications, but at the
same time forces the developer to distribute together with the application the
Oracle Video Client product. This necessity ties up the Film Studies Tutorial
developed to Oracle proprietary software.

An interesting research topic for future efforts in OVS streamed video-based
applications development would be to try to remove the Oracle client side

Chapter 6. Fur ther Work and Research.

Criteria for the Design of a Platform Independent Distance Learning System.

69

software layer and employ alternative technologies to achieve the same effect.
The main issue would be to eliminate the OVI part of the Oracle Video Client.
The alternative software provided should handle the technical aspects of
communicating with the server, controlling the real-time stream, and audio-video
playback.

Two main aspects should be considered in order to replace OVI functionality:

• Communicate client and server and control the video streaming process.

Oracle Media Net architecture allows the communication between OVC and
OVS. It is basically an Oracle implementation of the CORBA [CORBA-98]
Distributed Object Architecture that allows the invocation from OVC of
remote services provided by OVS. A detailed description of the services
provided by OVS was given in Section 2. A Java implementation of CORBA
would be necessary to communicate the client application with the OVS by
means of OMN. Alternatively, the Java Native Interface could be employed to
gain access to OMN through native code.

• Decode the streamed video and render it in the application user interface.

The standard Java Media Framework (JMF) [JavaSoft-98c] API provided by
JavaSoft could have been used for this purpose. JMF is a collection of classes
that enable the display and capture of multimedia data within Java applications
and applets. It specifies a unified architecture, messaging protocol and
programming interface for playback, capture and conferencing of compressed
streaming and stored timed-media including audio, video, and MIDI across all
Java enabled platforms. Java Media Framework package is freely available
and can be downloaded from the Java Media Framework Home Site at
http://www.javasoft.com/products/java-media/jmf/index.html.

Providing the communication between client and server and the video
streaming process was solved, once the streamed video arrived to the client
machine it would be relatively easy to de-packetise it, decompress it and
render to the screen thanks to the powerful Player class found at JMF. Some
experiments were done with JMF library with very promising results, however
the lack of time to implement the communication between the client and
server through OMN disallowed going any further.

 �

Generate a new Tutor ial using Apple’s QuickTime Architecture.

An interesting suggestion for future work would be to follow an alternative
technology approach to the solution of the problem, the QuickTime leading edge
technology [APPLE-98].

Apple Computer’s QuickTime is a software architecture that makes possible to
create, integrate and publish all types of digital media. Quicktime has been
designed to simplify the task of working with and integrating the widest possible
range of digital media types, not just sound and video.

Chapter 6. Fur ther Work and Research.

Criteria for the Design of a Platform Independent Distance Learning System.

70

QuickTime is composed of three distinct elements: the QuickTime Movie file
format, the QuickTime Media Abstraction Layer and a rich set of built-in
QuickTime media services. QuickTime Media Abstraction Layer is an advanced
component-based software architecture that provides software and hardware
developers full access to the built-in QuickTime services. With QuickTime users
are assured that all digital media content can be authored in a common file format
which also supports real-time video and audio streaming. In essence, QuickTime
eases synchronised media streams delivery over the Internet. The QuickTime
SDK can be downloaded from http://www.apple.com/quicktime/developers/qt3sdk.html.

QuickTime in its latest version, 3.0, includes built-in support for 10 different
media types (video, audio, text, timecode, music, animation, tween, MPEG, VR,
3D). QuickTime Movie file format has been adopted as the starting for an MPEG-
4 standard [JavaSoft-98b]. Last generation Education On Demand systems are
starting to employ Apple Computer’s QuickTime technology because it eases a lot
the synchronisation of video and educational data [Ma-98].

Chapter 7. Conclusion.

Criteria for the Design of a Platform Independent Distance Learning System.

71

7. Conclusion.

This work has provided a study of how full-motion streamed video can be applied to
Interactive Distance Learning through a practical case, a Film Studies Tutorial. From
an end-user’s view, the practical outcome of this project reflects the benefits that a
broadband multimedia environment can bring to speed up the learning process for
students. The originality of the work done with respect to other existing video-based
Distance Learning systems has been the analysis and design of a high-performance
open software solution to computer-based Distance Learning.

Java and its leading edge Swing GUI Toolkit were used to provide a platform-
independent client system that applies Java philosophy: write once, run anywhere,
and goes one step forward by supplying a cross-platform GUI look and feel. The Film
Studies Tutorial developed presents GUI components with the same appearance and
behaviour, no matter what operating system the application is run on.

The adoption of Java as the deployment language in which the system was produced
brought many benefits, for example multi-platform and GUI richness, but on the other
hand innumerable problems were encountered in achieving acceptable levels of
performance on Windows 95 platforms. Seamless synchronisation of media obtained
from two different sources, an Oracle Video Server 3.0.3 and an Oracle 7.3.2
Relational Database System, imposed critical performance requirements for the Film
Studies Tutorial. The interpreted nature of Java and the need to have multiple threads
of execution running concurrently highlighted several issues, as it was analysed in
Chapters 3 and 4.

