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Abstract—Microshrinkages are known as probably the most
difficult defects to avoid in high-precision foundry. This failure
is not corrigible, with the subsequent cost increment. Modelling
the foundry process using machine learning allows algorithms to
foresee the value of a certain variable, in this case, the probability
that a microshrinkage appears within a foundry casting. However,
this approach needs to label every instance to generate the
model that will classify the castings. In this paper, we present
a new approach for detecting faulty castings through collective
classification to reduce the labelling requirements of completely
supervised approaches. Collective classification is a type of semi-
supervised learning that optimises the classification of partially-
labelled data. We perform an empirical validation demonstrating
that the system maintains a high accuracy rate while the labelling
efforts are lower than when using supervised learning.

I. INTRODUCTION

The casting production or the foundry process is considered
as one of the main factors influencing the development of the
world economy. The actual capacity of the world’s casting
production, which is higher than 60 million metric tones per
year, is strongly diversified [1]. The last decade brought sig-
nificant changes worldwide for the greatest casting producers.
Currently, the biggest producer is China, closely followed by
Europe. Producers supply key pieces to many other industries,
such as automotive, naval, weapon and aeronautic. Therefore,
the foundry process is subject to very strict safety controls to
assure the quality of the manufactured castings because, as
one may think, the tiniest defect may become fatal.

The techniques for the assurance of failure-free foundry
processes are exhaustive production control and diverse simu-
lation techniques [2]. Many of the techniques used can only be
applied when the casting is done. Thus, when a faulty casting
is detected, it must be remelted, which can be translated into
a cost increment.

Unfortunately, these methods are still incapable of prevent-
ing what is known to be the most difficult flaw in ductile
iron castings, namely the microshrinkage. More specifically,
this imperfection, also called secondary contraction, consists
in tiny porosities that appear inside the casting when it is
cooling down. The difficulty of its detection is due to the fact
that almost all the parameters of the foundry process influence
the apparition of microshrinkages.

Indeed, the problem of the microshrinkage apparition is very
difficult to solve [3], [4], [5] due to the following reasons: (i)

A huge amount of data, not prioritised or categorised in any
way, is required to be managed, (ii) it is very hard to find
cause-effect relationships between the variables of the system,
and (iii) the human knowledge used in this task usually tends
to be subjective, incomplete and not subjected to any test.

Currently, machine learning is being used increasingly in
the field of metallurgy to solve the aforementioned problems.
One of the most widely used methods is the application of
neural networks in several aspects such us classifying foundry
pieces [6], optimising casting parameters [7], detecting causes
of casting defects [8] amongst other related problems [9],
[10]. Similarly, other experiments involving the K-nearest
neighbour algorithm include fault detection of semiconductor
manufacturing processes [11]. Bayesian networks are also used
as previous methods in Bayesian neural networks methodology
(e.g., predicting the ferrite number in stainless steel [12]).

In our previous work, we tested several machine-learning
classifiers [3], [13] (e.g., Bayesian networks, support vector
machines, decision trees, artificial neural networks among
others) to identify which is the best classifier to predict
microshrinkages and, also, to reduce the noise in the data
gathering process produced by the foundry workers [4].

However, these supervised machine-learning classifiers re-
quire a high number of labelled castings for each class. It
is quite difficult to obtain this amount of labelled data for
a real-world problem such as foundry defect prediction. To
gather these data, a time-consuming process of analysis is
mandatory, and in the process, some changes in the production
may appear.

Semi-supervised learning is a type of machine-learning
technique specially useful when a limited amount of labelled
data exists for each class [14]. In particular, collective classi-
fication [15] is an approach that uses the relational structure
of the combined labelled and unlabelled data-sets to enhance
the classification accuracy. With these relational approaches,
the predicted label of an example will often be influenced by
the labels of related samples. Collective classification has been
used with success in text classification [15], malware detection
[16] or spam filtering [17].