Java language is a powerful, flexible and fully object-oriented language that eases
programmer’s life. Nevertheless, its interpreted nature, despite the JIT compiler
adoption, does not provide the high performance requirements to recommend its
usage to systems with real-time needs. It is hoped that further work in this area will
help future implementers achieve the ideal of high-performance real-time multi-
platform Java applications.

References.

Criteria for the Design of a Platform Independent Distance Learning System.

72

References.

[Andrews-98]
Mark Andrews, “ Introducing Swing“ , The Swing Connection, JavaSoft WebSite,
March 1998
http://www.javasoft.com/products/jfc/tsc/swingdoc-static/intro.html

[APPLE-98]
“QuickTime White Papers & Fact Sheets” , Apple Computer, Inc. 1998
http://www.apple.com/quicktime/news/facts.html

[Baltz-98]
Nancy Baltz and Christian Bedford. “Oracle Video Server Administrator’s Guide and
Command Reference Release 3.0 for UNIX”, Oracle Corporation, February 2, 1998

[Bolot-96]
Jean Bolot and Philip Hoschka, “Sound and Video on the Web”, INRIA-Sophia
Antipolis, 1996

[Booch-93]
Grady Booch, “Object-oriented Analysis and Design with Applications” , 2nd edition.
Benjamin Cummings, Redwood City. ISBN 0-8053-5340-2, 1993

[Chong-98]
Karina Chong, “Managing data for interactive full-motion video for distance
Learning” . MSc Dissertation for the MSc in Computer Science at University of Essex,
September 1998.

[CORBA-98]
“CORBA/IIOP 2.2 Specification” , Object Management Group, 1998
http://www.omg.org/corba/corbiiop.htm

[Cornell-96]
Gary Cornell and Cay S.Horstmann. “Core Java” , The SunSoft Press, Java Series, A
Prentice Hall Title, 1996 ISBN 0-13-565755-5

[Deitel-97]
H.M. Deitel and P.J. Deitel. “Java, how to program”, Prentice Hall, 1997
ISBN 0-13-263401-5

[Elmasr i-95]
R. Elmasri/S. B. Navathe, “Fundamentals of Database Systems”. “Relational
Database Design using E-R to Relational Mapping” , pages 172-174. The Benjamin
Cummings Publishing Company, 1995
ISBN 0-8053-1753-8

References.

Criteria for the Design of a Platform Independent Distance Learning System.

73

[Fowler-98]
Amy Fowler , “An Overview Of Swing Architecture. The Inside Story on Swing
Component Design” , JavaSoft WebSite, April 1998
http://www.javasoft.com/products/jfc/tsc/swingdoc-static/swing-arch.html#

[Fursbush-98]
Gordon Furbush and Denise Stone, “OVS Developer’s Guide Release 3.0” , Oracle
Corporation, 1998

[Gaurene-98]
Eugenio Gaurene, Paolo Fasano, and Vinicio Vercellone. “ IP and ATM Integration
Perspectives” , IEEE Communications Magazine, Vol. 36, No. 1, pp 74-80, January
1998.

[Gosling-96]
James Gosling, Bill Joy and Guy Steele, “The Java Language Specification. Chapter
17 – Threads and Locks” , Sun MicroSystems, 1996
http://www.javasoft.com/docs/books/jls/html/index.html

[Guan-98]
Huiwei Guan, Horace H. S. Ip and Yanchun Zhang. “Java-based approaches for
accessing databases on the Internet and a JDBC-ODBC implementation” . Computing
& Control Engineering Journal, April 1998

[Hamilton-97]
Graham Hamilton & Rick Cattell, “JDBC: A Java SQL API” , JavaSoft, January 1997
http://www.javasoft.com/products/jdk/1.2/docs/guide/jdbc/index.html

[Herr ick-98]
Rick Herrick, “Oracle Video Client Developers Guide Release 3.0” , Oracle
Corporation, 1998
ftp://voyager.oraclevideo.com/pub/documentation/ovs3.0/nt/ovcdev.pdf

[Hoare-74]
C.A.R Hoare, “Monitors: An Operating System Structuring Concept” ,
Communications of the ACM, Vol. 17, No. 10. pp. 549-557, October 1974

[IBM-98]
“ IBM High Performance Compiler for Java: An Optimizing Native Code Compiler
for Java Applications”
http://www.alphaWorks.ibm.com/graphics.nsf/system/graphics/HPCJ/$file/highpcj.html

[JavaSoft-98a]
“Java Foundation Classes: Now and the Future “ , JavaSoft WebSite, March 1998
http://www.javasoft.com/marketing/collateral/foundation_classes.html

[Javasoft-98b]
“ ISO ADOPTS QUICKTIME FILE FORMAT AS STARTING POINT FOR
DEVELOPING KEY COMPONENT”, JavaSoft Press Release, February 11, 1998
http://www.javasoft.com/pr/1998/02/pr980211.html

References.

Criteria for the Design of a Platform Independent Distance Learning System.

74

[JavaSoft-98c]
“Java Media Players” , Sun Microsystems, Inc., Silicon Graphics, Inc., and Intel
Corporation, May 1998
http://www.javasoft.com/products/java-media/jmf/forDevelopers/playerguide/index.html

[Kramer-96]
Douglas Kramer , “The Java Platform: A White Paper” , JavaSoft 1996
http://www.javasoft.com/docs/white/platform/CreditsPage.doc.html

[Lavington-97]
Simon Lavington, Richard Gamble and Neil Dewhurst. “Pilot experiments in
broadband interactive video using OVS”. Department of Computer Science,
University of Essex. Internal Report CSM-283, February 1997

[Lee-98]
Jack Y.B. Lee , “Parallel Video Servers: A Tutorial” , The Chinese University of Hong
Kong, IEEE MULTIMEDIA, Vol.5 No.2 pp. 20-28, 1998

[L inden-98]
Brian Linden and Matt Prather, “ Introducing Oracle Video Server, Release 3.0” ,
Oracle Corporation, February 1998.
ftp://voyager.oraclevideo.com/pub/documentation/ovs3.0/nt/intro.pdf

[Ma-98]
Wei-hsiu Ma, Yen-Jen Lee, David H.C. Du, and Mark P. McCahill, “Video-Based
Hypermedia for Education-on-Demand”, University of Minessota, IEEE Multimedia,
pp 72-83, January-March 1998.

[Mar ing-97]
Sheryl Maring, “Oracle Media Net Developers Guide Release 3.3” , Oracle
Corporation, 1997
ftp://voyager.oraclevideo.com/pub/documentation/ovs3.0/nt/omndev.pdf

[Mett-96]
Percy Mett, David Crowe, and Peter Strain-Clark, “Specification and Design of
Concurrent Systems”. The McGraw-Hill International.
ISBN 0-07-707966

[MPEG-98a]
“The MPEG Data Archive” http://www.mpeg.org/index.html/.
A very good Internet knowledge source for MPEG standards.

[MPEG-98b]
The MPEG Home Page
http://drogo.cselt.stet.it/mpeg/#General_documents

[Muller-98a]
Hans Muller and Kathy Walrath, “Threads and Swing” , JavaSoft, April 1998
http://www.javasoft.com/products/jfc/tsc/swingdoc-archive/threads.html

References.

Criteria for the Design of a Platform Independent Distance Learning System.

75

[Muller-98b]
Hans Muller and Kathy Walrath, “Using a Swing Worker Thread”, JavaSoft, April
1998, http://java.sun.com/products/jfc/tsc/swingdoc-archive/swing_worker.html

[Nelson-98]
Matthew T. Nelson, “Java Foundation Classes” , McGraw-Hill, 1998
ISBN 0-07-913758-X

[Postel-82]
Jonathan B. Postel, “Simple Mail Transfer Protocol” , RFC 821, Network Working
Group, Information Sciences Institute, University of Southern California, August
1982, http://freesoft.org/CIE/RFC/821/index.htm

[Pressman-93]
Roger S.Pressman, “Software Engineering. A Practisioner’s Approach” . The
McGraw-Hill International, ISBN 0-07-050814-3

[Pr ince-95]
Stephen Prince , “Movies and meaning: an introduction to film”. Allin&Bacon
A Viacom Company Needham Heights, 1995, ISBN 0-02-396806-0

[Schulzr inne-96]
Schulzrinne H., Cogner S., Frederik R. and Jacobson. “RTP: A Transport Protocol for
Real Time Applications” RFC 1889, IETF, 1996.

[Serber-96]
Ron Serber, Eli Brosh and Shlomy Chaikin. “Video over the Internet” . RAD Data
Communications, 1996.
http://www.rad.com/networks/1996/video/video.htm#index

[Tanenbaum-97]
Andrew S.Tanenbaum. “Computer Networks” , Prentice Hall, 1997

[Tyma-98]
Paul Tyma. “Why are we using Java?”, Communications of the ACM, Volume 21,
Number 6, pp 38-42, June 1998.

[Varonos-97]
Stavros Varons
“Personalised Interactive Video for Distance Learning” . MSc Dissertation for the
MSc in Computer Science at University of Essex, September 1997.

[VIDEONICS-97]
Videonics Corporation. “Video on the World Wide Web”, 1997.
http://www.videonics.com/videos/about-web-video.html

[Willis-96]
Barry Willis, “Distance Education at a Glance” , A Series of Guides Prepared by
Engineering Outreach at the University of Idaho Moscow, ID 83844-1014, 1996
http://www.uidaho.edu/evo/distglan.html

Appendix A. JDBC Notes.

Criteria for the Design of a Platform Independent Distance Learning System.

76

Appendix A. JDBC Notes.

WHAT IS JDBC?

JDBC stands for Java Database Connectivity and it is a Java API for executing SQL
statements. One can write a single program using the JDBC API, and the program will
be able to send SQL statements to different kind of databases [Hamilton-97].