The idea underlying collective classification is that the
predicted labels of a test sample should also be influenced
by the predictions made for related test samples. Sometimes,
we can determine the topic of not just a single evidence but



to infer it for a collection of unlabelled evidences. Collective
classification tries to collectively optimise the problem taking
into account the connections present among the instances. In
summary, collective classification is a semi-supervised tech-
nique, i.e., uses both labelled and unlabelled data — typically a
small amount of labelled data and a large amount of unlabelled
data —, that reduces the labelling work.

Given this background, we present here the first approach
that employs collective classification techniques for classifying
castings and to foresee microshrinkages. These methods are
able to learn from both labelled and unlabelled data to build
accurate classifiers. We propose the adoption of collective
learning for the detection of microshrinkages using features
extracted from the foundry production parameters as we did
in previous work [3], [13].

Summarising, our main contributions in this paper are:
(i) we describe how to adopt collective classification for
microshrinkage detection, (ii) we empirically determine the
optimal number of labelled instances and we evaluate how this
parameter affects the accuracy of the model, () and (iii) we
demonstrate that labelling efforts can be reduced in the fault
prediction problem, while still maintaining a high accuracy
rate.

The remainder of this paper is organised as follows. Section
Il details the casting production process and presents the
most difficult defect to avoid, the microshrinkage. Section
IIT describes different collective classification methods and
how they can be adopted for fault prediction. Section IV
describes the experiments and presents results. Finally, Section
V concludes the paper and outlines avenues for future work.

II. FOUNDRY PROCESS AND MICROSHRINKAGES

The foundry process can be considered as one of the axes
of our society. However, a task that seems simple becomes
complex due to the hard conditions in which it is carried
out. Besides the casting process, the foundry workers produce
castings that are close to the final product shape, i.e., ‘near-
net shape’ components. To this end, the production has to pass
through several stages in which the castings are transformed
to obtain the final casting.

Although all of the foundry processes are not equal, the
work flow performed in foundries is very similar to the work
flow shown in Fig. 1. The most important stages are the
following [18]:

« Pattern making: In this step, moulds (exteriors) or cores
(interiors) are produced in wood, metal or resin for being
used to create the sand moulds in which the castings will
be made.

« Sand mould and core making: The sand mould is the
most widely extended method for ferrous castings. Sand
is mixed with clay and water or other chemical binders.
Next, the specialised machines create the two halves of
the mould and join them together to provide a container
in which the metals are poured into.

o Metal melting: In this process (see 1 in Fig. 1), raw
materials are melt and mixed. Molten metal is prepared

in a furnace and depending on the choice of the furnace,
the quality, the quantity and the throughput of the melt
change.

o Casting and separation: Once the mixture is made,
the molten material is poured into the sand mould. It
can be done using various types of ladles or, in high
volume foundries, automated pouring furnaces. Later, the
metal begins to cool. This step (see 2 in Fig. 1) is
really important because the majority of the defects can
appear during this phase. Finally, when the casting has
been cooled enough to maintain the shape, the casting is
separated from the sand. The removed sand is recovered
for further uses.

+ Removal of runners and risers: Some parts of the cast-
ing that had been used to help in the previous processes
are then removed. They can be detached by knocking off,
sawing or cutting.

« Finishing: To finish the whole process some actions are
usually performed, e.g., cleaning the residual sand, heat
treatment and rectification of defects by welding.

Fig. 1. Foundry process work flow showing the different phases castings
have to pass through. More accurately, in 1 it is performed the metal melting
step, and in 2 it is performed the casting preparation and separation step.

The complexity of detecting faulty castings using an ex-ante
method arises principally from the high number of variables
that participate in the production process and, therefore, may
influence on the final design of a casting.

In consequence, the foundry process is simplified to solve
the aforementioned problem. In our case, the main variables to
control in order to predict the faulty castings can be classified
into metal-related and mould-related categories. Metal-related
variables are divided into the following categories:

« Composition: Type of treatment, inoculation and charges

[19].
o Nucleation potential and melt quality: Obtained by
means of a thermal analysis program [20], [21], [22].



o Pouring: Duration of the pouring process and tempera-
ture.