JDBC architecture is composed of three different components:
 �

JDBC API � JDBC Driver Manager � JDBC Driver

The JDBC Driver Manager is in charge of receiving requests from the JDBC API and
sending them to the JDBC Driver that implements them. It is used to open a
connection to a database via a JDBC driver, which must register with the driver
manager before the connection can be formed. When a connection is attempted, the
driver manager chooses from a given list of available drivers to suit the explicit type
of database connection. After a connection is formed, the calls to query and fetch
results are made directly with the JDBC driver. The JDBC driver must implement the
classes to process these functions for the specific databases.

JDBC DRIVERS

JDBC drivers fit into one of four categories:
 �

JDBC-ODBC bridge (Type 1)
The JDBC-ODBC bridge provides JDBC access via most ODBC drivers. The
applications are written by using the JDBC API. These JDBC calls are passed to
the JDBC-ODBC bridge and converted into ODBC APIs with C language. The
ODBC calls are then passed to an appropriate ODBC driver for the back-end data
store.

The advantage of this method is that applications can easily access databases from
multiple vendors by choosing an appropriate ODBC driver. However, if using this
type of driver, the specific ODBC driver for the remote database server must be
preinstalled in the client machine.

 �
Native-API or partly-Java driver (Type 2)
This JDBC implementation converts JDBC calls into calls on the client API for
Oracle, Sybase, Informix, DB2, or other DBMS. These drivers are typically
written in some combination of Java and C, as the driver must use a layer of C
code in order to make calls to the vendor libraries. They have the same software
maintenance problem as the JDBC-ODBC bridge approach because they require
the vendor library to be installed in the client.
 � Net-protocol and all-Java driver (Type 3)

Appendix A. JDBC Notes.

Criteria for the Design of a Platform Independent Distance Learning System.

77

The software implementation of the JDBC driver translates JDBC calls into a
database-independent net protocol, which is then translated into a database-
specific protocol by a middle-tier server. This type of driver can entirely be
written in Java and does not require any kind of pre-installation in the client side.
However, a translation from the net protocol to ODBC and from ODBC to the
RDBMS protocol is still required.

 �
Native-protocol and all-Java driver (Type 4)
This type of JDBC driver converts JDBC calls directly into the network protocol
used by the specific database vendor, allowing a direct call from the client
machine to the DBMS server. These drivers can be written entirely in Java. As
these drivers translate JDBC directly into the native protocol, without the use of
ODBC or native SQL APIs, they can provide for very high performance database
access.

With this kind of driver approach, the Java applets with the JDBC driver can be
downloaded into a browser without any prior client-software installation.

Appendix B. Relational Database Schema Der ivation.

Criteria for the Design of a Platform Independent Distance Learning System.

78

Appendix B. Relational Database Schema Derivation.

In order to obtain the Relational Database Schema from the Entity Relationship
Diagram shown at Figure 12, the ER-to-Relational Mapping Algorithm, found at
[Elmasri-95] was used. The process followed was:

1. For each regular Entity Type E in the ER schema, a new relation R was created

including all the simple attributes of E. When a Composite Attribute was found
only the simple attributes of it were included. One of the key attributes of E was
chosen as Primary Key for R. For example, in the case of the Entity Type
Diagram, a new relation called Diagram was created with the attributes
DiagramID, Name, Width, Height and Bitmap.

2. For each binary 1:N relationship type R, the relation S that represented the

participating entity type at the N-side of the relationship type was identified. The
primary key of the relation T representing the other entity type participating in R
was included as foreign key in S. For example, in the case of the relationship
“divided into” , the N-side of this relationship, the relation Shot, was identified and
the primary key of the other relation, Clip, was added as Foreign Key to the
relation Shot.

3. For each binary M:N relationship type R, a new relation S to represent R was

created. The primary keys of the relations that represent the participating entity
types were included as foreign key attributes in S forming their combination the
primary key of S. Also any simple attribute of the M:N relationship type was
included as attributes of S. For example, in the case of the relationship between
the relations LogicalContent and Clip, “contains” , the new relation
LogicalContentContainsClip was created, including as foreign key attributes in it,
the primary keys of LogicalContent and Clip relations, ContentID and ClipID
respectively. The combination of these two attributes constituted the primary key
of the new relation. On the other hand, the attributes of the relationship
“contains” , StartTime and StopTime passed to form part of the attributes of the
newly created relationship.

The Relational Database Schema obtained after applying the process explained above
to the Entity Relationship Diagram was:

Appendix B. Relational Database Schema Der ivation.

Criteria for the Design of a Platform Independent Distance Learning System.

79

Logical Content (ContentID, Name, Description, Length, VideoWidth, VideoHeight)
LogicalContentContainsClip (ContentID, ClipID, StartTime, StopTime)
Clip (ClipID, PathName, Description)
Shot (ShotID, ShotNumber, StartTime, StopTime, ClipID)
DiagramRepresentingShot (ShotID, DiagramID, StartTime)
Diagram (DiagramID, Name, Width, Height, Bitmap)
Tag (TagID, X, Y, Width, Height, Text, DiagramID)
Notes (NotesID, Text, ShotID)
NotesDiagramLink (NotesID, DiagramID, Position, Length)
NotesKeywordL ink (NotesID, Term, Position, Length)
Keyword (Term, Explanation)
KeywordFoundAtBibliography (Term, BiblioID, PageNumber)
Bibliography (BiblioID, Title, Author, Publisher)
ShotExplainsKeyword (ShotID, Term)

Note that primary keys are underlined and foreign keys are in italics.
It can be observed that the resulting Relational Database Schema is in 3NF.

Appendix C. Multithreaded Programming.

Criteria for the Design of a Platform Independent Distance Learning System.

80

Appendix C. Multithreaded Programming.

This appendix purpose is to introduce the reader in basic multithreaded programming
concepts. In the Technical Background section of the Implementation Issues Chapter
multithreaded programming in Java is described. This section was included with the
objective of giving some background information to readers for which multithreaded
programming is something new.

Process-based multitasking vs. Thread-based multitasking

A multithreaded program is an executable entity containing two or more parts that
run concurrently. Each part of such a program is called a thread, and each thread
defines a separate path of execution. Thus, multithreading is just a specialised form of
multitasking.

All modern operating systems virtually support multitasking. There are two distinct
types of multitasking to be distinguished:

• Process-based multitasking
• Thread-based multitasking

Process-based multitasking is the most common form of multitasking. A process is, in
essence, a program that is executing. Thus, process-based multitasking is the feature
that allows your system to run two or more programs concurrently. For example,
process based multitasking allows you to run a text-editor at the same time you are
using an Internet browser. In process-based multitasking, a program is the smallest
unit of code that can be dispatched by the scheduler. The scheduler can be defined as
the part of the operating system in charge of deciding when more than one process is
runnable which one to dispatch.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. A multithreaded program performs two or more tasks at once. For
instance, you can be typing text in a text-editor at the same time you are printing a
document, as long as these two actions are being performed by two separate threads.

The basic difference between thread-based and process-based multitasking is that the
former one extends the idea of the latter one by taking it one level lower: individual
programs have the ability to run multiple computations at the same time. The main
advantage of multithreading is that allows writing very efficient programs that make
maximum use of CPU, because idle time can be kept to a minimum. Idle time is
produced for example when I/O operations are carried out, local file system resources
are read and written at a much slower pace than they can be processed by the CPU
and this time could be used to undertake other kind of tasks.

Appendix C. Multithreaded Programming.

Criteria for the Design of a Platform Independent Distance Learning System.

81

Thread Definition

A thread is similar to a sequential program in the sense that it has a beginning, an
execution sequence, and an end. Moreover, at any given time during its runtime there
is a single point of execution as well. However, a thread itself is not a program, it
cannot run on its own. Rather, it runs within a program. Figure 20 shows this
relationship.

FIGURE 20
Concurrent execution of two threads inside a program

A thread is a single sequential flow of control within a program. A thread is
considered as a lightweight process because it runs within the context of a program
and takes advantage of the resources allocated for that program and the program’s
environment. A process has a complete set of its own variables, but a thread shares
data in the program in which it lives.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Inter-process
communication is expensive and limited. Context switching from one process to
another is also costly. Threads on the other hand are lightweight. They share the same
address space and cooperatively share the same heavyweight process. Interthread
communication is inexpensive, and context switching from one thread to the next is
low cost.

Thread/Process Scheduling

Note that in this point the term process and thread will be used interchangeably,
because as far as the scheduler it is concerned they are treated similarly.

In a Round Robin scheduler, the most normal kind of scheduler, each process is
assigned a time interval, called its quantum or time-slice, which it is allowed to run. If
the process is still running at the end of the quantum, the CPU is preempted and given
to the next process in queue. If the process has blocked or finished before the quantum
has elapsed, CPU switching is done. Every time a process is granted the CPU, a
context switch occurs, which adds overhead to the process execution time.

Two
Threads

Program

Appendix C. Multithreaded Programming.

Criteria for the Design of a Platform Independent Distance Learning System.

82

Sometimes process dispatching can get more complicated when priorities are assigned
to the processes. A process priority is used to decide when to switch from one running
process to the next, i.e. when a context switch takes place. When priorities are
employed the processes that are ready to be run have to be ordered by its priority in
the waiting queue. However, the operating system has to prevent low priority
processes to remain in the runnable queue forever. This situation is usually handled
increasing the priority of a process in the queue proportionally to the time it has
resided in it.

Synchronisation in multithreaded environments

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, a way is needed to ensure that they don’ t conflict with each other. It has to
be prevented that one thread is writing data while another thread is in the middle of
reading it. If a situation of this type has occurred it is said that a race condition has
been reached.

The process by which race conditions can be avoided is called synchronisation and
the way to solve it can be through any concurrency control tool such as semaphores,
barriers, monitors... Programming languages such as C and C++ need to utilise
operating system primitives in order to synchronise threads. Java, on the other hand,
implements synchronisation through language elements. It uses Hoare’s monitors.