Mould-related variables can be split into the following
categories:

o Sand: Type of additives used, sand-specific features and
carrying out of previous test or not.
o Moulding: Machine used and moulding parameters.

The dimension and geometry of the casting also play a
very important role in this practice and, thus, we included
several variables to control these two features. We also took
into account other parameters regarding the configuration of
each machine working in the manufacturing process [23]. In
this way, we represent the castings with 24 variables [3].

A casting defect is an irregularity in the casting. Defects are
defined as conditions that make a casting to be corrected or
rejected. There are several defects that affect metal castings
such as, shrinkages, gas porosities or pouring metal defects
[18]. In this paper, we deal with microshrinkages. This kind
of defect usually appears during the cooling phase of the metal
but it cannot be noticed until the production is accomplished.
This flaw consists of a form of filamentary shrinkage in
which the cavities are very small but large in number and
can be distributed over a significant area of the casting, i.e.,
a minuscule internal porosities or cavities. It is produced
because the metals are less dense as a liquid than as a solid.
The density of the metal increases and it solidifies while the
volume decreases in parallel. During this process, diminutive,
microscopically undetectable interdendritic voids may appear
leading to a reduction of the castings hardness and, in the
cases faced here (where the casting is a part of a very sensitive
piece), rendering the piece useless [24].

The way to examine castings is the usage of non-destructive
inspections. The most common techniques are X-ray and ultra-
sound emissions. Unfortunately, both require suitable devices,
specialised staff and quite a long time to analyse all the parts.
Moreover, every test has to be done once the casting is done.
Therefore, post-production inspection is not an economical
alternative to the pre-production detection of microshrinkages.

Although we have already obtained overall significant re-
sults through a machine-learning-based approach predicting
those imperfections [3], [25], [26], [27], [28], [29], [13],
[4], these approaches require a manual labour to label every
casting within the dataset. This process can be specially time-
consuming for several machine-learning models and hinders
a subsequent cost increment. Note that in the year 2009,
China, which is the biggest producer of castings in the
world, produced 35.3 million tons of castings [1] and Europe,
the second producer, made 12 million tons of castings [1].
Although not all the castings were labelled, the cost of the
foundry workers developing labelling tasks would be too high.
Therefore, if only a little piece of the production is labelled, the
cost of the prediction preprocessing steps would be reduced.
Therefore, we present here a collective classification approach
that requires fewer castings to be labelled. Such an approach
will indeed reduce the efforts of labelling castings, working

with less information available in beforehand.

III. COLLECTIVE CLASSIFICATION

Collective classification is a combinatorial optimisation
problem, in which we are given a set of castings, or nodes,
£ = {e1,...,en} and a neighbourhood function N, where
N; C &\ {&}, which describes the underlying network
structure [30]. Being £ a random collection of castings, it is
divided into two sets X and )/, where X’ corresponds to the
castings for which we know the correct values and ) are the
castings whose values need to be determined. Therefore, the
task is to label the nodes ); € ) with one of a small number
of labels, £ = {l4,...,14}.

We use the Waikato Environment for Knowledge Analysis
(WEKA) [31] and its Semi-Supervised Learning and Collec-
tive Classification plugin'. In the remainder of this section
we review the collective algorithms used in the empirical
evaluation.

A. CollectiveIBK

This model uses internally WEKA'’s classic IBK algorithm,
an implementation of the K-Nearest Neighbour (KNN), to
determine the best k instances on the training set and builds
then, for all instances from the test set, a neighbourhood
consisting of k instances from the pool of train and test set
(either a naive search over the complete set of instances or
a k-dimensional tree is used to determine neighbours). All
neighbours in such a neighbourhood are sorted according
to their distance to the test instance they belong to. The
neighbourhoods are sorted according to their ‘rank’, where
‘rank’ means the different occurrences of the two classes in
the neighbourhood.