Appendix D. Dynamic Memory Storage Needs.

Criteria for the Design of a Platform Independent Distance Learning System.

83

Appendix D. Dynamic Memory Storage Needs.

During the initialisation of the Film Studies Tutorial, two Java dynamic storage
structures are used to load into memory all the data that needs to be displayed at the
same time the movie playback is carried out. These two structures are:
 �

Vector .

The Vector class implements a growable array of objects. Like an array, it
contains components that can be accessed using an integer index. However, the
size of a Vector can grow or shrink as needed to accommodate adding and
removing items after the Vector has been created.

 � Hashtable.

This class implements a hashtable, which maps keys to values. Any non-null
object can be used as a key or as a value.

As it can be seen in SQLHandler class in the code several vectors and hashtables are
loaded with Educational Data when initialising the application. At the time this
calculations were made it was not still known the total amount of educational data
needed for the whole Tutorial. Only complete information about 1 of the 3 parts the
Tutorial is composed of was known. Therefore the results obtained are only
estimations of the total amount of memory that will be required for the final
application, when all the educational data was available. The result obtained for the
section corresponding to the “suspicion” clip are simply multiplied by 3.

Cl i ps Vect or Si ze

• Clip Vector Element Size
• NameCl i p (St r i ng- t ype of maxi mum l engt h 16) = 16 byt es
• Fi r st Shot Numer (i nt - t ype) = 4 byt es
• St ar t Ti me (l ong- t ype) = 8 byt es
• St opTi me (l ong- t ype) = 8 byt es

 36 byt es
 *

• Clip Number 1 c l i p
36 byt es

Shot s Vect or Si ze

• Shot Vector Element Size
• Shot I D (i nt - t ype) = 4 byt es
• Shot Numer (i nt - t ype) = 4 byt es
• St ar t Ti me (l ong- t ype) = 8 byt es
• St opTi me (l ong- t ype) = 8 byt es

24 byt es
 *

• Shot Number 22 shot s
 528 byt es

Appendix D. Dynamic Memory Storage Needs.

Criteria for the Design of a Platform Independent Distance Learning System.

84

Keywor ds Vect or Si ze
• Keyword Vector Element Size

• wor d (St r i ng- t ype of maxi mum l engt h 32) = 32 byt es
32 byt es

*

• Keyword Number 113 Keywor ds
 3616 byt es

Gl ossar y HashTabl e Si ze

• Glossary HashTable Element Size
• Keywor d (st r i ng- t ype of maxi mum l engt h 32) = 32 byt es
• Def i ni t i on (st r i ng- t ype of maxi mum l engt h 552) = 552 byt es

584 byt es
 *

• Glossary Terms Number 113 Gl ossar y Ter ms
65992 byt es

Bi t Map HashTabl e Si ze

• BitMap HashTable Element Size
• Fi l eName (st r i ng- t ype of maxi mum l engt h 16) = 16 byt es
• Scal edI mage Bi t Map of maxi mum si ze 60000 byt es = 60000 byt es

60016 byt es
 *

• BitMap Number 43 Bi t Maps
 2580688 byt es

Shot Keywor ds HashTabl e Si ze
• ShotKeywords HashTable Element Size

• Shot I D (i nt - t ype) = 4 byt es
• Keywor ds Vect or

• Keywor d (st r i ng- t ype of maxi mum l engt h 32) = 32 byt es
 *

• Maxi mum number of keywor ds = 4 keywor ds
 128 byt es

132 byt es
 *

• Shots Number 22 Shot s
 2904 byt es

Shot Di agr ams HashTabl e Si ze

• ShotDiagrams HashTable Element Size
• Shot I D (i nt - t ype) = 4 byt es
• Di agr ams Vect or

• Ani mat i onI D (i nt - t ype) = 4 byt es
• St ar t Ti me (l ong- t ype) = 8 byt es
• St opTi me (l ong- t ype) = 8 byt es
• Fi l eName (st r i ng- t ype of maxi mum l engt h 16) = 16 byt es

 36 byt es
 *

• Maxi mum number of Di agr ams = 4 Di agr ams
 144 byt es

148 byt es
 *

• Shots Number 22 Shot s
3256 byt es

Appendix D. Dynamic Memory Storage Needs.

Criteria for the Design of a Platform Independent Distance Learning System.

85

Dynamic Allocated Data Structures Size

Clips Vector Size 36 byt es

Shots Vector Size 528 byt es

Keywords Vector Size 3616 byt es

Glossary HashTable Size 65992 byt es

BitMap HashTable Size 2580688 byt es

ShotKeywords HashTable Size 2904 byt es

ShotDiagrams HashTable Size 3256 byt es

“ Suspicion” Section Estimated Allocated Memory 2657020 byt es

 * 3 Sections

Film Studies Tutor ial Total Dynamic Memory Estimated 7971060 byt es

Appendix E. Film Studies Tutor ial Manual.

Criteria for the Design of a Platform Independent Distance Learning System.

86

Appendix E. Film Studies Tutorial Manual.

In chapter 5, “Testing and Results” , during Functional Testing, some snapshots of the
Film Studies Tutorial were already shown (Figures 15-19) to explain how the system
fulfils the functionality needs expressed in the System Requirements. Reference to
those snapshots will be made in this user manual. This appendix goal is to summarise
all the functionality the Film Studies Tutorial provides and to explain the basic steps
to follow to install and configure the system.

Film Studies Tutorial Installation

Before the installation of the Tutorial itself is carried out the following steps have to
be followed:

• Install JDK 1.1.6 and Swing 1.0.3 in the client machine. JDK 1.1.6 can be

downloaded from:
 http://www.javasoft.com/products/jdk/1.1/jre/download-jre-windows.html,

whereas Swing 1.0.3 is found at:
http://java.sun.com/products/jfc/index.html#download-swing

• Install a JDBC driver to allow communication between the client application and

the back-end RDBMS. During system development the JDBC Thin Driver (Type
4) provided by Oracle at:

http://www.oracle.com/products/free_software,
was installed because an Oracle 7.3.2 RDBMS was employed.

• Proceed to a minimum installation of Oracle Video Client 3.0.3 in the client-

machine. This minimum installation includes OVI and the Oracle Video Java
Library. For more information about how to install Oracle Video Client, look at
“Oracle Video Client Installation Guide” at:

http://www.oraclevideo.com/documentation/ovs3.0/nt/index.html

• Ensure that Oracle Video Server 3.0.3 has been correctly installed in the Server

machine and the Logical Content the to be used in the Film Studies Tutorial is
prepared. For information about how to install Oracle Video Server, look at
“Oracle Video Server Installation Guide” at:

http://www.oraclevideo.com/documentation/ovs3.0/solaris/index.html

• Install the Educational Database in a Relational Database Management System.

During the System Development an Oracle 7.3.2 RDBMS was used.

• Copy the FilmStudiesTutorial.class, FilmStudiesTutorial.bat, Tutor.cfg15 and

RDBMS.cfg files provided to a new directory in your hard drive, called for
example Film Studies Tutorial.

• Double click over FilmStudiesTutorial.bat. If all the installation were followed,

the system should start. Note that the content of the file FilmStudiesTutorial.bat is

15 Note these .cfg extension files contain the Configuration Details of Tutor and RDBMS respectively.

Appendix E. Film Studies Tutor ial Manual.

Criteria for the Design of a Platform Independent Distance Learning System.

87

just the command: j ava Fi l mSt udi esTut or i al , to indicate the Java Virtual
Machine to start running the application.

Film Studies Tutorial Configuration

Two configuration operations are necessary before the Film Studies Tutorial is finally
ready to be used by the students:

1. Set up the Relational Database Details (RDBMS.cfg).

Select Configure RDBMS Menu Item from Configuration Menu or simply click
over Configure RDBMS toolbar button. Fill in the fields of the Relational
Database Configuration Dialog (Figure 21), with the details of the RDBMS that
contains the Educational Data associated to the Film Studies Tutorial.

FIGURE 21

Relational Database Configuration Dialog

2. Set up Course Tutor Details(Tutor.cfg).
Select Configure Tutor Details from Tutor Menu or click over toolbar button
provided. Fill in the details of the Course Tutor Configuration Dialog (Figure 22).

FIGURE 22

Tutor Details Configuration Dialog

Appendix E. Film Studies Tutor ial Manual.

Criteria for the Design of a Platform Independent Distance Learning System.

88

Once these two tasks are carried out the system will be ready to be started.

Film Studies Tutorial Operation

The following three facilities are provided by the Film Studies Tutorial:

1. Tutorial Demo
2. Glossary
3. Email to Course Tutor.
 �

TUTORIAL DEMO FACILITY

The Film Studies Tutorial is initiated by default with the Tutorial Demo Panel
active. If not just select Tutorial Demo Tab for the Tabbed Pane shown. The
operation of the Tutorial Demo is very simple and assisted by Tool Tips appearing
when the mouse is moved over each of the different controls of the Tutorial. The
following operations can be done inside the Tutorial Demo Panel:

• Start the Tutorial Demo.

Click on the Play/Resume button. Figure 15 shows the Tutorial Demo while it
is running.

• Stop The Tutorial Demo.
A click on the Pause Button, Diagram Panel or Keyword List Item will make
the Tutorial Demo to be stopped. When the Tutorial Demo is stopped the
Notes associated to the Current Shot will appear. If the click is done over a
Keyword List Item an explanation of the Keyword Item Clicked will appear.
Figures 16 and 17 show Tutorial Demo when stopped.

• Move to the Next/Previous Shot in Tutorial Demo.
A click over the Next Shot button will move the Tutorial Demo to the Next
Shot position. If the Demo was ON, it will continue running, if not, the new
Notes and Keywords associated to the new shot will be displayed. In case that
shot has Diagrams, the first Shot Diagram will be shown in the Diagram
Panel. Previous Shot button carries out the analogous functionality.