For every unlabelled test instance with the highest rank, the
class label is determined by majority vote or, in case of a
tie, by the first class. This is performed until no further test
instances remain unlabelled. The classification terminates by
returning the class label of the instance that is about to be
classified.

B. CollectiveForest

It uses WEKA'’s implementation of RandomTree as base
classifier to divide the test set into folds containing the same
number of elements. The first iteration trains the model using
the original training set and generates the distribution for all
the instances in the test set. The best instances are then added
to the original training set (being the number of instances
chosen the same as in a fold).

The next iterations train the model with the new training set
and generate then the distributions for the remaining instances
in the test set.

! Available at: http://www.scms.waikato.ac.nz/"fracpete/
projects/collectiveclassification



C. CollectiveWoods & CollectiveTree

CollectiveWoods works like CollectiveForest using Collec-
tiveTree algorithm instead of RandomTree.

Collective tree is similar to WEKA'’s original RandomTree
classifier. It splits the attribute at a position that divides the
current subset of instances (training and test instances) into
two halves. The process finishes if one of the following
conditions is met: (i) only training instances are covered (the
labels for these instances are already known); (ii) only test
instances in the leaf, case in which distribution from the parent
node is taken, and (iii) only training instances of one class,
case in which all test instances are considered to have this
class.

To calculate the class distribution of a complete set or a
subset, the weights are summed up according to the weights
in the training set, and then normalised. The nominal attribute
distribution corresponds to the normalised sum of weights for
each distinct value and, for the numeric attribute, distribution
of the binary split based on median is calculated and then
the weights are summed up for the two bins and finally
normalised.

D. RandomWoods

It works like WEKA'’s classic RandomForest but using Col-
lectiveBagging (classic Bagging, a machine learning ensemble
meta-algorithm to improve stability and classification accu-
racy, extended to make it available to collective classifiers) in
combination with CollectiveTree. RandomForest, in contrast,
uses Bagging and RandomTree algorithms.

IV. EMPIRICAL VALIDATION

To evaluate our semi-supervised microshrinkage detector, we
collected a dataset from a foundry specialised in safety and
precision components for the automotive industry, princi-
pally in disk-brake support, with a production over 45,000
tons a year. The experiments were focused exclusively on
the microshrinkage prediction. Note that, as aforementioned,
microshrinkages have internal presence, hence, the evalua-
tion must be done according to non-destructive X-ray, first,
and ultrasound testing techniques, afterwards, to ensure that
even the smallest microshrinkages are found [5]. The accep-
tance/rejection criterion of the studied models resembles the
one applied by the final requirements of the customer (i.e.,
in the examined cases, the automotive industry). According to
the very restrictive quality standards imposed by these clients,
pieces flawed with an unacceptable microshrinkage must be
rejected.

In the validation, we worked with two different references,
i.e., type of pieces and, to evaluate the proposed method, with
the results of the non-destructive X-ray and ultrasound inspec-
tions from 951 production stocks performed in beforehand.
Thereby, the dataset comprises 690 correct castings and 261
faulty castings.

Next, we split the dataset into different percentages of
training and testing instances. In other words, we changed the

number of labelled instances to measure the effect of the num-
ber of previously labelled instances on the final performance
of collective classification in detecting faulty castings.

By means of this dataset, we conducted the following
methodology to evaluate the proposed method:

« Training and Test Generation. We constructed an ARFF
file [32] (i.e., Attribute Relation File Format) with the
resultant vector representations of the castings to build
the aforementioned WEKA'’s classifiers.

We did not use cross-validation because in the evaluation
we did not want to test the performance of the classifier
when a fixed size of training instances is used iteratively.
Otherwise, we employed a variable number of training
instances and tried to predict the class of the remaining
ones using collective classification in order to determine
which is the best training set size. In this case, the training
instances are the labelled ones whereas the unlabelled
ones are the ones in the test dataset.