• Seek to a new Position in the Tutorial Demo.
By means of the Movie Time Scrolling Bar, the user will be allowed to move
to different Tutorial Demo Positions. If the Demo was ON, the Demo will
continue running, if not, the new Notes and Keywords associated to the new
Demo Position will be displayed. In case that new Active Shot has diagrams,
the first Shot Diagram will be shown in the Diagram Panel.

• Turn on/off the volume.
By clicking on the Mute Button, the Tutorial Demo Volume will be set on or
off.

Appendix E. Film Studies Tutor ial Manual.

Criteria for the Design of a Platform Independent Distance Learning System.

89

• Control the Volume Level.
The Volume Level can be controlled through the Movie Volume Slider.

• Obtain Keyword Explanation.

A click over a Keyword List item will stop the Tutorial, in case it was running,
and display the explanation of the keyword clicked.

A click over a blue colour link (Keyword Link) in the Tutorial Notes provided
when the Demo is stopped, will result in a pop-up tip window explaining the
Keyword. Figure 17 shows the two ways to obtain a Keyword Explanation.

• Obtain Diagram Explanation.
Once the Demo has been stopped, whether because the Pause button, a
Keyword List Item or Diagram Panel was clicked, mouse movements over the
Diagram Panel will cause Tips to come up explaining the different
components of the Diagram.

• Obtain Diagram refered in Notes.

A click over a red colour link (Diagram Link) in the Notes will produce the
application to display a new diagram in the Diagram Panel, to give
explanation to some concepts explained in the notes. Figure 16 shows the
effect of clicking a Diagram Link.

 � GLOSSARY FACILITY

To start the Glossary Facility click over the Glossary Tab. Once the Glossary
Panel is active three operations can be carried out:

• Move to the beginning of a Glossary Section.

By clicking over an index in the Glossary Panel the position of the Glossary
Document will be moved to the position where the first Keyword starting by
the index letter clicked is given. Figure 18 shows the outlook of the Glossary
when an index is clicked.

• Obtain Keyword Bibliography References.
Click over the Bibliography Link that appears at the end of each Keyword
Explanation to obtain the references of a Keyword.

• Move to a random position in the Glossary.
Use Page Up, Page Down Keys or the Scrolling Bar provided to move
wherever you want in the Glossary.

 �

EMAIL FACILITY

To send an email to the Course Tutor, click over the Send Mail button in the Tool
Bar or the Send Mail Menu Item in the Tutor Menu. Write the message in the
Dialog that will appear and click whether Send Button to send it or Cancel to
cancel the message. Figure 19 shows the system email facility.

Chapter 4. Implementation Issues.

Criteria for the Design of a Platform Independent Distance Learning System.

90

Appendix F. Source Code.

The Film Studies Tutorial has been implemented by means of the following Java files:

Source File Name Description
AboutDialog.java Class implementing About Box Dialog.

AnimationMouseListener.java Class to handle events over the Diagram Panel.

BibliographyNote.java Class containing details about a Bibliography reference.

Clip.java Class containing details about a clip.

ConfigurationDialog.java Class implementing Database Configuration Dialog.

CourseTutor.java Class containing details about the Course Tutor.

Diagram.java Class containing details about a diagram.

FilmStudiesTutorial.java Main Class of the system. Creates the UI and connect to
the Database.

GlossaryPanel.java Corresponds to the Glossary class of the Design. It
implements the Film Studies Tutorial Glossary
functionality.

IntroWindow.java Class implementing the Window that presents the
application.

Keyword.java Class representing a shot keyword.

KeywordChooser.java Class to handle events over the Keyword List.

KeywordTip.java Class implementing a Tip Window appearing when a
Keyword Link is clicked.

MailWindow.java Class implementing the window used to send email.

Mailer.java Class implementing the mail system of the Tutorial.

MoviePositionSliderListener.java Class to handle events over the Movie Time Slider.

MyUtil.java Miscellaneous class containing several useful methods.

Notes.java Class containing details about the notes of a shot.

NotesLink.java Class representing a link in the Notes.

PlayerController.java Class to handle events over all the buttons contained in the
Player Controls.

RDBMSConnectData.java Class containing details about the RDBMS the system
connects to.

Shot.java Class containing details about a Demo Film Shot.

SMTPException.java Class defining exceptions occurred during the email
delivery.

SQLHandler.java Class defining all the interactions with the RDBMS.

SwingWorker.java Class to implement the background thread the Demo
Worker is inspired on.

Tag.java Class containing details about a Diagram Tag.

TextAreaWithLinks.java Class implementing the Tutorial Notes with links.

TutorDialog.java Class implemented the dialog to change the Tutor Details.

TutorialPanel.java Corresponds to the TutorialDemo class of the design. It
implements the Tutorial Demo functionality.

MovieVolumeSliderListenerl.java Class to handle events over the Movie Volume Slider.