Therefore, we split the dataset into different percentages
of training and tested instances, changing the number
of labelled instances from 10% to 90% to measure the
effect of the number of labelled instances on the final
performance of collective classification in detecting faulty
castings.

As aforementioned, we used the collective classifica-
tion implementations provided by the Semi-Supervised
Learning and Collective Classification package for the
well-known machine-learning tool WEKA [31]. All the
classifiers were tested with their default parameters.

o Testing the Models. To test the approach, we measured
the True Positive Rate (TPR), i.e., the number of castings
affected with microshrinkage correctly detected divided
by the total number of castings:

TP

TPR= —
R=Trprrn

ey
where T'P is the number of faulty instances correctly
classified (true positives) and F'N is the number of
faulty instances misclassified as correct castings (false
negatives).

We also measured the False Positive Rate (FPR), i.e.,
the number of not faulty castings misclassified as faulty
divided by the total number of correct castings:

FP

FPR=5p TN

2
where F'P is the number of not faulty castings incorrectly
detected as faulty and T'N is the number of correct
castings correctly classified.

Furthermore, we measured accuracy, i.e., the total num-
ber of hits of the classifiers divided by the number of
instances in the whole dataset:

TP +TN
Accuracy(%) = TP+ FP+TP+TN )
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Fig. 2.
TPR and AUC.

Besides, we measured the Area Under the ROC Curve
(AUC), which establishes the relation between false neg-
atives and false positives [33]. The ROC curve is obtained
by plotting the TPR against the FPR. All these measures
refer to the test instances.

Fig. 2 shows the obtained results in terms of accuracy,
TPR, FPR and AUC. Our results outline that, obviously, the
higher the number of labelled castings in the dataset the
better results achieved. However, by using only the 10% of
the available data, with the exception of CollectivelBK, the
collective classifiers were able to achieve TPRs higher than
95% and FPRs lower than 40%. In particular, CollectiveForest
trained with the 10% of the data obtained 89,87% of accuracy,
97.00% of TPR, 29.00% of FPR and 95% of AUC. Fig.
2(a) shows the accuracy results of our proposed method. All

Results of our collective-classification-based microshrinkage detection method. Collective Forest was the overall classifier with the highest accuracy,

the tested classifiers, with the exception of CollectivelBK,
achieved accuracy results higher than 85%. In particular,
CollectiveForest was overall the best, achieving an accuracy
of 92.05% using only a 30% of the instances for training
and 96,11% with the 90% of the whole dataset. Fig. 2(b)
shows the obtained results in terms of correctly classified
faulty castings. In this way, Collective Forest was also the best
detecting the 97% or 98% of the faulty castings in different
labelled percentage configurations. Fig. 2(c) shows the FPR
results. Every classifier obtained results lower than 40%. In
particular, the lowest FPR achieved was of 8%, achieved by
CollectiveIBK with the 10% of dataset. However, in order to
guarantee results of TPR higher than 80%, Collective Forest
only needs to be trained with, at least, 40% of the dataset.
Finally, regarding AUC, shown in Fig. 2(d), Collective Forest



was again the best, with results ranging 95% and 99%.
V. CONCLUSIONS

Foreseeing the apparition of microshrinkages in ductile iron
castings is one of the most hard challenges in foundry-related
research. Our previous work in [3] pioneered the application
of Artificial Intelligence to the prediction of microshrinka-
ges. In this paper, our main contribution is the collective-
classification-based approach employed for microshrinkage
detection. This method does not require as much labelling
of the castings as our previous supervised learning based
approach. In our experiments the results were higher than the
ones reported in our previous work using supervised learning
[3], [13], which renders collective classification as the best
learning procedure for microshrinkage prediction.

Future work will be focused on three main directions. First,
we plan to extend our study of collective learning by applying
more algorithms to this issue. Second, we will use different
features for training these kinds of models. Finally, we will
focus on different defects in foundry production in order to
generate a global fault detector.
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